Skip to main content

Deep Learning Based Dimple Segmentation for Quantitative Fractography

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

In this work, we try to address the challenging problem of dimple segmentation from Scanning Electron Microscope (SEM) images of titanium alloys using machine learning methods, particularly neural networks. This automated method would in turn help in correlating the topographical features of the fracture surface with the mechanical properties of the material. Our proposed, UNet-inspired attention driven model not only achieves the best performance on dice-score metric when compared to other previous segmentation methods when applied to our curated dataset of SEM images, but also consumes significantly less memory. To the best of our knowledge, this is one of the first work in fractography using fully convolutional neural networks with self-attention for supervised learning of deep dimple fractography, though it can be easily extended to account for brittle characteristics as well.

A. Sinha– Work done when the author was at Indian Institute of Technology Roorkee.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.instructables.com/Steps-to-Analyzing-a-Materials-Properties-from-its/

References

  1. Attar, H., Calin, M., Zhang, L., Scudino, S., Eckert, J.: Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater. Sci. Eng. A 593, 170–177 (2014)

    Article  Google Scholar 

  2. Ehtemam-Haghighi, S., Prashanth, K., Attar, H., Chaubey, A.K., Cao, G., Zhang, L.: Evaluation of mechanical and wear properties of tixnb7fe alloys designed for biomedical applications. Mater. Des. 111, 592–599 (2016)

    Article  Google Scholar 

  3. Kabashkin , I.V., Yatskiv, I.V.: Reliability and statistics in transportation and communication (2010)

    Google Scholar 

  4. Beachem, C., Yoder, G.: Elastic-plastic fracture by homogeneous microvoid coalescence tearing along alternating shear planes. Metall. Trans. 4(4), 1145–1153 (1973)

    Article  Google Scholar 

  5. Kardomateas, G.: Fractographic observations in asymmetric and symmetric fully plastic crack growth. Scr. Metall. 20, 609–614 (1986)

    Article  Google Scholar 

  6. Merson, E., Danilov, V., Merson, D., Vinogradov, A.: Confocal laser scanning microscopy: The technique for quantitative fractographic analysis. Eng. Fract. Mech. 183, 147–158 (2017)

    Article  Google Scholar 

  7. Bastidas-Rodriguez, M., Prieto-Ortiz, F., Espejo, E.: Fractographic classification in metallic materials by using computer vision. Eng. Fail. Anal. 59, 237–252 (2016)

    Article  Google Scholar 

  8. Liu, Y., Zhao, T., Ju, W., Shi, S.: Materials discovery and design using machine learning. J. Materiomics 3(3), 159–177 (2017)

    Article  Google Scholar 

  9. Xie, T., Grossman, J.C.: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120(14), 145301 (2018)

    Article  Google Scholar 

  10. Popat, M., Barai, S.: Defect detection and classification using machine learning classifier. In: 16th World Conference on NDT, August. Citeseer (2004)

    Google Scholar 

  11. Hu, W., Wiliem, A., Lovell, B., Barter, S., Liu, L.: Automation of quantitative fractography for determination of fatigue crack growth rates with marker loads. In: 29th ICAF Symposium Nagoya (2017)

    Google Scholar 

  12. Chowdhury, A., Kautz, E., Yener, B., Lewis, D.: Image driven machine learning methods for microstructure recognition. Comput. Mater. Sci. 123, 176–187 (2016)

    Article  Google Scholar 

  13. Konovalenko, I., Maruschak, P., Chausov, M., Prentkovskis, O.: Fuzzy logic analysis of parameters of dimples of ductile tearing on the digital image of fracture surface. Proc. Engin 187, 229–234 (2017)

    Article  Google Scholar 

  14. Maruschak, P., Konovalenko, I., Chausov, M., Pylypenko, A., Panin, S., Vlasov, I., Prentkovskis, O.: Impact of dynamic non-equilibrium processes on fracture mechanisms of high-strength titanium alloy vt23. Metals 8(12), 983 (2018)

    Article  Google Scholar 

  15. Konovalenko, I., Maruschak, P., Prentkovskis, O., Junevičius, R.: Investigation of the rupture surface of the titanium alloy using convolutional neural networks. Materials 11(12), 2467 (2018)

    Article  Google Scholar 

  16. Tsopanidis, S., Moreno, R.H., Osovski, S.: Toward quantitative fractography using convolutional neural networks. Eng. Fract. Mech. 231, 106992 (2020)

    Article  Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: Cbam: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  20. Huang, G., Liu, Z., Weinberger, K., van der Maaten, L.: Densely connected convolutional networks. arxiv 2017. arXiv preprint arXiv:1608.06993

  21. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  22. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  23. Fu, J.: Dual attention network for scene segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  24. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  25. De Fauw, J., et al.: Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Med. 24(9), 1342–1350 (2018)

    Article  Google Scholar 

  26. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014)

    Google Scholar 

  27. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  28. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8026–8037 (2019)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Sumit Yadav for his contribution on assisting with the annotatation of a few the SEM images. We are also very thankful to the free GPU service Colab by Google and Kaggle which was used for conducting extensive experiments for this research work apart from burning our own laptops.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashish Sinha or K. S. Suresh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sinha, A., Suresh, K.S. (2021). Deep Learning Based Dimple Segmentation for Quantitative Fractography. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12664. Springer, Cham. https://doi.org/10.1007/978-3-030-68799-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68799-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68798-4

  • Online ISBN: 978-3-030-68799-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics