Skip to main content

On Using zk-SNARKs and zk-STARKs in Blockchain-Based Identity Management

  • Conference paper
  • First Online:
Innovative Security Solutions for Information Technology and Communications (SecITC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12596))

Abstract

One possible applicability of blockchain technology is in identity management. Especially for public blockchains, the need to reduce (ideally to zero) the exposure of sensitive identification data is clear. Under these settings, zero-knowledge proofs, in particular in the advanced forms of Zero-Knowledge Succinct Non-Interactive ARguments of Knowledge (zk-SNARK) and Zero-Knowledge Scalable Transparent ARguments of Knowledge (zk-STARK), can be used as a potential privacy-preserving technique. The current work looks at the existing libraries that implement zk-SNARKs and zk-STARKs and exemplifies and discusses the use of zk-SNARKs in blockchain-based identity management solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kosba, A.: xJsnark (2020).https://github.com/akosba/xjsnark

  2. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006). https://doi.org/10.1007/11693383_22

    Chapter  Google Scholar 

  3. Ben-Sasson, E.: libSTARK (2020). https://github.com/elibensasson/libSTARK

  4. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity. IACR Cryptology ePrint Archive 2018, 46 (2018)

    Google Scholar 

  5. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_6

    Chapter  MATH  Google Scholar 

  6. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_16

    Chapter  Google Scholar 

  7. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero knowledge for a von neumann architecture. In: 23rd USENIX Security Symposium (USENIX Security 2014), San Diego, CA, pp. 781–796. USENIX Association, August 2014. https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson

  8. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 326–349 (2012)

    Google Scholar 

  9. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, New York, NY, USA, pp. 103–112. Association for Computing Machinery (1988). https://doi.org/10.1145/62212.62222

  10. Bowe, S., Gabizon, A.: Making groth’s zk-snark simulation extractable in the random oracle model. IACR Cryptology ePrint Archive 2018, 187 (2018). http://dblp.uni-trier.de/db/journals/iacr/iacr2018.html#BoweG18

  11. Bowe, S., Grigg, J., Hopwood, D.: Recursive proof composition without a trusted setup. Technical report, Cryptology ePrint Archive, Report 2019/1021 (2019). https://eprint.iacr.org/2019/1021

  12. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)

    Article  MathSciNet  Google Scholar 

  13. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 315–334. IEEE (2018)

    Google Scholar 

  14. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and composition of succinct zero-knowledge proofs. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 2075–2092 (2019)

    Google Scholar 

  15. Cerezo Sánchez, D.: Zero-knowledge proof-of-identity: Sybil-resistant, anonymous authentication on permissionless blockchains and incentive compatible, strictly dominant cryptocurrencies. Anonymous Authentication on Permissionless Blockchains and Incentive Compatible, Strictly Dominant Cryptocurrencies, 22 May 2019 (2019)

    Google Scholar 

  16. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum random oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 1–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_1

    Chapter  Google Scholar 

  17. Consensys: Metamask (2020). https://chrome.google.com/webstore/detail/metamask/nkbihfbeogaeaoehlefnkodbefgpgknn?hl=en

  18. Costello, C., et al.: Geppetto: versatile verifiable computation. In: 2015 IEEE Symposium on Security and Privacy, pp. 253–270 (2015)

    Google Scholar 

  19. Dunphy, P., Petitcolas, F.A.: A first look at identity management schemes on the blockchain. IEEE Secur. Privacy 16(4), 20–29 (2018)

    Article  Google Scholar 

  20. Eberhardt, J., Tai, S.: Zokrates-scalable privacy-preserving off-chain computations. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1084–1091. IEEE (2018)

    Google Scholar 

  21. Edwards, H.: A normal form for elliptic curves. Bull. Am. Math. Soc. 44(3), 393–422 (2007)

    Article  MathSciNet  Google Scholar 

  22. Ethereum (2020). https://ethereum.org/en

  23. Etherscan: Ethereum Blockchain Explorer (2020). https://etherscan.io

  24. Fiat, A., Shamir, A.: How To prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  25. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37

    Chapter  Google Scholar 

  26. Gennaro, R., Minelli, M., Nitulescu, A., Orrù, M.: Lattice-based ZK-snarks from square span programs. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 556–573 (2018)

    Google Scholar 

  27. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC 1985, New York, NY, USA, pp. 291–304 (1985). Association for Computing Machinery (1985). https://doi.org/10.1145/22145.22178

  28. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19

    Chapter  Google Scholar 

  29. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

    Chapter  Google Scholar 

  30. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_20

    Chapter  Google Scholar 

  31. GuildOfWeavers: genSTARK (2020). https://github.com/GuildOfWeavers/genSTARK

  32. iden3: Circom (2020). https://github.com/iden3/circom

  33. iden3: Snarkjs (2020). https://github.com/iden3/snarkjs

  34. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, STOC 1992, New York, NY, USA, pp. 723–732. Association for Computing Machinery (1992). https://doi.org/10.1145/129712.129782

