Skip to main content

Vitek: A Platform for a Better Understanding of Microbes

  • Chapter
  • First Online:
Techniques to Measure Food Safety and Quality

Abstract

Vitek systems are routinely used to identify clinical and environmental microorganisms and determine microbial susceptibility to antibiotics. The performance, accuracy, and reliability of these systems have been widely evaluated and presented in the literature. This chapter aims to introduce Vitek as a microbial identification and antibiotic susceptibility detection system and elucidate the principle of microbial identification. In addition, it presents conclusively the accuracy and reliability of Vitek systems to identify clinical and environmental microorganisms. It overviews the studies performed in the last 10 years. Vitek was launched in 1979 to identify pathogens, and later it was developed to different versions, such as Vitek 2, Vitek 2 compact, and Vitek MS. These systems identify microbe based on the developed color as a result of microbial utilization of the substrates in the cards and ionization of microbial proteins. Vitek systems provide good identification for wide ranges of clinical and environmental bacteria, yeasts, and molds such as staphylococci, enterococci, fermenting bacteria and Enterobacteriaceae, Candida sp., and Aspergillus sp. In addition, it detects microbial susceptibility and resistance to different antibiotics. In general, Vitek system’s performances, accuracy, and reliability agreed with the other phenotypic, proteolytic, and genotypic techniques; however, in most cases, this concurrence has been found to be dependent on genus species. Some limitations in Vitek systems to identify certain microbes have been reported. Although these limitations have been mainly attributed to the capacity of the system’s database and other factors, such as microbial age, purity, and load and user skills. It is established that the Vitek system could be used for routine identification of common microbes in food and clinical laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Joyanes, P., Conejo, M., Martínez-Martínez, L., & Perea, E. (2001). Evaluation of the vitek 2 system for the identification and susceptibility testing of three species of nonfermenting gram-negative rods frequently isolated from clinical samples. Journal of Clinical Microbiology, 39, 3247–3253.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Biomerieux. 2005. BioMérieux launches vitek® 2 Compact, its new solution for rapid identification of micro-organisms. https://www.biomerieuxdiagnostics.com/biomerieux-launches-vitekr-2-compact-itsnew-solution-rapid-identification-micro-organisms. Retrieved August 11, 2020.

  3. Wallet, F., Loïez, C., Renaux, E., Lemaitre, N., & Courcol, R. (2005). Performances of vitek 2 colorimetric cards for identification of Gram-positive and Gram-negative bacteria. Journal of Clinical Microbiology, 43, 4402–4406.

    PubMed  PubMed Central  Google Scholar 

  4. Renaud, F., Bergeron, E., Tigaud, S., Fuhrmann, C., Gravagna, B., & Freney, J. (2005). Evaluation of the new vitek 2 GN card for the identification of gram-negative bacilli frequently encountered in clinical laboratories. European Journal of Clinical Microbiology & Infectious Diseases, 24, 671–676.

    CAS  Google Scholar 

  5. Funke, G., & Funke-Kissling, P. (2005). Performance of the new vitek 2 GP card for identification of medically relevant gram-positive cocci in a routine clinical laboratory. Journal of Clinical Microbiology, 43, 84–88.

    PubMed  PubMed Central  Google Scholar 

  6. Biomerieux. (2019). Vitek® MS: Healthcare. https://www.biomerieux-usa.com/clinical/vitek-ms-healthcare. Retrieved from August 11, 2020.

  7. Biomerieux. (2013). BioMérieux announces U.S. FDA clearance for vitek® MS, a revolutionary technology which reduces microbial identification from days to minutes reinforcing medical value of diagnostics. https://www.biomerieux.com/en/biomerieux-announces-us-fda-clearance-vitekr-ms-revolutionary-technology-which-reduces-microbial, Retrieved from August 11, 2020.

  8. Halket, G., Dinsdale, A., & Logan, N. (2009). Evaluation of the vitek BCL card for identification of Bacillus species and other aerobic endosporeformers. Letters in Applied Microbiology, 50, 120–126.

    Google Scholar 

  9. Hata, D., Hall, L., Fothergill, A., Davise, H., Larone, D., & Wengenack, N. (2007). Multicenter evaluation of the new vitek 2 advanced colorimetric yeast identification card. Journal of Clinical Microbiology, 45, 1087–1092.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pincus, D. H. (2005). Microbial identification using the BioMerieux vitek® 2 system. In M. J. Miller (Ed.), Encyclopedia of rapid microbiological methods (Vol. II, pp. 1–32). Moore, OK: Parenteral Drug Association & Davis Healthcare International Publishing.

    Google Scholar 

  11. Lowe, P., Haswell, H., & Lewis, K. (2006). Use of various common isolation media to evaluate the new vitek 2 colorimetric GN card for identification of Burkholderia pseudomallei. Journal of Clinical Microbiology, 44, 854–856.

    PubMed  PubMed Central  Google Scholar 

  12. Westblade, L., Jennemann, R., Branda, J., Bythrow, M., Ferraro, M., Garner, O., Ginocchio, C., Lewinski, M., Manji, R., Mochon, A., Procop, G., Richter, G., Rychert, S., Sercia, J., & Burnhama, C. (2013). Multicenter study evaluating the vitek MS system for identification of medically important yeasts. Journal of Clinical Microbiology, 51, 2267–2272.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Martiny, D., Busson, L., Wybo, I., El Haj, R., Dediste, A., & Vandenberga, O. (2012). Comparison of the microflex LT and vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization–time of flight mass spectrometry. Journal of Clinical Microbiology, 50, 1313–1325.

    PubMed  PubMed Central  Google Scholar 

  14. Biomerieux. (2004). BioMérieux launches vitek® 2 Compact, its new solution for rapid identification of micro-organisms. https://www.biomerieux-diagnostics.com/biomerieux-launches-vitekr-2-compact-its-new-solution-rapid-identification-micro-organisms. Retrieved from August 11, 2020.

  15. Mory, F., Alauzet, C., Matuszeswski, C., Riegel, P., & Lozniewski, A. (2009). Evaluation of the new vitek 2 ANC card for identification of medically relevant anaerobic bacteria. Journal of Clinical Microbiology, 47, 1923–1926.

    PubMed  PubMed Central  Google Scholar 

  16. Rennie, R., Brosnikoff, C., Shokoples, S., Reller, L., Mirrett, S., Janda, W., Ristow, K., & Krilcich. (2008). Multicenter evaluation of the new vitek 2 Neisseria-Haemophilus identification card. Journal of Clinical Microbiology, 46, 2681–2685.

    PubMed  PubMed Central  Google Scholar 

  17. Qu, J., Du, Y., Yu, R., & Lu, X. (2016). The first outbreak caused by Acinetobacter baumannii ST208 and ST195 in China. BioMed Research International, 2016, 1–6.

    Google Scholar 

  18. Ali, S. (2017). Performance of vitek 2 in the routine identification of bacteria from positive blood cultures in Sulaimani pediatrics’ hospital. Iraqi Journal of Science, 58, 435–441.

    Google Scholar 

  19. Tagliaferri, T., Vieira, C., Carvalho, M., Ladeira, L., Magalhaes, P., Farias, M., & Santos, S. (2017). Phenotypic and genotypic characterization of clinically relevant bacteria isolated from dental waste and waste workers’ hands, mucosas and coats. Letters in Applied Microbiology, 65, 306–312.

    CAS  PubMed  Google Scholar 

  20. González-Lara, M., Torres-González, P., Rangel-Cordero, A., Sifuentes-Osornio, J., Ponce-de-León, A., & Martínez-Gambo, A. (2017). Identification and susceptibility testing of Candida sp. directly from yeast-positive blood cultures with vitek 2. Diagnostic Microbiology and Infectious Disease, 89, 202–204.

    PubMed  Google Scholar 

  21. Ochiuzzi, M., Cataldi, S., Guelfand, L., Maldonado, I., & Arechavala, A. (2014). Evaluation of vitek 2 for the identification of Candida yeasts. Revista Argentina de Microbiología, 46, 107–110.

    PubMed  Google Scholar 

  22. Dar, G., Dar, S., Kamili, A., Chishti, M., & Ahmad, F. (2016). Detection and characterization of potentially pathogenic Aeromonas sobria isolated from fish Hypophthalmichthys molitrix (Cypriniformes: Cyprinidae). Microbial Pathogenesis, 91, 136–140.

    PubMed  Google Scholar 

  23. Cartwright, E., Paterson, G., Raven, K., Harrison, E., Gouliouris, T., Kearns, A., Pichon, B., Edwards, G., Skov, R., Larsen, A., Holmes, M., Parkhill, J., Peacock, S., & Töröka, M. (2013). Use of vitek 2 antimicrobial susceptibility profile to identify mecC in methicillin-resistant Staphylococcus aureus. Journal of Clinical Microbiology, 51, 2732–2734.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Filippin, L., Roisin, S., Nonhoff, C., Vandendriessche, S., Heinrichs, A., & Denis, O. (2014). Evaluation of the automated vitek 2 system for detection of various mechanisms of macrolide and lincosamide resistance in Staphylococcus aureus. Journal of Clinical Microbiology, 52, 4087–4089.

    PubMed  PubMed Central  Google Scholar 

  25. Paim, T., Cantarelli, V., & Azevedo, P. (2014). Performance of the vitek 2 system software version 5.03 in the bacterial identification and antimicrobial susceptibility test: Evaluation study of clinical and reference strains of gram-positive cocci. Revista da Sociedade Brasileira de Medicina Tropical, 47, 377–381.

    PubMed  Google Scholar 

  26. Temiz, H., Temiz, S., Kaya, A., & Çelen, M. (2014). Antibiotic resistance in gram-negative bacteria isolated from blood cultures. Klimik Dergisi, 27(2), 62–68. https://doi.org/10.5152/kd.2014.15.

    Article  Google Scholar 

  27. Hogan, C., Watz, N., Budvytiene, I., & Banaei, N. (2019). Rapid antimicrobial susceptibility testing by vitek®2 directly from blood cultures in patients with gram-negative rod bacteremia. Diagnostic Microbiology and Infectious Disease, 94, 116–121.

    CAS  PubMed  Google Scholar 

  28. Dryildiz, C., Bukavaz, S., Gurcan, S., & Hatypodlu, O. (2017). A rarely isolated bacterium in microbiology laboratories: Streptococcus uberis. Mikrobiyoloji Bülteni, 51, 171–176.

    Google Scholar 

  29. Turetken, P., Altuo, G., Cardak, M., & Gunes, K. (2019). Bacteriological quality, heavy metal and antibiotic resistance in Sapanca Lake, Turkey. Environmental Monitoring and Assessment, 191, 1–12.

    Google Scholar 

  30. Alaidarous, M., Alanazi, M., & Abdel-Hadi, A. (2017). Isolation, identification, and antimicrobial susceptibility of bacteria associated with waterpipe contaminants in selected area of Saudi Arabia. BioMed Research International, 1–8.

    Google Scholar 

  31. Voidarou, C., Vassos, D., Rozos, G., Alexopoulos, A., Plessas, S., Tsinas, A., Skoufou, M., Stavropoulou, E., & Bezirtzoglou, E. (2011). Microbial challenges of poultry meat production. Anaerobe, 17, 341–343.

    CAS  PubMed  Google Scholar 

  32. Al Bulushi, I., Poole, S., Barlow, R., Deeth, H., & Dykes, G. (2010). Speciation of gram-positive bacteria in fresh and ambient-stored sub-tropical marine fish. International Journal of Food Microbiology, 138, 32–38.

    PubMed  Google Scholar 

  33. Osman, K., Orabi, A., Elbehiry, A., Hanafy, M., & Ali, A. (2019). Pseudomonas species isolated from camel meat: Quorum sensing-dependent virulence, biofilm formation and antibiotic resistance. Future Microbiology, 14, 609–622.

    CAS  PubMed  Google Scholar 

  34. Brandao, M., Umeda, N., Jackson, E., Forsythe, S., & Filippis, I. (2017). Isolation, molecular and phenotypic characterization, and antibiotic susceptibility of Cronobacter sp. from Brazilian retail foods. Food Microbiology, 63, 129–138.

    CAS  PubMed  Google Scholar 

  35. Khan, M. (2018). Detection of colonized pathogenic bacteria from food handlers in Saudi Arabia. Journal of Pure and Applied Microbiology, 12, 1301–1306.

    CAS  Google Scholar 

  36. Jin, W., Jang, S., Lee, M., Park, G., Kim, M., Kook, J., Kim, D., Moon, D., & Park, Y. (2011). Evaluation of vitek 2, microscan, and phoenix for identification of clinical isolates and reference strains. Diagnostic Microbiology and Infectious Disease, 70, 442–447.

    PubMed  Google Scholar 

  37. Li, Y., Gu, B., Liu, G., Xia, W., Fan, K., Mei, Y., Huang, P., & Pan, S. (2014). MALDI-TOF MS versus vitek 2 ANC card for identification of anaerobic bacteria. Journal of Thoracic Disease, 6, 517–523.

    PubMed  PubMed Central  Google Scholar 

  38. Hernández-Durán, M., López-Jácome, L., Colín-Castro, C., Cerón-González, G., Ortega-Peña, S., Vanegas-Rodríguez, E., Mondragón-Eguiluz, J., & Franco-Cendejas, R. (2017). Comparison of the microscan walkaway and vitek 2 compact systems for the identification and susceptibility of clinical gram-positive and gram-negative bacteria. Investigación en Discapacidad, 6, 105–114.

    Google Scholar 

  39. Kim, T., Kweon, O., Kim, H., & Lee, M. (2016). Identification of uncommon Candida species using commercial identification systems. Journal of Microbiology and Biotechnology, 26, 2206–2213.

    PubMed  Google Scholar 

  40. Deak, E., Charlton, C., Bobenchik, A., Miller, S., Pollett, S., McHardy, I., Wu, M., & Garner, O. (2015). Comparison of the vitek MS and bruker microflex LT MALDI-TOF MS platforms for routine identification of commonly isolated bacteria and yeast in the clinical microbiology laboratory. Diagnostic Microbiology and Infectious Disease, 81, 27–33.

    CAS  PubMed  Google Scholar 

  41. Lee, M., Chung, H., Moon, H., Lee, S., & Lee, K. (2015). Comparative evaluation of two matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems, vitek MS and microflex LT, for the identification of gram-positive cocci routinely isolated in clinical microbiology laboratories. Journal of Microbiological Methods, 113, 13–15.

    CAS  PubMed  Google Scholar 

  42. Rocca M., Barrios R., Zintgraff J., Claudia Martınez C., Irazu L., Carlos Vay C., Prieto M., 2019. Utility of platforms viteks MS and microflex LT for the identification of complex clinical isolates that require molecular methods for their taxonomic classification. PLoS One https://doi.org/10.1371/journal.pone.0218077. Retrieved from August 14, 2020.

  43. Febbraro, F., Rodio, D., Puggioni, G., Antonelli, G., Pietropaolo, V., & Trancassini, M. (2016). MALDI-TOF MS versus vitek 2: Comparison of systems for the identification of microorganisms responsible for bacteremia. Current Microbiology, 73, 843–850.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hou, X., Xiao, M., Chen, S., Wang, H., Cheng, J., Chen, X., Xu, Z., Fan, X., Kong, F., & Xu, Y. (2016). Identification and antifungal susceptibility profiles of Candida haemulonii species complex clinical isolates from a multicenter study in China. Journal of Clinical Microbiology, 54, 2676–2680.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Andersen, K., Kristoffersen, A., Ingebretsen, A., Vikholt, K., O’rtengren, U., Olsen, I., Enersen, M., & Gaustad, P. (2016). Diversity and antifungal susceptibility of Norwegian Candida glabrata clinical isolates. Journal of Oral Microbiology, 8, 1–10.

    Google Scholar 

  46. Wang, Y., Chen, X., Xie, X., Xiao, M., Yang, Y., Zhang, G., Zhang, J., Duan, S., Zhang, Q., Zhang, P., Tsui, C., & Xu, Y. (2019). Evaluation of vitek MS, Clin-ToF-II MS, autof MS 1000 and vitek 2 ANC card for identification of Bacteroides fragilis group isolates and antimicrobial susceptibilities of these isolates in a Chinese university hospital. Journal of Microbiology, Immunology and Infection, 52, 456–464.

    CAS  Google Scholar 

  47. Urwyler, S., & Glaubitz, J. (2015). Advantage of MALDI-TOF-MS over biochemical-based phenotyping for microbial identification illustrated on industrial applications. Letters in Applied Microbiology, 62, 130–137.

    Google Scholar 

  48. Rudolpha, W., Gunzerb, F., Trauthc, M., Bunkd, B., Biggec, R., & Schrottnerc, P. (2019). Comparison of vitek 2, MALDI-TOF MS, 16S rRNA gene sequencing, and whole-genome sequencing for identification of Roseomonas mucosa. Microbial Pathogenesis, 134, 1–4.

    Google Scholar 

  49. Ayeni, F., Andersen, C., & Nørskov-Lauritsen, N. (2017). Comparison of growth on mannitol salt agar, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, vitek® 2 with partial sequencing of 16S rRNA gene for identification of coagulase-negative staphylococci. Microbial Pathogenesis, 105, 255–259.

    CAS  PubMed  Google Scholar 

  50. Lee, M., Jang, S., Li, X., Park, G., Kook, J., Kim, M., Chang, Y., Shin, J., Kim, S., Kim, D., Kang, S., & Moon, D. (2014). Comparison of rpoB gene sequencing, 16S rRNA gene sequencing, gyrB multiplex PCR, and the vitek 2 system for identification of Acinetobacter clinical isolates. Diagnostic Microbiology and Infectious Disease, 78, 29–34.

    CAS  PubMed  Google Scholar 

  51. Park, J., Hong, K., Lee, H., Choi, S., Song, S., Song, K., Kim, H., Park, K., Song, J., & Kim, E. (2011). Evaluation of three phenotypic identification systems for clinical isolates of Raoultella ornithinolytica. Journal of Medical Microbiology, 60, 492–499.

    CAS  PubMed  Google Scholar 

  52. Fang, H., Ohlsson, A., Ullberg, M., & Özenci, V. (2012). Evaluation of species-specific PCR, bruker MS, vitek MS and the vitek 2 system for the identification of clinical Enterococcus isolates. European Journal of Clinical Microbiology and Infectious Diseases, 31, 3073–3077.

    CAS  PubMed  Google Scholar 

  53. Puig, C., Torres, M., Marfil-Pérez, E., Ferández, M., Río, M., Balbín, J., & Martínez-Martínez, L. (2019). Comparison between vitek MS, bruker biotyper, vitek2, and API20E for differentiation of species of the genus Raoultella. European Journal of Clinical Microbiology & Infectious Diseases, 38, 467–470.

    Google Scholar 

  54. Schröttner, P., Rudolph, W., Eing, B., Bertram, S., & Gunzer, F. (2014). Comparison of vitek, MALDI-TOF MS, and 16S rDNA sequencing for identification of Myroides odoratus and Myroides odoratimimus. Diagnostic Microbiology and Infectious Disease, 79, 155–159.

    PubMed  Google Scholar 

  55. Lin, J., Lai, C., Yang, C., Huang, Y., Lin, H., & Lin, H. (2017). Comparison of four automated microbiology systems with 16S rRNA gene sequencing for identification of Chryseobacterium and Elizabethkingia species. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-14244-9.

  56. Lin, J., Teng, S., Lai, C., Yang, C., Huang, Y., Lin, H., & Ling, H. (2018). Comparison of the vitek MS and bruker matrix-assisted laser desorption ionization–time of flight mass spectrometry systems for identification of Chryseobacterium isolates from clinical specimens and report of uncommon Chryseobacterium infections in humans. Journal of Clinical Microbiology, 56, 1–6.

    Google Scholar 

  57. Furlan, J., Silva, E., Braz, E., Gallo, E., & Stehling, E. (2019). Evaluation of different molecular and phenotypic methods for identification of environmental Burkholderia cepacia complex. World Journal of Microbiology and Biotechnology, 35, 1–6.

    Google Scholar 

  58. Carriero, M., Maia, A., Sousa, R., & Henrique-Silva, F. (2016). Characterization of a new strain of Aeromonas dhakensis isolated from diseased pacu fish (Piaractus mesopotamicus) in Brazil. Journal of Fish Diseases, 39, 1285–1295.

    CAS  PubMed  Google Scholar 

  59. McMullen, A., Wallace, M., Pincus, D., Wilkey, K., & Burnham, C. (2016). Evaluation of the vitek MS matrix-assisted laser desorption ionization–time of flight mass spectrometry system for identification of clinically relevant filamentous fungi. Journal of Clinical Microbiology, 54, 2068–2073.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Pinheiro, D., Monteiro, C., Faria, M., & Pinto, E. (2019). Vitek_ MS v3.0 system in the identification of filamentous fungi. Mycopathologia, 184, 645–651.

    PubMed  Google Scholar 

  61. Ligozzi, M., Bernini, C., Bonora, M., Fatima, M., Zuliani, J., & Fontana, R. (2002). Evaluation of the vitek 2 system for identification and antimicrobial susceptibility testing of medically relevant gram-positive cocci. Journal of Clinical Microbiology, 40, 1681–1686.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Spanu, T., Sanguinetti, M., Ciccaglione, D., D’Inzeo, T., Romano, L., Leone, F., & Fadda, G. (2003). Use of the vitek 2 system for rapid identification of clinical isolates of staphylococci from bloodstream infections. Journal of Clinical Microbiology, 41, 4259–4263.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ambaraghassi, G., Dufresne, P., Dufresne, S., Vallières, E., Muñoz, J., Cuomo, C., Berkow, E., Lockhart, S., & Luonga, M. (2019). Identification of Candida auris by use of the updated Vitek 2 yeast identification system, version 8.01: A multilaboratory evaluation study. Journal of Clinical Microbiology, 57, 1–8.

    Google Scholar 

  64. Pekard-Amenitsch, S., Schriebl, A., Posawetz, W., Willinger, B., Kölli, B., & Buzina, W. (2018). Isolation of Candida auris from ear of otherwise healthy patient, Austria, 2018. Emerging Infectious Diseases, 24, 1596–1597.

    PubMed  PubMed Central  Google Scholar 

  65. Ferreira, L., Sánchez-Juanes, F., González-Avila, M., Cembrero-Fuciños, D., Herrero-Hernández, A., González-Buitrago, J. M., & Muñoz-Bellido, J. L. (2010). Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization–time of flight mass spectrometry. Journal of Clinical Microbiology, 48, 2110–2115.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Funke, G., Monnet, D., Debernardis, C., Graevenitz, A., & Freney, J. (1998). Evaluation of the vitek 2 system for rapid identification of medically relevant gram-negative rods. Journal of Clinical Microbiology, 36, 1948–1952.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ling, T., Liu, P., & Cheng, A. (2001). Evaluation of vitek 2 rapid identification and susceptibility testing system against gram-negative clinical isolates. Journal of Clinical Microbiology, 39, 2964–2966.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhou, Y., Shen, N., Hou, H., Lu, Y., Yu, J., Mao, L., Mao, L., & Sun, Z. (2017). Identification accuracy of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for clinical pathogenic bacteria and fungi diagnosis: A meta-analysis. International Journal of Clinical and Experimental Medicine, 10, 4057–4076.

    Google Scholar 

  69. Wang, W., Xi, H., Huang, M., Wang, J., Fan, M., Chen, Y., Shao, H., & Li, X. (2014). Performance of mass spectrometric identification of bacteria and yeasts routinely isolated in a clinical microbiology laboratory using MALDI-TOF MS. Journal of Thoracic Disease, 6, 524–533.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail M. Al Bulushi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al Bulushi, I.M., Al Kharousi, Z.S., Rahman, M.S. (2021). Vitek: A Platform for a Better Understanding of Microbes. In: Khan, M.S., Shafiur Rahman, M. (eds) Techniques to Measure Food Safety and Quality. Springer, Cham. https://doi.org/10.1007/978-3-030-68636-9_6

Download citation

Publish with us

Policies and ethics