Skip to main content

Semaphorin3E/plexinD1 Axis in Asthma: What We Know So Far!

  • Chapter
  • First Online:
Lung Inflammation in Health and Disease, Volume II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1304))

  • 1478 Accesses

Abstract

Semaphorin3E belongs to the large family of semaphorin proteins. Semaphorin3E was initially identified as axon guidance cues in the neural system. It is universally expressed beyond the nervous system and contributes to regulating essential cell functions such as cell migration, proliferation, and adhesion. Binding of semaphorin3E to its receptor, plexinD1, triggers diverse signaling pathways involved in the pathogenesis of various diseases from cancer to autoimmune and allergic disorders. Here, we highlight the novel findings on the role of semaphorin3E in airway biology. In particular, we highlight our recent findings on the function and potential mechanisms by which semaphorin3E and its receptor, plexinD1, impact airway inflammation, airway hyperresponsiveness, and remodeling in the context of asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization: Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. 2007.

    Google Scholar 

  2. Khare A, Krishnamoorthy N, Oriss TB, Fei M, Ray P, Ray A. Cutting edge: inhaled antigen upregulates retinaldehyde dehydrogenase in lung CD103+ but not plasmacytoid dendritic cells to induce Foxp3 de novo in CD4+ T cells and promote airway tolerance. J Immunol. 2013;191(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  3. Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald M, Gibson P, Ohta K, O’Byrne P, Pedersen SE, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008;31(1):143–78.

    Article  CAS  PubMed  Google Scholar 

  4. Holgate ST, Arshad HS, Roberts GC, Howarth PH, Thurner P, Davies DE. A new look at the pathogenesis of asthma. Clin Sci (Lond). 2010;118(7):439–50.

    Article  CAS  Google Scholar 

  5. Romagnani S. The increased prevalence of allergy and the hygiene hypothesis: missing immune deviation, reduced immune suppression, or both? Immunology. 2004;112(3):352–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. American Academy of Allergy Asthma and Immunology: Asthma Statistics. 2015.

    Google Scholar 

  7. Asthma Society of Canada: What is Asthma 2015.

    Google Scholar 

  8. What Are the Signs and Symptoms of Asthma. http://www.nhlbi.nih.gov/health/health-topics/topics/asthma/signs.

  9. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8(3):183–92.

    Article  CAS  PubMed  Google Scholar 

  10. Hamid Q, Tulic MK, Liu MC, Moqbel R. Inflammatory cells in asthma: mechanisms and implications for therapy. J Allergy Clin Immunol. 2003;111(1 Suppl):S5–S12. discussion S12–17

    Article  CAS  PubMed  Google Scholar 

  11. Murdoch JR, Lloyd CM. Chronic inflammation and asthma. Mutat Res. 2010;690(1–2):24–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maddox L, Schwartz DA. The pathophysiology of asthma. Annu Rev Med. 2002;53:477–98.

    Article  CAS  PubMed  Google Scholar 

  13. Movassagh H, Khadem F, Gounni AS. Semaphorins and their roles in airway biology: potential as therapeutic targets. Am J Respir Cell Mol Biol. 2018;58(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  14. Kolodkin AL, Matthes DJ, O’Connor TP, Patel NH, Admon A, Bentley D, Goodman CS. Fasciclin IV: sequence, expression, and function during growth cone guidance in the grasshopper embryo. Neuron. 1992;9(5):831–45.

    Article  CAS  PubMed  Google Scholar 

  15. Luo Y, Raible D, Raper JA. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell. 1993;75(2):217–27.

    Article  CAS  PubMed  Google Scholar 

  16. Roth L, Koncina E, Satkauskas S, Cremel G, Aunis D, Bagnard D. The many faces of semaphorins: from development to pathology. Cell Mol Life Sci. 2009;66(4):649–66.

    Article  CAS  PubMed  Google Scholar 

  17. Yazdani U, Terman JR. The semaphorins. Genome Biol. 2006;7(3):211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kumanogoh A, Kikutani H. Immunological functions of the neuropilins and plexins as receptors for semaphorins. Nat Rev Immunol. 2013;13(11):802–14.

    Article  PubMed  CAS  Google Scholar 

  19. Takamatsu H, Takegahara N, Nakagawa Y, Tomura M, Taniguchi M, Friedel RH, Rayburn H, Tessier-Lavigne M, Yoshida Y, Okuno T, et al. Semaphorins guide the entry of dendritic cells into the lymphatics by activating myosin II. Nat Immunol. 2010;11(7):594–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morote-Garcia JC, Napiwotzky D, Kohler D, Rosenberger P. Endothelial Semaphorin 7A promotes neutrophil migration during hypoxia. Proc Natl Acad Sci U S A. 2012;109(35):14146–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi YI, Duke-Cohan JS, Chen W, Liu B, Rossy J, Tabarin T, Ju L, Gui J, Gaus K, Zhu C, et al. Dynamic control of beta1 integrin adhesion by the plexinD1-sema3E axis. Proc Natl Acad Sci U S A. 2014;111(1):379–84.

    Article  CAS  PubMed  Google Scholar 

  22. Movassagh H, Shan L, Mohammed A, Halayko AJ, Gounni AS. Semaphorin 3E deficiency exacerbates airway inflammation, Hyperresponsiveness, and remodeling in a mouse model of allergic asthma. J Immunol. 2017;198(5):1805–14.

    Article  CAS  PubMed  Google Scholar 

  23. Takegahara N, Takamatsu H, Toyofuku T, Tsujimura T, Okuno T, Yukawa K, Mizui M, Yamamoto M, Prasad DV, Suzuki K, et al. Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis. Nat Cell Biol. 2006;8(6):615–22.

    Article  CAS  PubMed  Google Scholar 

  24. Takamatsu H, Okuno T, Kumanogoh A. Regulation of immune cell responses by semaphorins and their receptors. Cell Mol Immunol. 2010;7(2):83–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen H, Xie GH, Wang WW, Yuan XL, Xing WM, Liu HJ, Chen J, Dou M, Shen LS. Epigenetically downregulated Semaphorin 3E contributes to gastric cancer. Oncotarget. 2015;6(24):20449–65.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Klagsbrun M, Shimizu A. Semaphorin 3E, an exception to the rule. J Clin Invest. 2010;120(8):2658–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shimizu I, Yoshida Y, Moriya J, Nojima A, Uemura A, Kobayashi Y, Minamino T. Semaphorin3E-induced inflammation contributes to insulin resistance in dietary obesity. Cell Metab. 2013;18(4):491–504.

    Article  CAS  PubMed  Google Scholar 

  28. Hughes A, Kleine-Albers J, Helfrich MH, Ralston SH, Rogers MJ. A class III semaphorin (Sema3e) inhibits mouse osteoblast migration and decreases osteoclast formation in vitro. Calcif Tissue Int. 2012;90(2):151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Movassagh H, Shan L, Halayko AJ, Roth M, Tamm M, Chakir J, Gounni AS. Neuronal chemorepellent Semaphorin 3E inhibits human airway smooth muscle cell proliferation and migration. J Allergy Clin Immunol. 2014;133(2):560–7.

    Article  CAS  PubMed  Google Scholar 

  30. Choi YI, Duke-Cohan JS, Ahmed WB, Handley MA, Mann F, Epstein JA, Clayton LK, Reinherz EL. PlexinD1 glycoprotein controls migration of positively selected thymocytes into the medulla. Immunity. 2008;29(6):888–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wanschel A, Seibert T, Hewing B, Ramkhelawon B, Ray TD, van Gils JM, Rayner KJ, Feig JE, O’Brien ER, Fisher EA, et al. Neuroimmune guidance cue Semaphorin 3E is expressed in atherosclerotic plaques and regulates macrophage retention. Arterioscler Thromb Vasc Biol. 2013;33(5):886–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gay CM, Zygmunt T, Torres-Vazquez J. Diverse functions for the semaphorin receptor PlexinD1 in development and disease. Dev Biol. 2011;349(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Singh MK, Degenhardt KR, Lu MM, Bennett J, Yoshida Y, Epstein JA. Tie2Cre-mediated inactivation of plexinD1 results in congenital heart, vascular and skeletal defects. Dev Biol. 2009;325(1):82–93.

    Article  CAS  PubMed  Google Scholar 

  34. Chauvet S, Cohen S, Yoshida Y, Fekrane L, Livet J, Gayet O, Segu L, Buhot MC, Jessell TM, Henderson CE, et al. Gating of Sema3E/PlexinD1 signaling by neuropilin-1 switches axonal repulsion to attraction during brain development. Neuron. 2007;56(5):807–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gu C, Yoshida Y, Livet J, Reimert DV, Mann F, Merte J, Henderson CE, Jessell TM, Kolodkin AL, Ginty DD. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science. 2005;307(5707):265–8.

    Article  CAS  PubMed  Google Scholar 

  36. Mazzotta C, Romano E, Bruni C, Manetti M, Lepri G, Bellando-Randone S, Blagojevic J, Ibba-Manneschi L, Matucci-Cerinic M, Guiducci S. Plexin-D1/Semaphorin 3E pathway may contribute to dysregulation of vascular tone control and defective angiogenesis in systemic sclerosis. Arthritis Res Ther. 2015;17:221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Oh WJ, Gu C. The role and mechanism-of-action of Sema3E and Plexin-D1 in vascular and neural development. Semin Cell Dev Biol. 2013;24(3):156–62.

    Article  CAS  PubMed  Google Scholar 

  38. Cariboni A, Andre V, Chauvet S, Cassatella D, Davidson K, Caramello A, Fantin A, Bouloux P, Mann F, Ruhrberg C. Dysfunctional SEMA3E signaling underlies gonadotropin-releasing hormone neuron deficiency in Kallmann syndrome. J Clin Invest. 2015;125(6):2413–28.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Christensen C, Ambartsumian N, Gilestro G, Thomsen B, Comoglio P, Tamagnone L, Guldberg P, Lukanidin E. Proteolytic processing converts the repelling signal Sema3E into an inducer of invasive growth and lung metastasis. Cancer Res. 2005;65(14):6167–77.

    Article  CAS  PubMed  Google Scholar 

  40. Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD. Neuropilin is a semaphorin III receptor. Cell. 1997;90(4):753–62.

    Article  CAS  PubMed  Google Scholar 

  41. Casazza A, Finisguerra V, Capparuccia L, Camperi A, Swiercz JM, Rizzolio S, Rolny C, Christensen C, Bertotti A, Sarotto I, et al. Sema3E-Plexin D1 signaling drives human cancer cell invasiveness and metastatic spreading in mice. J Clin Invest. 2010;120(8):2684–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Casazza A, Kigel B, Maione F, Capparuccia L, Kessler O, Giraudo E, Mazzone M, Neufeld G, Tamagnone L. Tumour growth inhibition and anti-metastatic activity of a mutated furin-resistant Semaphorin 3E isoform. EMBO Mol Med. 2012;4(3):234–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bellon A, Luchino J, Haigh K, Rougon G, Haigh J, Chauvet S, Mann F. VEGFR2 (KDR/Flk1) signaling mediates axon growth in response to semaphorin 3E in the developing brain. Neuron. 2010;66(2):205–19.

    Article  CAS  PubMed  Google Scholar 

  44. Bousquet J, Chanez P, Lacoste JY, Barneon G, Ghavanian N, Enander I, Venge P, Ahlstedt S, Simony-Lafontaine J, Godard P, et al. Eosinophilic inflammation in asthma. N Engl J Med. 1990;323(15):1033–9.

    Article  CAS  PubMed  Google Scholar 

  45. Louis R, Lau LC, Bron AO, Roldaan AC, Radermecker M, Djukanovic R. The relationship between airways inflammation and asthma severity. Am J Respir Crit Care Med. 2000;161(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  46. Woodruff PG, Khashayar R, Lazarus SC, Janson S, Avila P, Boushey HA, Segal M, Fahy JV. Relationship between airway inflammation, hyperresponsiveness, and obstruction in asthma. J Allergy Clin Immunol. 2001;108(5):753–8.

    Article  CAS  PubMed  Google Scholar 

  47. Hamid Q, Tulic M. Immunobiology of asthma. Annu Rev Physiol. 2009;71:489–507.

    Article  CAS  PubMed  Google Scholar 

  48. Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P, Wardlaw AJ, Pavord ID. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet. 2002;360(9347):1715–21.

    Article  PubMed  Google Scholar 

  49. Jayaram L, Pizzichini MM, Cook RJ, Boulet LP, Lemiere C, Pizzichini E, Cartier A, Hussack P, Goldsmith CH, Laviolette M, et al. Determining asthma treatment by monitoring sputum cell counts: effect on exacerbations. Eur Respir J. 2006;27(3):483–94.

    Article  CAS  PubMed  Google Scholar 

  50. Jatakanon A, Uasuf C, Maziak W, Lim S, Chung KF, Barnes PJ. Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med. 1999;160(5 Pt 1):1532–9.

    Article  CAS  PubMed  Google Scholar 

  51. Shaw DE, Berry MA, Hargadon B, McKenna S, Shelley MJ, Green RH, Brightling CE, Wardlaw AJ, Pavord ID. Association between neutrophilic airway inflammation and airflow limitation in adults with asthma. Chest. 2007;132(6):1871–5.

    Article  CAS  PubMed  Google Scholar 

  52. Wenzel SE, Szefler SJ, Leung DY, Sloan SI, Rex MD, Martin RJ. Bronchoscopic evaluation of severe asthma. Persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med. 1997;156(3 Pt 1):737–43.

    Article  CAS  PubMed  Google Scholar 

  53. Qiu Y, Zhu J, Bandi V, Guntupalli KK, Jeffery PK. Bronchial mucosal inflammation and upregulation of CXC chemoattractants and receptors in severe exacerbations of asthma. Thorax. 2007;62(6):475–82.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Choi JS, Jang AS, Park JS, Park SW, Paik SH, Park JS, Uh ST, Kim YH, Park CS. Role of neutrophils in persistent airway obstruction due to refractory asthma. Respirology. 2012;17(2):322–9.

    Article  PubMed  Google Scholar 

  55. Shiang C, Mauad T, Senhorini A, de Araujo BB, Ferreira DS, da Silva LF, Dolhnikoff M, Tsokos M, Rabe KF, Pabst R. Pulmonary periarterial inflammation in fatal asthma. Clin Exp Allergy. 2009;39(10):1499–507.

    Article  CAS  PubMed  Google Scholar 

  56. Anees W, Huggins V, Pavord ID, Robertson AS, Burge PS. Occupational asthma due to low molecular weight agents: eosinophilic and non-eosinophilic variants. Thorax. 2002;57(3):231–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martin RJ, Cicutto LC, Smith HR, Ballard RD, Szefler SJ. Airways inflammation in nocturnal asthma. Am Rev Respir Dis. 1991;143(2):351–7.

    Article  CAS  PubMed  Google Scholar 

  58. Tan WC, Koh TH, Hay CS, Taylor E. The effect of inhaled budesonide on the diurnal variation in airway mechanics, airway responsiveness and serum neutrophil chemotactic activity in Asian patients with predominant nocturnal asthma. Respirology. 1998;3(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  59. Gagliardo R, Chanez P, Gjomarkaj M, La Grutta S, Bonanno A, Montalbano AM, Di Sano C, Albano GD, Gras D, Anzalone G, et al. The role of transforming growth factor-beta1 in airway inflammation of childhood asthma. Int J Immunopathol Pharmacol. 2013;26(3):725–38.

    Article  CAS  PubMed  Google Scholar 

  60. Konradsen JR, James A, Nordlund B, Reinius LE, Soderhall C, Melen E, Wheelock AM, Lodrup Carlsen KC, Lidegran M, Verhoek M, et al. The chitinase-like protein YKL-40: a possible biomarker of inflammation and airway remodeling in severe pediatric asthma. J Allergy Clin Immunol. 2013;132(2):328–335.e325.

    Article  CAS  PubMed  Google Scholar 

  61. McDougall CM, Helms PJ. Neutrophil airway inflammation in childhood asthma. Thorax. 2006;61(9):739–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Movassagh H, Saati A, Nandagopal S, Mohammed A, Tatari N, Shan L, Duke-Cohan JS, Fowke KR, Lin F, Gounni AS. Chemorepellent Semaphorin 3E negatively regulates neutrophil migration in vitro and in vivo. J Immunol. 2017;198(3):1023–33.

    Article  CAS  PubMed  Google Scholar 

  63. Linden A. Role of interleukin-17 and the neutrophil in asthma. Int Arch Allergy Immunol. 2001;126(3):179–84.

    Article  CAS  PubMed  Google Scholar 

  64. Saffar AS, Dragon S, Ezzati P, Shan L, Gounni AS. Phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase regulate induction of Mcl-1 and survival in glucocorticoid-treated human neutrophils. J Allergy Clin Immunol. 2008;121(2):492–498.e410.

    Article  CAS  PubMed  Google Scholar 

  65. Trevor JL, Deshane JS. Refractory asthma: mechanisms, targets, and therapy. Allergy. 2014;69(7):817–27.

    Article  CAS  PubMed  Google Scholar 

  66. Movassagh H, Shan L, Duke-Cohan JS, Chakir J, Halayko AJ, Koussih L, Gounni AS. Downregulation of semaphorin 3E promotes hallmarks of experimental chronic allergic asthma. Oncotarget. 2017;8(58):98953–63.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Paul WE, Zhu J. How are T(H)2-type immune responses initiated and amplified? Nat Rev Immunol. 2010;10(4):225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kopf M, Schneider C, Nobs SP. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol. 2015;16(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  69. Lambrecht BN, Hammad H. Taking our breath away: dendritic cells in the pathogenesis of asthma. Nat Rev Immunol. 2003;3(12):994–1003.

    Article  CAS  PubMed  Google Scholar 

  70. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449(7161):419–26.

    Article  CAS  PubMed  Google Scholar 

  71. van Helden MJ, Lambrecht BN. Dendritic cells in asthma. Curr Opin Immunol. 2013;25(6):745–54.

    Article  PubMed  CAS  Google Scholar 

  72. Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, Segura E, Tussiwand R, Yona S. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol. 2014;14(8):571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Furuhashi K, Suda T, Hasegawa H, Suzuki Y, Hashimoto D, Enomoto N, Fujisawa T, Nakamura Y, Inui N, Shibata K, et al. Mouse lung CD103+ and CD11bhigh dendritic cells preferentially induce distinct CD4+ T-cell responses. Am J Respir Cell Mol Biol. 2012;46(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  74. Plantinga M, Guilliams M, Vanheerswynghels M, Deswarte K, Branco-Madeira F, Toussaint W, Vanhoutte L, Neyt K, Killeen N, Malissen B, et al. Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity. 2013;38(2):322–35.

    Article  CAS  PubMed  Google Scholar 

  75. Curreli S, Wong BS, Latinovic O, Konstantopoulos K, Stamatos NM. Class 3 semaphorins induce F-actin reorganization in human dendritic cells: role in cell migration. J Leukoc Biol. 2016;100(6):1323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Busse WW. The relationship of airway hyperresponsiveness and airway inflammation: airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest. 2010;138(2 Suppl):4S–10S.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Movassagh H, Shan L, Duke-Cohan JS, Halayko AJ, Uzonna JE, Gounni AS. Semaphorin 3E alleviates hallmarks of house dust mite-induced allergic airway disease. Am J Pathol. 2017;187(7):1566–76.

    Article  CAS  PubMed  Google Scholar 

  78. Chapoval SP, Dasgupta P, Smith EP, DeTolla LJ, Lipsky MM, Kelly-Welch AE, Keegan AD. STAT6 expression in multiple cell types mediates the cooperative development of allergic airway disease. J Immunol. 2011;186(4):2571–83.

    Article  CAS  PubMed  Google Scholar 

  79. Leigh R, Ellis R, Wattie JN, Hirota JA, Matthaei KI, Foster PS, O’Byrne PM, Inman MD. Type 2 cytokines in the pathogenesis of sustained airway dysfunction and airway remodeling in mice. Am J Respir Crit Care Med. 2004;169(7):860–7.

    Article  PubMed  Google Scholar 

  80. Sahoo A, Alekseev A, Obertas L, Nurieva R. Grail controls Th2 cell development by targeting STAT6 for degradation. Nat Commun. 2014;5:4732.

    Article  CAS  PubMed  Google Scholar 

  81. Erazo A, Kutchukhidze N, Leung M, Christ AP, Urban JF Jr, Curotto de Lafaille MA, Lafaille JJ. Unique maturation program of the IgE response in vivo. Immunity. 2007;26(2):191–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu LC, Zarrin AA. The production and regulation of IgE by the immune system. Nat Rev Immunol. 2014;14(4):247–59.

    Article  CAS  PubMed  Google Scholar 

  83. Hakonarson H, Herrick DJ, Serrano PG, Grunstein MM. Mechanism of cytokine-induced modulation of beta-adrenoceptor responsiveness in airway smooth muscle. J Clin Invest. 1996;97(11):2593–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hakonarson H, Halapi E, Whelan R, Gulcher J, Stefansson K, Grunstein MM. Association between IL-1beta/TNF-alpha-induced glucocorticoid-sensitive changes in multiple gene expression and altered responsiveness in airway smooth muscle. Am J Respir Cell Mol Biol. 2001;25(6):761–71.

    Article  CAS  PubMed  Google Scholar 

  85. Kim J, Oh WJ, Gaiano N, Yoshida Y, Gu C. Semaphorin 3E-Plexin-D1 signaling regulates VEGF function in developmental angiogenesis via a feedback mechanism. Genes Dev. 2011;25(13):1399–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Suchting S, Freitas C, le Noble F, Benedito R, Breant C, Duarte A, Eichmann A. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A. 2007;104(9):3225–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fukushima Y, Okada M, Kataoka H, Hirashima M, Yoshida Y, Mann F, Gomi F, Nishida K, Nishikawa S, Uemura A. Sema3E-PlexinD1 signaling selectively suppresses disoriented angiogenesis in ischemic retinopathy in mice. J Clin Invest. 2011;121(5):1974–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature. 2007;445(7129):776–80.

    Article  PubMed  CAS  Google Scholar 

  89. Zygmunt T, Gay CM, Blondelle J, Singh MK, Flaherty KM, Means PC, Herwig L, Krudewig A, Belting HG, Affolter M, et al. Semaphorin-PlexinD1 signaling limits angiogenic potential via the VEGF decoy receptor sFlt1. Dev Cell. 2011;21(2):301–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Torres-Vazquez J, Gitler AD, Fraser SD, Berk JD, Van NP, Fishman MC, Childs S, Epstein JA, Weinstein BM. Semaphorin-plexin signaling guides patterning of the developing vasculature. Dev Cell. 2004;7(1):117–23.

    Article  CAS  PubMed  Google Scholar 

  91. Rahimi N. VEGFR-1 and VEGFR-2: two non-identical twins with a unique physiognomy. Fronti Biosci. 2006;11:818–29.

    CAS  Google Scholar 

  92. Krueger J, Liu D, Scholz K, Zimmer A, Shi Y, Klein C, Siekmann A, Schulte-Merker S, Cudmore M, Ahmed A, et al. Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo. Development. 2011;138(10):2111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tatari N, Movassagh H, Shan L, Koussih L, Gounni AS. Semaphorin 3E inhibits house dust mite-induced angiogenesis in a mouse model of allergic asthma. Am J Pathol. 2019;189(4):762–72.

    Article  CAS  PubMed  Google Scholar 

  94. White MJ, Risse-Adams O, Goddard P, Contreras MG, Adams J, Hu D, Eng C, Oh SS, Davis A, Meade K, et al. Novel genetic risk factors for asthma in African American children: precision medicine and the SAGE II study. Immunogenetics. 2016;68(6–7):391–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Modena BD, Bleecker ER, Busse WW, Erzurum SC, Gaston BM, Jarjour NN, Meyers DA, Milosevic J, Tedrow JR, Wu W, et al. Gene expression correlated with severe asthma characteristics reveals heterogeneous mechanisms of severe disease. Am J Respir Crit Care Med. 2017;195(11):1449–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Movassagh H, Shan L, Chakir J, McConville JF, Halayko AJ, Koussih L, Gounni AS. Expression of semaphorin 3E is suppressed in severe asthma. J Allergy Clin Immunol. 2017;140(4):1176–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Institutes of Health Research grant (MOP # 115115) and the Research Manitoba Chair to A. S. G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelilah S. Gounni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koussih, L., Gounni, A.S. (2021). Semaphorin3E/plexinD1 Axis in Asthma: What We Know So Far!. In: Wang, YX. (eds) Lung Inflammation in Health and Disease, Volume II. Advances in Experimental Medicine and Biology, vol 1304. Springer, Cham. https://doi.org/10.1007/978-3-030-68748-9_12

Download citation

Publish with us

Policies and ethics