  35. Kosba, A.: jsnark (2020). https://github.com/akosba/jsnark

  36. Lab, S.: libSNARK (2020). https://github.com/scipr-lab/libsnark

  37. o1 labs: Snarky (2020). https://github.com/o1-labs/snarky

  38. Lee, J., Hwang, J., Choi, J., Oh, H., Kim, J.: Sims: Self sovereign identity management system with preserving privacy in blockchain. IACR Cryptology ePrint Archive 2019, 1241 (2019)

    Google Scholar 

  39. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge snarks from linear-size universal and updatable structured reference strings. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 2111–2128 (2019)

    Google Scholar 

  40. Meckler, I., Shapiro, E.: Coda: Decentralized cryptocurrency at scale (2018)

    Google Scholar 

  41. Micali, S.: Cs proofs. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, SFCS 1994, pp. 436–453. IEEE Computer Society, USA (1994). https://doi.org/10.1109/SFCS.1994.365746

  42. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve traces for FR-reduction. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 84(5), 1234–1243 (2001)

    MATH  Google Scholar 

  43. Network, K.T.: Address Smart Contract Program 2 (2020). https://kovan.etherscan.io/address/0x0d0771402acb9d11c73a2df84525b030914a3c47

  44. Nework, K.T.: Address Smart Contract Program 1 (2020). https://kovan.etherscan.io/address/0xd7df4c356b182057265a8b36703fb91a9e293b36

  45. Nitulescu, A.: Lattice-based zero-knowledge SNARGs for arithmetic circuits. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 217–236. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_11

    Chapter  Google Scholar 

  46. Github Pages: Zero-Knowledge Proofs (2020). https://zkp.science

  47. Panait, A.-E., Olimid, R.F., Stefanescu, A.: Analysis of uPort open, an identity management blockchain-based solution. In: Gritzalis, S., Weippl, E.R., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) TrustBus 2020. LNCS, vol. 12395, pp. 3–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58986-8_1

    Chapter  Google Scholar 

  48. Panait, A.E., Olimid, R.F., Stefanescu, A.: Identity management on blockchain-privacy and security aspects. Proc. Romanian Acad. Ser. A 21(1), 45–52 (2020)

    MATH  Google Scholar 

  49. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252 (2013)

    Google Scholar 

  50. Pinto, A.: An Introduction to the use of ZK-SNARKs in Blockchains, pp. 233–249, January 2020. https://doi.org/10.1007/978-3-030-37110-4_16

  51. Remix: Remix Ethereum-IDE Tool (2019). https://remix.ethereum.org

  52. SCIPR Lab: Dizk (2020). https://github.com/scipr-lab/dizk

  53. SCIPR Lab: Zexe (2020). https://github.com/scipr-lab/zexe

  54. Sharma, B., Halder, R., Singh, J.: Blockchain-based interoperable healthcare using zero-knowledge proofs and proxy re-encryption. In: 2020 International Conference on COMmunication Systems NETworkS (COMSNETS), pp. 1–6 (2020)

    Google Scholar 

  55. eIDAS eID Technical Subgroup: eIDAS SAML Attribute Profile (2019). https://ec.europa.eu/cefdigital/wiki/download/attachments/82773108/eIDAS%20SAML%20Attribute%20Profile%20v1.2%20Final.pdf?version=2&modificationDate=1571068651772&api=v2

  56. Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: a distributed zero knowledge proof system. In: 27th USENIX Security Symposium (USENIX Security 2018), pp. 675–692 (2018)

    Google Scholar 

  57. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_24

    Chapter  Google Scholar 

  58. Yaga, D., Mell, P., Roby, N., Scarfone, K.: Blockchain technology overview. https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8202.pdf

  59. Zcash: What are zk-SNARKs? (2018). https://z.cash/technology/zksnarks

  60. zkcrypto: Bellman (2020). https://github.com/zkcrypto/bellman

  61. zkcrypto: Bls12-381 (2020). https://github.com/zkcrypto/bls12_381

  62. ZoKrates: Zokrates tutorial (2020). https://zokrates.github.io (All links were last accessed October)

Download references

Acknowledgment

This work was partially supported by a grant of Romanian Ministry of Research and Innovation project no. 17PCCDI/2018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andreea-Elena Panait or Ruxandra F. Olimid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panait, AE., Olimid, R.F. (2021). On Using zk-SNARKs and zk-STARKs in Blockchain-Based Identity Management. In: Maimut, D., Oprina, AG., Sauveron, D. (eds) Innovative Security Solutions for Information Technology and Communications. SecITC 2020. Lecture Notes in Computer Science(), vol 12596. Springer, Cham. https://doi.org/10.1007/978-3-030-69255-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69255-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69254-4

  • Online ISBN: 978-3-030-69255-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics