Skip to main content

Promising DSSCs Involving Organic D–π–A and Similar Structures for n- and p-type Semiconductors—A Theoretical Approach

  • Chapter
  • First Online:
Development of Solar Cells

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 32))

Abstract

This chapter discusses the need for energy and a process to address such need with the help of a renewable source of energy—solar energy––when the primary sources such as oil, natural gas, and coal are being depleted while also polluting the atmosphere. It discusses the rise of dye-sensitized solar cells (DSSC) and the invention of organic dyes. Several reports suggest that molecular modeling is an important key to understanding and developing new and efficient organic dyes for DSSC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bube RH (1998) Photovoltaic materials. Imperial College Press, London

    Book  Google Scholar 

  2. Chung BC, Virshup GF, Schultz JC (2000) Proceedings of the 21st IEEE photovoltaic specialists conference, Kissimee, FL, p 179

    Google Scholar 

  3. Gee JM, Virshup GF (1988) Proceedings of the 20th IEEE photovoltaic specialists conference, Las Vegas, NV, p 754

    Google Scholar 

  4. Green MA, Emery K, Bucher K, King KL, Igari S (2000) Solar cell efficiency tables. Progr Photovolt 8:377

    Article  CAS  Google Scholar 

  5. Bazilian M, Onyeji I, Liebreich M, MacGill I, Chase J, Shah J, Gielen D, Arent D, Landfear D, Zhengrong S (2013) Re-considering the economics of photovoltaic power. Renew Energy 53:329–338

    Article  Google Scholar 

  6. Yoo JJ, Wieghold S, Sponseller MC, Chua MR, Bertram SN, Hartono NTP, Tresback JS, Hansen EC, Correa-Baena J-P, Bulović V, Buonassisi T, Shin SS, Bawendi MG (2019) An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ Sci 12:2192–2199

    Article  CAS  Google Scholar 

  7. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  8. Hagfeldt A, Boschloo G, Sun L, Kloo L, Peterson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  PubMed  Google Scholar 

  9. Liang M, Chen J (2013) (2013) Arylamine organic dyes for dye-sensitized solar cells. Chem Soc Rev 42:3453–3488

    Article  CAS  PubMed  Google Scholar 

  10. Maggio E, Solomon GC, Troisi A (2014) Exploiting quantum interference in dye sensitized solar cells. ACS Nano 8:409–418

    Article  CAS  PubMed  Google Scholar 

  11. Brédas JL, Norton JE, Cornil J, Coropceanu V (2009) Molecular understanding of organic solar cells: the challenges. Acc Chem Res 42:1691–1699

    Article  PubMed  Google Scholar 

  12. Yang J, Ganesan P, Teuscher J, Moehl T, Kim YJ, Yi C et al (2014) Influence of the donor size in D–π–A organic dyes for dye-sensitized solar cells. J Am Chem Soc 136:5722–5730

    Article  CAS  PubMed  Google Scholar 

  13. Nguyen WH, Bailie CD, Unger Eva L, McGehee MD (2014) Enhancing the hole-conductivity of Spiro-OMeTAD without oxygen or lithium salts by using Spiro(TFSI)2 in perovskite and dye-sensitized solar cells. J Am Chem Soc 136:10996–11001

    Article  CAS  PubMed  Google Scholar 

  14. Kang X, Zhang J, O’Neil D, Rojas AJ, Chen W, Szymanski P, Marder SR, El-Sayed MA (2014) Effect of molecular structure perturbations on the performance of the D–A–π–A dye sensitized solar cells. Chem Mater 26:4486–4493

    Article  CAS  Google Scholar 

  15. Stalder R, Xie D, Islam A, Han L, Reynolds JR, Schanze KS (2014) Panchromatic Donor–Acceptor–Donor conjugated oligomers for dye-sensitized solar cell applications. ACS Appl Mater Interfaces 6:8715–8722

    Article  CAS  PubMed  Google Scholar 

  16. Yella A, Lee HW, Tsao HN, Yi C, Chnadiran AK, Nazeeruddin MK, Diau EW, Yeh CYG, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334:629–634

    Google Scholar 

  17. Ushiroda S, Ruzycki N, Lu Y, Spitler MT, Parkinson BA (2005) Dye sensitization of the anatase (101) crystal surface by a series of dicarboxylated thiacyanine dyes. J Am Chem Soc 127:5158–5168

    Google Scholar 

  18. Li M-H, Yum J-H, Moon S-J, Chen P (2016) Inorganic p-type semiconductors: their applications and progress in dye-sensitized solar cells and perovskite solar cells. Energies 9(5):331 (1–28)

    Google Scholar 

  19. Kudo A, Kato H, Tsuji I (2004) Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem Lett 33:1534

    Article  CAS  Google Scholar 

  20. Kostedt DJ, Mazyck DW, Lee S-W, Sigmund W, Wu C-Y, Chadik P (2005) Magnetically agitated photocatalytic reactor for photocatalytic oxidation of aqueous phase organic pollutants. Environ Sci Technol 39:8052–8056

    Article  CAS  PubMed  Google Scholar 

  21. Tan SS, Zou L, Hu E (2006) Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catal Today 115:269–273

    Google Scholar 

  22. McCullagh C, Robertson JMC, Bahnemann DW, Robertson PKJ (2007) The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review. Res Chem Intermed 33(3–5):359–375

    Article  CAS  Google Scholar 

  23. Hanaor DAH, Sorrell CC (2014) Sand supported mixed-phase TiO2 photocatalysts for water decontamination application. MAdv Eng Mater 16:248–254

    Article  Google Scholar 

  24. Kovacs T, Pan Q, Lang P, O’Reilly L, Rau S, Browne WR, Pryce MT, Huijser A, Vos JG (2015) Supramolecular bimetallic assemblies for photocatalytic hydrogen generation from water. Faraday Discuss 185:143–170

    Article  Google Scholar 

  25. Braumüller M, Schulz M, Sorsche D, Pfeffer M, Schaub M, Popp J, Park B-W, Hagfeldt A, Dietzek B, Rau S (2015) Synthesis and characterization of an immobilizable photochemical molecular device for H2-generation. Dalton Trans 44:5577–5586

    Article  PubMed  Google Scholar 

  26. Zedler L, Guthmuller J, Rabelo de Moraes I, Kupfer S, Krieck S, Schmitt M, Popp J, Rau S, Dietzek B (2014) Resonance-Raman spectro-electrochemistry of intermediates in molecular artificial photosynthesis of bimetallic complexes. Chem Comm 50:5227–5229

    Article  CAS  PubMed  Google Scholar 

  27. Pfeffer MG, Kowacs T, Wächtler M, Guthmuller J, Dietzek B, Vos JG, Rau S (2015) Optimization of hydrogen-evolving photochemical molecular devices. Angew Chem Int Ed 54:6627–6631

    Article  CAS  Google Scholar 

  28. Pfeffer MG, Schäfer B, Smolentsev G, Uhlig J, Nazarenko E, Guthmuller J, Kuhnt C, Wächtler M, Dietzek B, Sundström V, Rau S (2015) Palladium versus platinum: the metal in the catalytic center of a molecular photocatalyst determines the mechanism of the hydrogen production with visible light. Angew Chem Int Ed 54:5044–5048

    Article  CAS  Google Scholar 

  29. Song W, Chen Z, Glasson K, Hanson CRK, Luo H, Norris MR, Ashford DL, Concepcion JJ, Brennaman MK, Meyer T (2012) Interfacial dynamics and solar fuel formation in dye-sensitized photoelectrosynthesis cells. ChemPhysChem 13:2882

    Article  CAS  PubMed  Google Scholar 

  30. Youngblood WJ, Lee S, Kobayashi Y, Hernandez-Pagan EA, Hoertz PG, Moore TA, Moore AL, Gust D, Mallouk TE (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927

    Article  CAS  PubMed  Google Scholar 

  31. Brimblecombe R, Koo A, Dismukes GC, Swiegers GF, Spiccia L (2010) Solar driven water oxidation by a bioinspired manganese molecular catalyst. J Am Chem Soc 132:2892–2894

    Article  CAS  PubMed  Google Scholar 

  32. Li L, Duan L, Xu Y, Gorlov M, Hagfeldt A, Sun L (2010) A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2. Chem Commun 46:7307

    Article  CAS  Google Scholar 

  33. Song W, Brennaman M, Concepcion J, Jurss J, Hoertz P, Luo H, Chen C, Hanson K, Meyer TJ (2011) Interfacial electron transfer dynamics for [Ru(bpy)2((4,4′-PO3H2)2bpy)]2+ sensitized TiO2 in a dye-sensitized photoelectrosynthesis cell: factors influencing efficiency and dynamics. J Phys Chem C 115:7081–7091

    Article  CAS  Google Scholar 

  34. Li F, Fan K, Wang L, Daniel Q, Duan L, Sun L (2015) Immobilizing Ru(bda) catalyst on a photoanode via electrochemical polymerization for light-driven water splitting. ACS Catalysis 5:3786–3790

    Article  CAS  Google Scholar 

  35. Wang M, Han K, Zhang S, Sun L (2015) Integration of organometallic complexes with semiconductors and other nanomaterials for photocatalytic H2 production. Coord Chem Rev 287:1–14

    Google Scholar 

  36. Yu Z, Li F, Sun L (2015) Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components. Energy Environ Sci 8:760–775

    Article  CAS  Google Scholar 

  37. Tong L, Iwase A, Nattestad A, Bach U, Weidelener M, Götz G, Mishra A, Bäuerle P, Amal R, Wallace WGG, Mozer AJ (2012) Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device. Energy Environ Sci 5:9472–9475

    Google Scholar 

  38. Li L, Duan L, Wen F, Li CY, Wang M, Hagfeldt A, Sun L (2012) Visible light driven hydrogen production from a photo-active cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO. Chem Commun 48:988–990

    Article  CAS  Google Scholar 

  39. Ji Z, He M, Huang Z, Ozkan U, Wu Y (2013) Photostable p-type dye-sensitized photoelectrochemical cells for water reduction. J Am Chem Soc 135:11696–11699

    Article  CAS  PubMed  Google Scholar 

  40. Shen M, Han A, Wang X, Ro YG, Kargar A, Lin Y, Guo H, Du P, Jiang J, Zhang J, Shadi AD, Xiang B (2015) Atomic scale analysis of the enhanced electro- and photo-catalytic activity in high-index faceted porous NiO nanowires. Sci Rep 5:8557, 1–6

    Google Scholar 

  41. Sharma D, Jha R, Kumar S (2016) Quantum dot sensitized solar cell: recent advances and future perspectives in photoanode. Solar Energy Mater Solar Cells 155:294–322

    Article  CAS  Google Scholar 

  42. Kamat PV (2012) Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Acc Chem Res 45:1906–1915

    Article  CAS  PubMed  Google Scholar 

  43. Moon S-J, Itzhaik Y, Yum J-H, Zakeeruddin SM, Hodes G, Grätzel M (2010) Sb2S3-based mesoscopic solar cell using an organic hole conductor. J Phys Chem Lett 1:1524

    Article  CAS  Google Scholar 

  44. Du J, Du Z, Hu J-S, Pan Z, Shen Q, Sun J, Long D, Dong H, Sun L, Zhong X, Wan L-J (2016) Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J Am Chem Soc 138:4201–4209

    Article  CAS  PubMed  Google Scholar 

  45. Yu P, Wu J, Gao L, Liu H, Wang Z (2017) InGaAs and GaAs quantum dot solar cells grown by droplet epitaxy. Sol Energy Mater Sol Cells 161:377–381

    Article  CAS  Google Scholar 

  46. Li LL, Diau EWG (2012) Porphyrin-sensitized solar cells. Chem Soc Rev 42:291–304

    Article  PubMed  Google Scholar 

  47. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Taverenelli I, Röthlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247

    Article  CAS  PubMed  Google Scholar 

  48. Luo J, Xu M, Li R, Huang KW, Jiang C, Qi Q, Zeng W, Zhang J, Chi C, Wang P, Wu J (2014) N-annulated perylene as an efficient electron donor for porphyrin-based dyes: enhanced light-harvesting ability and high-efficiency Co(II/III)-based dye-sensitized solar cells. J Am Chem Soc 136:265–272

    Article  CAS  PubMed  Google Scholar 

  49. Chou CC, Hu F-C, Wu K-L, Duan T, Chi Y, Liu S-H, Lee G-H, Chou P-T (2014) 4,4′,5,5′-tetracarboxy-2,2′-bipyridine Ru(II) aensitizers for dye-sensitized solar cells. Inorg Chem 53:8593–8599

    Article  CAS  PubMed  Google Scholar 

  50. Wang SW, Wu K-L, Ghadiri E, Lobello MG, Ho S-T, Chi Y, Moser J-E, Angelis FD, Grätzel M, Nazeeruddin MK (2013) Unprecedentedly targeted customization of molecular energy levels with auxiliary-groups in organic solar cell sensitizers. Chem Sci 4:2423–2433

    Article  CAS  Google Scholar 

  51. Sinn S, Schulze B, Friebe C, Brown DG, Jäger M, Kübel J, Dietzek B, Berlinguette CP, Schubert US (2014) A heteroleptic bis(tridentate) ruthenium(II) platform featuring an anionic 1,2,3-triazolate-based ligand for application in the dye-sensitized solar cell. Inorg Chem 5:1637–1645

    Article  Google Scholar 

  52. Wang P, Klein C, Humphry-Baker R, Zakeeruddin SM, Grätzel M (2005) A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. J Am Chem Soc 127:808–809

    Article  CAS  PubMed  Google Scholar 

  53. Swierk JR, McCool NS, Saunders TP, Barber GD, Mallouk TE (2014) Effects of electron trapping and protonation on the efficiency of water-splitting dye-sensitized solar cells. J Am Chem Soc 136:10974–10982

    Article  CAS  PubMed  Google Scholar 

  54. El-Shafei A, Hussain M, Islam A, Han L (2014) Structure–property relationship of hetero-aromatic-electron-donor antennas of polypyridyl Ru (II) complexes for high efficiency dye-sensitized solar cells. Prog Photovolt Res Appl 22:958–969

    Article  CAS  Google Scholar 

  55. Cheema H, Islam A, Han L, El-Shafei A (2014) Influence of number of benzodioxan-stilbazole-based ancillary ligands on dye packing, photovoltage and photocurrent in dye-sensitized solar cells. ACS Appl Mater Interfaces 6:11617–11624

    Article  CAS  PubMed  Google Scholar 

  56. Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R et al (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123:1613–1624

    Article  CAS  PubMed  Google Scholar 

  57. Selopal GS, Memarian N, Milan R, Concina I, Sberveglieri G, Vomiero A (2014) Effect of blocking layer to boost photoconversion efficiency in ZnO dye-sensitized solar cells. ACS Appl Mater Interfaces 6:11236–11244

    Article  CAS  PubMed  Google Scholar 

  58. Ozawa H, Sugiura T, Shimizu R, Arakawa H (2014) Novel ruthenium sensitizers having different numbers of carboxyl groups for dye-sensitized solar cells: effects of the adsorption manner at the TiO2 surface on the solar cell performance. Inorg Chem 53:9375–9384

    Article  CAS  PubMed  Google Scholar 

  59. Bomben PG, Gordon TJ, Schott E, Berlinguette CP (2011) A trisheteroleptic cyclometalated ruii sensitizer that enables high power output in a dye-sensitized solar cell. Angew Chem Int Ed 50:10682–10685

    Article  CAS  Google Scholar 

  60. BraumüllerM SM, Staniszewska M, Sorsche D, Wunderlin M, Popp J, Guthmuller J, Dietzek B, Rau S (2016) Synthesis and characterization of ruthenium and rhenium dyes with phosphonate anchoring groups. Dalton Trans 45:9216–9228

    Article  Google Scholar 

  61. Odobel F, Pellegrin Y (2013) Recent advances in the sensitization of wide-band-gap nanostructured p-type semiconductors. Photovoltaic and photocatalytic applications. J Phys Chem Lett 4:2551–2564

    Article  CAS  Google Scholar 

  62. Bachmann C, Probst B, Guttentag M, Alberto R (2014) Ascorbate as an electron relay between an irreversible electron donor and Ru (II) or Re (I) photosensitizers. Chem Commun 50:6737–6739

    Article  CAS  Google Scholar 

  63. Probst B, Guttentag M, Rodenberg A, Hamm P, Alberto R (2011) Photocatalytic H2 production from water with rhenium and cobalt complexes. Inorg Chem 50:3404–3412

    Article  CAS  PubMed  Google Scholar 

  64. Sekizawa K, Maeda K, Domen K, Koike K, Ishitani O (2013) Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. J Am Chem Soc 135:4596–4599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sahara G, Abe R, Higashi M, Morikawa T, Maeda K, Ueda Y, Ishitani O (2015) Photoelectrochemical CO2 reduction using a Ru (ii)–Re (i) multinuclear metal complex on a p-type semiconducting NiO electrode. Chem Commun 51:10722–10725

    Article  CAS  Google Scholar 

  66. Yang M, Thopson DW, Meyer GJ (2002) Charge-transfer studies of iron cyano compounds bound to nanocrystalline TiO2 surfaces. Inorg Chem 41:1254–1262

    Article  CAS  PubMed  Google Scholar 

  67. Kar P, Verma S, Sen A, Das A, Ganguly B, Ghosh HN (2010) (2010) Sensitization of nanocrystalline TiO2 anchored with pendant catechol functionality using a new tetracyanato Ruthenium(II) polypyridyl complex. Inorg Chem 49:4167–4174

    Article  CAS  PubMed  Google Scholar 

  68. Kar P, Banerjee T, Verma S, Sen A, Das A, Ganguly B, Ghosh HN (2012) Photosensitization of nanoparticulate TiO2 using a Re(i)-polypyridyl complex: studies on interfacial electron transfer in the ultrafast time domain. Phys Chem Chem Phys 14:8192–8198

    Article  CAS  PubMed  Google Scholar 

  69. Miller RJD, McLendon GL, Nozik AJ, Schmickler W, Willig F (1995) Surface electron-transfer processes. Wiley-VCH

    Google Scholar 

  70. Nozik AJ, Memming R (1996) Physical chemistry of semiconductor−liquid interfaces. J Phys Chem 100:13061–13078

    Article  CAS  Google Scholar 

  71. Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  72. Kalyansundaram K, Gratzel M (1998) Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord Chem Rev 77:347–414

    Article  Google Scholar 

  73. Nazeeruddin MK, Humphry-Baker R, Gratzel M, Murrer BA (1998) Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanines. Chem Commun 719–720

    Google Scholar 

  74. Reynal A, Forneli A, Martinez-Ferrero E, Sanchez-Diaz A, Vidal-Ferran A, O’Regan BC, Palomares E (2008) Interfacial charge recombination between e−TiO2 and the I/I3 electrolyte in ruthenium heteroleptic complexes: dye molecular structure−open circuit voltage relationship. J Am Chem Soc 130:13558–13567

    Article  CAS  PubMed  Google Scholar 

  75. Kuciauskas D, Monat J, Villahermosa ER, Gray HB, Lewis NS, McCusker JK (2002) Transient absorption spectroscopy of ruthenium and osmium polypyridyl complexes adsorbed onto nanocrystalline TiO2 photoelectrodes. J Phys Chem B 106:9347–9358

    Article  CAS  Google Scholar 

  76. Atobello S, Argazzi R, Caramori S, Contado C, Da SF, Rubino P, Chone C, Larramona G, Bignozzi CA (2005) Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes. J Am Chem Soc 127:15342–15343

    Article  Google Scholar 

  77. Tachibana Y, Moser JE, Gratzel M, Klug DR, Durrant JR (1996) Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films. J Phys Chem 100:20056–20062

    Article  CAS  Google Scholar 

  78. Dillon RJ, Alibabaei L, Meyer TJ, Papanikolas JM (2017) Enabling efficient creation of long-lived charge-separation on dye-sensitized NiO photocathodes. ACS Appl Mater Interfaces 9:26786–26796

    Article  CAS  PubMed  Google Scholar 

  79. Mori S, Fukuda S, Sumikura S, Takeda Y, Tamaki Y, Suzuki E, Abe T (2008) Charge-transfer processes in dye-sensitized NiO solar cells. J Phys Chem C 112:16134–16139

    Article  CAS  Google Scholar 

  80. Alidoust N, Toroker MC, Carter EA (2014) Revisiting photoemission and inverse photoemission spectra of nickel oxide from first principles: implications for solar energy conversion. J Phys Chem B 118:7963–7971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Qin P, Wiberg J, Gibson EA, Linder M, Li L, Brinck T, Hagfeldt A, Albinsson B, Sun L (2010) Synthesis and mechanistic studies of organic chromophores with different energy levels for p-type dye-sensitized solar cells. J Phys Chem C 114:4738–4748

    Article  CAS  Google Scholar 

  82. Bonomo M, Barbero N, Matteocci F, Carlo AD, Barolo C, Dini D (2016) Beneficial effect of electron-withdrawing groups on the sensitizing action of squaraines for p-type dye-sensitized solar cells. J Phys Chem C 120:16340–16353

    Article  CAS  Google Scholar 

  83. Yum JH, Baranoff E, Kessler F, Moehl T, Ahmad S, Bessho T, Marchioro A, Ghadiri E, Moser JE, Yi C, Nazeeruddin MK, Grätzel M (2012) A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat Commun 3:631(1–8)

    Google Scholar 

  84. Ambrosio FF, Martsinovich N, Troisi A (2012) Effect of the anchoring group on electron injection: theoretical study of phosphonated dyes for dye-sensitized solar cells. J Phys Chem C 116:2622–2629

    Google Scholar 

  85. Shinpuku Y, Inui F, Nakai M, Nakabayashi Y (2011) Synthesis and characterization of novel cyclometalated iridium (III) complexes for nanocrystalline TiO2-based dye-sensitized solar cells. J Photochem Photobio A Chem 222:203–209

    Article  CAS  Google Scholar 

  86. Karmakar AS, Ruparelia JP (2011) A critical review on dye sensitized solar cells. In: International conference on current trends in engineering and technology, NUiCONE

    Google Scholar 

  87. Wayment-Steele HK, Johnson LE, Tian F, Dixon MC, Benz L, Johal MS (2014) Monitoring N3 dye adsorption and desorption on TiO2 surfaces: a combined QCM-D and XPS study. ACS Appl Mater Interfaces 6:9093–9099

    Article  CAS  PubMed  Google Scholar 

  88. Zhang Q, Chow TP, Russo B, Jenekhe SA, Cao G (2008) Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew Chem Int Ed 120:2436–2440

    Article  Google Scholar 

  89. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Gratzel M (1993) Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115:6382–6390

    Article  CAS  Google Scholar 

  90. Cai C-Y, Tseng S-K, Kuo M, Lin K-YA, Yang H, Lee R-H (2015) Photovoltaic performance of a N719 dye based dye-sensitized solar cell with transparent macroporous anti-ultraviolet photonic crystal coatings. RSC Adv 5:102803–102810

    Google Scholar 

  91. Liu S-H, Fu H, Cheng Y-M, Wu K-L, Ho S-T, Chi Y, Chou P-T (2012) Theoretical study of N749 dyes anchoring on the (TiO2)28 surface in DSSCs and their electronic absorption properties. J Phys Chem C 116(31):16338–16345

    Google Scholar 

  92. Al-Dmour H, Alzard RH, Alblooshi H, Alhosani K, AlMadhoob S, Saleh N (2019) Enhanced energy conversion of Z907-based solar cells by Cucurbit[7]uril macrocycles. Front Chem 7:561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li G, Yella A, Brown DG, Gorelsky SI, Nazeeruddin MK, Grätzel M, Berlinguette CP, Shatruk M (2014) Near-IR photoresponse of ruthenium dipyrrinate terpyridine sensitizers in the dye-sensitized solar cells. Inorg Chem 53:5417–5419

    Article  CAS  PubMed  Google Scholar 

  94. Park J, Viscardi G, Barolo C, Barbero N (2013) Near-infrared sensitization in dye-sensitized solar cells. Chimia 67:129–135

    Article  CAS  PubMed  Google Scholar 

  95. Kinoshita T, Fujisawa J-I, JotaroNakazaki SU, Kubo T, Segawa H (2012) Enhancement of near-IR photoelectric conversion in dye-sensitized solar cells using an osmium sensitizer with strong spin-forbidden transition. J Phys Chem Lett 3:394–398

    Article  CAS  PubMed  Google Scholar 

  96. Onozawa-Komatsuzaki N, Yanagida M, Funaki T, Kasuga K, Sayama K, Sugihara H (2011) Near IR dye-sensitized solar cells using a new type of ruthenium complexes having 2,6-bis (quinolin-2-yl) pyridine derivatives. Sol Ene Mat Sol Cells 95:310–314

    Article  CAS  Google Scholar 

  97. White RC, Benedetti JE, Gonclaves AD, Romão W, Vaz BG, Eberlin MN, Correia CRD, Paoli MAD, Nogueira AF (2011) Synthesis, characterization and introduction of a new ion-coordinating ruthenium sensitizer dye in quasi-solid state TiO2 solar cells. J Photochem Photobio A Chem 222:185–191

    Google Scholar 

  98. Argazzi R, Larramona G, Contado C, Bignozzi CA (2003) Preparation and photoelectrochemical characterization of a red sensitive osmium complex containing 4,4′,4″-tricarboxy-2,2′:6′,2″-terpyridine and cyanide ligands. J Photochem Photobio A Chem 164:15–21

    Article  Google Scholar 

  99. Zabri H, Odobel F, Altobello S, Caramori S, Bignozzi CA (2004) Efficient osmium sensitizers containing 2,2′-bipyridine-4,4′-bisphosphonic acid ligand. J Photochem Phtobio A Chem 166:99–106

    Article  CAS  Google Scholar 

  100. Mukherjee S, Bowman DN, Jakubikova E (2015) Cyclometalated Fe (II) complexes as sensitizers in dye-sensitized solar cells. Inorg Chem 54:560–569

    Article  CAS  PubMed  Google Scholar 

  101. Harlang TCB, Liu Y, Gordivska O et al (2015) Iron sensitizer converts light to electrons with 92% yield. Nat Chem 7:883–889

    Article  CAS  PubMed  Google Scholar 

  102. Constable EC, Housecroft CE, Neuburger M, Schönlea J, Zampese JA (2014) The surprising lability of bis (2, 2′:6′,2″-terpyridine) chromium (iii) complexes. Dalton Trans 43:7227–7235

    Article  CAS  PubMed  Google Scholar 

  103. Vuong S, Nguyen-Dang H-M, Tran QT, Luong TTT, Pham TTT, Nguyen-Tran T (2017) Fabrication of copper(I) bipyridyl complex based dye sensitized solar cells. J Electron Mater 48:3639–3645

    Google Scholar 

  104. Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW, Yeh CY, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with Cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334:629–634

    Article  CAS  PubMed  Google Scholar 

  105. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2016) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247

    Article  Google Scholar 

  106. Yuan YJ, Lu HW, Tu JR, Fang Y, Yu ZT, Fan XX, Zou ZG (2015) A noble-metal-free Nickel(II) polypyridyl catalyst for visible-light-driven hydrogen production from water. Chem Phys Chem 16:2925–3293

    Article  CAS  PubMed  Google Scholar 

  107. Sánchez-de-Armas R, Miguel MAS, Oviedo J, Sanz JF (2012) Coumarin derivatives for dye sensitized solar cells: a TD-DFT study. Phys Chem Chem Phys 14:225–233

    Article  PubMed  Google Scholar 

  108. Mishra A, Fischer MKR, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48:2474–2499

    Article  CAS  Google Scholar 

  109. Biswas AK, Barik S, Sen A, Das A, Ganguly B (2014) Design of efficient metal-free organic dyes having an azacyclazine scaffold as the donor fragment for dye-sensitized solar cells. J Phys Chem C 118:20763–20771

    Article  CAS  Google Scholar 

  110. Abbotto A, Manfredi N, Marinzi C, Angelis FD, Mosconi E, Yum JH, Xanxi Z, Nazeeruddin MK, Grätzel M (2009) Di-branched di-anchoring organic dyes for dye-sensitized solar cells. Energy Environ Sci 2:1094–1101

    Google Scholar 

  111. Li P, Wang Z, Song C, Zhang H (2017) Rigid fused π-spacers in D–π–A type molecules for dye-sensitized solar cells: a computational investigation. J Mater Chem C 5:11454–11465

    Article  CAS  Google Scholar 

  112. Hagberg DP, Edvinsson T, Mariando T, Boschloo G, Hagfeldt A, Sun L (2006) A novel organic chromophore for dye-sensitized nanostructured solar cells. Chem Comm 2245–2247

    Google Scholar 

  113. Yao Z, Zhang M, Wu H, Wang L, Li R, Wang P (2015) Donor/acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells. J Am Chem Soc 137:3799–3802

    Article  CAS  PubMed  Google Scholar 

  114. Qian X, Shao L, Li H, Yan R, Wang X, Hou L (2016) Indolo [3, 2-b] carbazole-based multi-donor–π–acceptor type organic dyes for highly efficient dye-sensitized solar cells. J Power Sources 319:39–47

    Article  CAS  Google Scholar 

  115. Hinkel F, Kim YM, Zagraniarsky Y, Schlütter F, Andrienko D, Müllen K, Laquai F (2018) Efficiency-limiting processes in cyclopentadithiophene-bridged donor-acceptor-type dyes for solid-state dye-sensitized solar cells. J Chem Phys 148:044703

    Article  PubMed  Google Scholar 

  116. Cai-Rong Z, Zi-Jiang L, Yu-Hong C, Hong-Shan C, You-Zhi W, Li-Hua Y (2009) DFT and TDDFT study on organic dye sensitizers D5, DST and DSS for solar cells. J Mol Struct: THEOCHEM 899:86–93

    Article  Google Scholar 

  117. He L-J, Chen J, Bai F-Q, Jia R, Wang J, Zhang H-X (2017) Fine-tuning π-spacer for high efficiency performance DSSC: a theoretical exploration with D-π-A based organic dye. Dyes Pigm 141:251–261

    Article  CAS  Google Scholar 

  118. Ni J-S, Yen Y-C, Lin LJT (2016) Organic sensitizers with a rigid dithienobenzotriazole-based spacer for high-performance dye-sensitized solar cells. J Mater Chem A 4:6553–6560

    Article  CAS  Google Scholar 

  119. Xia H-Q, Wang J, Bai F-Q, Zhang H-X (2015) Theoretical studies of electronic and optical properties of the triphenylamine-based organic dyes with diketopyrrolopyrrole chromophore. Dyes Pigm 113:87–95

    Article  CAS  Google Scholar 

  120. Biswas AK, Das A, Ganguly B (2016) Can fused-pyrrole rings act as better π-spacer units than fused-thiophene in dye-sensitized solar cells? A computational study. New J Chem 40:9304–9312

    Article  CAS  Google Scholar 

  121. Matta SK, Kakiage K, Makuta S, Veamatahau A, Aoyama Y, Yano T, Hanaya M, Tachibana Y (2014) Dye-anchoring functional groups on the performance of dye-sensitized solar cells: comparison between alkoxysilyl and carboxyl groups. J Phys Chem C 118:28425–28434

    Article  CAS  Google Scholar 

  122. Ganesan P, Yella A, Holcombe TW, Gao P, Rajalingam R, Al-Muhtaseb SA, Grätzel M, Nazeeruddin MK (2015) Unravel the impact of anchoring groups on the photovoltaic performances of diketopyrrolopyrrole sensitizers for dye-sensitized solar cells. ACS Sustain Chem Eng 3:2389–2396

    Google Scholar 

  123. Fernandes SSM, Castro MCR, Pereire AI, Mendes A, Serpa C, Pina J, Justino Burrows HD, Raposo MMM (2017) Optical and photovoltaic properties of Thieno[3,2-b]thiophene-based push-pull organic dyes with different anchoring groups for dye-sensitized solar cells. ACS Omega 2:9268–9279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Reginato G, Calamante M, Zani L, Mordini A, Franchi D (2018) Design and synthesis of organic sensitizers with enhanced anchoring stability in dye-sensitized solar cells. Pure Appl Chem 90:363–376

    Article  CAS  Google Scholar 

  125. Ji Z, Natu G, Huang Z, Wu Y (2011) Linker effect in organic donor–acceptor dyes for p-type NiO dye sensitized solar cells. Energy Environ Sci 4:2818–2821

    Article  CAS  Google Scholar 

  126. Qin P, Linder M, Brink T, Boschloo G, Hagfeldt A, Sun L (2009) High incident photon-to-current conversion efficiency of p-type dye-sensitized solar cells based on NiO and organic chromophores. Adv Mater 21:2993–2996

    Article  CAS  Google Scholar 

  127. Qin P, Zhu T, Edvinsson T, Boschloo G, Hagfeldt A, Sun L (2008) Design of an organic chromophore for p-type dye-sensitized solar cells. J Am Chem Soc 130:8570–8571

    Article  CAS  PubMed  Google Scholar 

  128. Kitamura T, Ikeda M, Shigaki K, Inoue T, Anderson NA, Ai X, Lian T, Yanagida S (2004) Phenyl-conjugated oligoene sensitizers for TiO2 solar cells. Chem Mater 16:1806–1812

    Article  CAS  Google Scholar 

  129. Tian H, Yang X, Chen R, Zhang R, Hagfeldt A, Sun L (2008) Effect of different dye baths and dye-structures on the performance of dye-sensitized solar cells based on triphenylamine dyes. J Phys Chem C 112:11023–11033

    Article  CAS  Google Scholar 

  130. Zhang G, Bai Y, Li R, Shi D, Wenger S, Zakeeruddin SM, Grätzel M, Wang P (2009) Employ a bisthienothiophene linker to construct an organic chromophore for efficient and stable dye-sensitized solar cells. Energy Environ Sci 2:92–95

    Google Scholar 

  131. Yum J-H, Hagber DP, Moon S-J, Karlsson KM, Marinado T, Sun L, Hagfeldt A, Nazeeruddin MK, Grätzel M (2009) A light-resistant organic sensitizer for solar-cell applications. Angew Chem Int Ed 121:1604–1608

    Article  Google Scholar 

  132. Yao Z, Yang L, Cai Y, Yan C, Zhang M, Cai N, Dong X, Wang P (2014) J Phys Chem C 118:2977–2986

    Article  CAS  Google Scholar 

  133. Shi J, Chai Z, Tang R, Li H, Han H, Peng T, Li Q, Li Z (2016) Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells. Front Optoelectron 9:60–70

    Article  Google Scholar 

  134. Joly D, Pellejá L, Narbey S, Oswald F, Meyer T, Kervella Y, Maldivi P, Clifford JN, Palomares E, Demadrille R (2015) Metal-free organic sensitizers with narrow absorption in the visible for solar cells exceeding 10% efficiency. Ener Environ Sci 8:2010–2018

    Article  CAS  Google Scholar 

  135. Pei K, Wu Y, Islam A, Zhang Q, Han L, Tian H, Zhu W (2013) Constructing high-efficiency D–A–π–A-featured solar cell sensitizers: a promising building block of 2,3-diphenylquinoxaline for antiaggregation and photostability. ACS Appl Mater Interfaces 5:4986–4995

    Article  CAS  PubMed  Google Scholar 

  136. He J, Lindström H, Hagfeldt A, Londquist S-E (1999) Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J Phys Chem B 103:8940–8943

    Article  CAS  Google Scholar 

  137. Chai Z, Wu M, Fang M, Wan S, Xu T, Tang R, Xie Y, Mei A, Han H, Li Q, Li Z (2015) Similar or totally different: the adjustment of the twist conformation through minor structural modification, and dramatically improved performance for dye-sensitized solar cell. Adv Energy Mater 5:1500846

    Article  Google Scholar 

  138. Haid S, Marszalek M, Mishra A, Wielopolski M, Teuscher J, Moser JE, Humphry-Baker R, Zakeeruddin SM, Grätzel M, Bäuerle P (2012) Significant improvement of dye-sensitized solar cell performance by small structural modification in π-conjugated donor-acceptor dyes. Adv Funct Mater 22:1291–1302

    Article  CAS  Google Scholar 

  139. Morandeira A, Boschloo G, Hagfeldt A, Hammerström L (2008) Coumarin 343−NiO films as nanostructured photocathodes in dye-sensitized solar cells: ultrafast electron transfer, effect of the I3/I redox couple and mechanism of photocurrent generation. J Phys Chem C 112:9530–9537

    Article  CAS  Google Scholar 

  140. Morandeira A, Boschloo G, Hagfeldt A, Hammerström L (2005) Photoinduced ultrafast dynamics of coumarin 343 sensitized p-type-nanostructured NiO films. J Phys Chem B 109:19403–19410

    Article  CAS  PubMed  Google Scholar 

  141. Zhu H, Hagfeldt A, Boschloo G (2007) Photoelectrochemistry of mesoporous NiO electrodes in iodide/tri-iodide electrolytes. J Phys Chem C 111:17455–17458

    Article  CAS  Google Scholar 

  142. Morandeira A, Fortage J, Edvinsson T, Le Pleux L, Blart E, Boschloo G, Hagfeldt A, Hammerström L, Odobel F (2008) Improved photon-to-current conversion efficiency with a nanoporous p-type NiO electrode by the use of a sensitizer-acceptor dyad. J Phys Chem C 112:1721–1728

    Article  CAS  Google Scholar 

  143. Gibson EA, Smeigh AL, Le Pleux L, Fortage J, Boschloo G, Blart E, Pellegrin Y, Odobel F, Hagfeldt A, Hammarström L (2009) A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V. Angew Chem Int Ed 48:4402–4405

    Article  CAS  Google Scholar 

  144. Borgstrom M, Blart E, Boschloo G, Mukhtar E, Hagfeldt A, Hammerström L, Odobel F (2005) Sensitized hole injection of phosphorus porphyrin into NiO: toward new photovoltaic devices. J Phys Chem B 109:22928–22934

    Article  PubMed  Google Scholar 

  145. Muñoz-García AB, Pavone M (2015) Structure and energy level alignment at the dye–electrode interface in p-type DSSCs: new hints on the role of anchoring modes from ab initio calculations. Phys Chem Chem Phys 17:12238–12246

    Article  PubMed  Google Scholar 

  146. Zhang L, Cole JM (2015) Anchoring groups for dye-sensitized solar cells. ACS Appl Mater Interfaces 7:3427−3455

    Google Scholar 

  147. Iqbal Z, Wu W-Q, Zhang H, Hua P-L, Fang X, Kuang D-B, Wang L, Meier H, Cao D (2013) Impact of hydroxy and octyloxy substituents of phenothiazine based dyes on the photovoltaic performance. Dyes Pigm 99:299–307

    Article  CAS  Google Scholar 

  148. Guerrero G, Alauzun JG, Granier M, Laurencin D, Mutin PH (2013) Phosphonate coupling molecules for the control of surface/interface properties and the synthesis of nanomaterials. Dalton Trans 42:12569–12585

    Google Scholar 

  149. Cherepy NJ, Smestad GP, Grätzel M, Zhang JZ (1997) Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode. J Phys Chem B 101:9342–9351

    Article  CAS  Google Scholar 

  150. Jayaweera PM, Kumarasinghe AR (1999) Tennakone K Nano-porous TiO2 photovoltaic cells sensitized with metallochromic triphenylmethane dyes: [n-TiO2/triphenylmethane dye/p-I/I3 (or CuI)]. J Photochem Photobiol A Chem 126:111–115

    Article  CAS  Google Scholar 

  151. Ooyama Y, Inoue S, Nagano T, Kushimoto K, Ohshita J, Imae I, Komaguchi K, Harima Y (2011) Dye-sensitized solar cells based on donor–acceptor π–conjugated fluorescent dyes with a pyridine ring as an electron-withdrawing anchoring group. Angew Chem Int Ed 123:7567–7571

    Google Scholar 

  152. Cui J, Lu J, Xu X, Cao K, Wang Z, Alemu G, Yuang H, Shen Y, Xu J, Cheng Y, Wang M (2014) Organic sensitizers with pyridine ring anchoring group for p-type dye-sensitized solar cells. J Phys Chem C 118:16433–16440

    Article  CAS  Google Scholar 

  153. Heimer TA, D’Arcangelis ST, Farzad F, Stipkala JM, Meyer GJ (1996) An acetylacetonate-based semiconductor−sensitizer linkage. Inorg Chem 35:5319–5324

    Article  CAS  Google Scholar 

  154. Xiao D, Martini LA, Snoeberger RC III, Crabtree RH, Batista VS (2011) Inverse design and synthesis of acac-coumarin anchors for robust TiO2 sensitization. J Am Chem Soc 133:9014–9022

    Article  CAS  PubMed  Google Scholar 

  155. Warnan J, Guerin VM, Anne FB, Pellegrin Y, Blart E, Jacquemin D, Pauporté T, Odobel F (2013) Ruthenium sensitizer functionalized by acetylacetone anchoring groups for dye-sensitized solar cells. J Phys Chem C 117:8652–8660

    Article  CAS  Google Scholar 

  156. McNamara WR, Snoeberger III RC, Li G, Schleicher JM, Cady CW, Poyatos M, Schmuttenmaer CA, Crabtree RH, Brudvig GW, Batista VS (2008) Acetylacetonate anchors for robust functionalization of TiO2 nanoparticles with Mn(II)−terpyridine complexes. J Am Chem Soc 130:14329–14338

    Google Scholar 

  157. Warnan J, Pellegrin Y, Blart E, Zhang L, Brown A, Hammarström L, Jacquemin D, Odobel F (2014) Acetylacetone anchoring group for NiO-based dye-sensitized solar cell. Dyes Pigm 105:174–179

    Article  CAS  Google Scholar 

  158. Pellegrin Y, Le Pleux L, Blart E, Renaud A, Chavillon B, Szuwarski N, Boujtita M, Cario L, Jobic S, Jacquemin D, Odobel F (2011) Ruthenium polypyridine complexes as sensitizers in NiO based p-type dye-sensitized solar cells: effects of the anchoring groups. J Photochem Photobiol A Chem 219:235–242

    Article  CAS  Google Scholar 

  159. Arbouch I, Cornil D, Karzazi Y, Hammouti B, Lazzaroni R, Cornil J (2017) Influence of the nature of the anchoring group on electron injection processes at dye–titania interfaces. Phys Chem Chem Phys 19:29389–29401

    Article  CAS  PubMed  Google Scholar 

  160. Tang J, Qu S, Hu J, Wu W, Hua J (2012) A new organic dye bearing aldehyde electron-withdrawing group for dye-sensitized solar cell. Sol Energy 86:2306–2311

    Article  CAS  Google Scholar 

  161. Ooyama Y, Hagiwara Y, Oda Y, Mizumo T, Harima Y, Ohshita J (2013) Dye-sensitized solar cells based on a functionally separated D–π–A fluorescent dye with an aldehyde as an electron-accepting group. New J Chem 37:2336–2340

    Article  CAS  Google Scholar 

  162. Gou F, Jiang X, Li B, Jing H, Zhu Z (2013) Salicylic acid as a tridentate anchoring group for azo-bridged zinc porphyrin in dye-sensitized solar cells. ACS Appl Mater Interfaces 5:12631–12637

    Article  CAS  PubMed  Google Scholar 

  163. Gou F, Jiang X, Fang R, Jing H, Zhu Z (2014) Strategy to improve photovoltaic performance of DSSC sensitized by zinc prophyrin using salicylic acid as a tridentate anchoring group. ACS Appl Mater Interfaces 6:6697–6703

    Article  CAS  PubMed  Google Scholar 

  164. Zhang L, Cole JM, Dai C (2014) Variation in optoelectronic properties of azo dye-sensitized TiO2 semiconductor interfaces with different adsorption anchors: carboxylate, sulfonate, hydroxyl and pyridyl groups. ACS Appl Mater Interfaces 6:7535–7546

    Article  CAS  PubMed  Google Scholar 

  165. Wang ZS, Li FY, Huang CH (2000) Highly efficient sensitization of nanocrystalline TiO2 films with styryl benzothiazoliumpropylsulfonate. Chem Commun 20:2063–2064

    Google Scholar 

  166. Yao QH, Shan L, Li FY, Yin DD, Huang CH (2003) An expanded conjugation photosensitizer with two different adsorbing groups for solar cells. New J Chem 27:1277–1283

    Article  CAS  Google Scholar 

  167. Cong J, Yang X, Liu J, Zhao J, Hao Y, Wang Y, Sun L (2012) Nitro group as a new anchoring group for organic dyes in dye-sensitized solar cells. Chem Commun 48:6663–6665

    Article  CAS  Google Scholar 

  168. Brewster TP, Konezny SJ, Sheehan SW, Martini LA, Schmuttenmaer CA, Batista VS, Crabtree RH (2013) Hydroxamate anchors for improved photoconversion in dye-sensitized solar cells. Inorg Chem 52:6752–6764

    Article  CAS  PubMed  Google Scholar 

  169. McNamara WR, Snoeberger RC III, Li G, Richter C, Allen LJ, Milot RL, Schmuttenmaer CA, Crabtree RH, Brudvig GW, Batista VS (2009) Hydroxamate anchors for water-stable attachment to TiO2 nanoparticles. Energy Environ Sci 2:1173–1175

    Article  CAS  Google Scholar 

  170. McNamara WR, Milot RL, Song H, Snoeberger RC III, Batista VS, Schmuttenmaer CA, Brudvig GW, Crabtree RH (2010) Water-stable, hydroxamate anchors for functionalization of TiO2 surfaces with ultrafast interfacial electron transfer. Energy Environ Sci 3:917–923

    Article  CAS  Google Scholar 

  171. Li SF, Yang XC, Cheng M, Zhao JH, Wang Y, Sun LC (2012) Novel D–π–A type II organic sensitizers for dye sensitized solar cells. Tetrahedron Lett 53:3425–3428

    Article  CAS  Google Scholar 

  172. Tae EL, Lee SH, Lee JK, Yoo SS, Kang EJ, Yoon KB (2005) A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands. J Phys Chem B 109:22513–22522

    Article  CAS  PubMed  Google Scholar 

  173. Kaniyankandy S, Rawalekar S, Sen A, Ganguly B, Ghosh HN (2012) Does bridging geometry influence interfacial electron transfer dynamics? Case of the enediol-TiO2 system. J Phys Chem C 116:98–103

    Article  CAS  Google Scholar 

  174. Mariando T, Nonomura K, Nissfoul J, Karlsson MK, Hagberg DP, Sun L, Mori S, Hagfeldt A (2009) How the nature of triphenylamine-polyene dyes in dye-sensitized solar cells affects the open-circuit voltage and electron lifetimes. Langmuir 26:2592–2598

    Article  Google Scholar 

  175. Sen A, Gross A (2019) Promising sensitizers for dye sensitized solar cells: a comparison of Ru(II) with other earth’s scarce and abundant metal polypyridine complexes. Int J Quantum Chem 119:e25963

    Article  Google Scholar 

  176. Hamann TW (2012) The end of iodide? Cobalt complex redox shuttles in DSSCs. Dalton Trans 41:3111–3115

    Article  CAS  PubMed  Google Scholar 

  177. Sun ZZ, Zheng KM, Li Q-S, Li Z-S (2014) Rational design of Co-based redox mediators for dye-sensitized solar cells by density functional theory. RSC Adv 4:31544–31551

    Article  CAS  Google Scholar 

  178. Miller RJD, McLendon GL, Nozik AJ, Schmickler W, Willig F (1995) Surface electron-transfer processes. VCH

    Google Scholar 

  179. Salassa L, Garino C, Albertino A, Volpi G, Nervi C, Gobetto R, Hardcastle KI (2008) Computational and spectroscopic studies of new Rhenium(I) complexes containing Pyridylimidazo[1,5-a]pyridine ligands: charge transfer and dual emission by fine-tuning of excited states. Organometallics 27:1427–1435

    Article  CAS  Google Scholar 

  180. Reynal A, Forneli A, Martinez-Ferrero E, Sánchez-Díaz A, Vidal-Ferran A, O’Regan BC, Palomares E (2008) Interfacial charge recombination between e−TiO2 and the I/I3 electrolyte in ruthenium heteroleptic complexes: dye molecular structure−open circuit voltage relationship. J Am Chem Soc 130:13558–13567

    Article  CAS  PubMed  Google Scholar 

  181. Ji Z, He M, Huang Z, Ozkan U, Wu Y (2013) Photostable p-type dye-sensitized photoelectrochemical cells for water reduction. J Am Chem Soc 135:11696–11699

    Google Scholar 

  182. Dillon RJ, Alibabaei L, Meyer TJJM (2017) Enabling efficient creation of long-lived charge-separation on dye-sensitized NiO photocathodes. ACS Appl Mater Interfaces 9:26786–26796

    Article  CAS  PubMed  Google Scholar 

  183. Polo AS, Itokazu MK, Iha NYM (2004) Metal complex sensitizers in dye-sensitized solar cells. Coord Chem Rev 248:1343–1361

    Article  CAS  Google Scholar 

  184. Argazzi R, Larramona G, Contado C, Bignozzi CA (2003) Preparation and photoelectrochemical characterization of a red sensitive osmium complex containing 4,4′,4″-tricarboxy-2,2′:6′,2″-terpyridine and cyanide ligands. J Photochem Photobio A: Chem 164:15–21

    Article  Google Scholar 

  185. Shinpuku Y, Inui F, Nakai M, Nakabayashi Y (2011) Synthesis and characterization of novel cyclometalated iridium(III) complexes for nanocrystalline TiO2-based dye-sensitized solar cells. J Photochem Photobio A Chem 222, 203

    Google Scholar 

  186. Bourouina A, Rekhis M (2017) Structural and electronic study of iron-based dye sensitizers for solar cells using DFT/TDDFT. J Mol Model 310:1

    Google Scholar 

  187. Tsaturyan AA, Shecherbakov IN, Shvydko TV, Kogan VA (2017) Iron(II) and ruthenium(II) complexes with polypyridine derivatives as sensitizers for DSSC: the structure and spectral properties, as studied by quantum chemistry methods. Russ Chem Bull 66:23–29

    Google Scholar 

  188. Bozic-Weber B, Chaurin V, Constable EC, Housecroft CE, Meuwly M, Neuburger M, Rudd JA, Schönhofer E, Siegfried L (2012) Exploring copper (i)-based dye-sensitized solar cells: a complementary experimental and TD-DFT investigation. Dalton Trans 41:14157

    Article  CAS  PubMed  Google Scholar 

  189. Yang L-N, Sun Z-Z, Chen S-L, Li Z-S (2013) The effects of various anchoring groups on optical and electronic properties of dyes in dye-sensitized solar cells. Dyes Pigm 99:29–35

    Article  CAS  Google Scholar 

  190. Duncan WR, Prezhdo OV (2005) Electronic structure and spectra of catechol and alizarin in the gas phase and attached to titanium. J Phys Chem B 109:365–373

    Article  CAS  PubMed  Google Scholar 

  191. Redfern PC, Zapol P, Curtiss LA, Rajh T, Thurnauer MC (2003) Computational studies of catechol and water interactions with titanium oxide nanoparticles. J Phys Chem B 107:11419–11427

    Article  CAS  Google Scholar 

  192. Nogueira AF, Fernando L, Furtado O, Formiga ALB, Nakamura M, Araki K, Toma HE (2004) Sensitization of TiO2 by supramolecules containing zinc porphyrins and ruthenium−polypyridyl complexes. Inorg Chem 43:396–398

    Article  CAS  PubMed  Google Scholar 

  193. Sen A, Gross A (2019) Does involving additional linker always increase the efficiency of an organic dye for p-type dye-sensitized solar cells? ACS Appl Energy Mater 2:6341–6347

    Article  CAS  Google Scholar 

  194. Choi H, Hwang T, Lee S, Nam S, Kang J, Lee B, Park B (2015) The construction of tandem dye-sensitized solar cells from chemically-derived nanoporous photoelectrodes. J Power Sources 274:937–942

    Article  CAS  Google Scholar 

  195. Nattestad A, Mozer AJ, Fischer MKR, Cheng Y-B, Mishra A, Bäuerle P, Bach U (2010) Highly efficient photocathodes for dye-sensitized tandem solar cells. Nat Mater 9:31–35

    Article  CAS  PubMed  Google Scholar 

  196. Nakasa A, Usami H, Sumikura S, Hasegawa S, Koyama T, Suzuki E (2005) A high voltage dye-sensitized solar cell using a nanoporous NiO photocathode. Chem Lett 34:500–501

    Article  CAS  Google Scholar 

Download references

Acknowledgements

“No one who achieves success does so without acknowledging the help of others. The wise and confident acknowledge this help with gratitude.”—Alfred North Whitehead.

I am thankful to GITAM (Deemed to be University) and all my colleagues for continuous support and help in my research work. I am also thankful to Dr. Bishwajit Ganguly (PhD supervisor); Prof. Axel Gross (postdoctoral supervisor) and my collaborators, Prof. Amitava Das and Prof. Hirendra Nath Ghosh, with whom much of this work has been performed. I am also very thankful to my loving wife who is always there for me and my parents for always being supportive. I also thank the reviewer and the editors for their comments that have helped improve the chapter better. And finally, I acknowledge the God Almighty.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anik Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sen, A. (2021). Promising DSSCs Involving Organic D–π–A and Similar Structures for n- and p-type Semiconductors—A Theoretical Approach. In: Roy, J.K., Kar, S., Leszczynski, J. (eds) Development of Solar Cells. Challenges and Advances in Computational Chemistry and Physics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-69445-6_6

Download citation

Publish with us

Policies and ethics