Skip to main content

Modern Approaches for Microorganisms’ Identification

  • Reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

Microorganisms are predominantly single-cell organisms that have a direct impact on the life quality of human being. The ability of microorganisms to transform matter in a way that is impossible or very expensive to reproduce using chemical technologies is a reason for bacteria utilization in food, pharmaceutical, cosmetic, etc. industries. Moreover, the annual significant number of illnesses and deaths of both humans and animals caused by bacterial pathogens makes them one of the most important agents in which propagation should be controlled constantly. The continuous development of more sophisticated techniques makes it possible to identify microorganisms in a shorter time and with higher reliability, so it contributes to better adjustment of patients’ treatment or technological processes control in which microorganisms are involved. Thus, this section is prepared to familiarize readers with techniques and approaches that presently are utilized in laboratory practice for distinguishing microorganisms. It starts from the conventional techniques such as microscopy or the determination of biochemical profiles of bacteria, which are still widely exploited in the routine clinical diagnostics and industry. Further, more advanced methods to which automatic systems based on biochemical profiling, chromatography techniques, molecular biology techniques, as well as MALDI-TOF MS analysis can be accounted. Finally, the great potential of microarrays and separation techniques in the identification of the microorganisms has been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parker, N., Schneegurt, M., Thi Tu, A.-H., et al. (2016). Microbiology. OpenStax, Rice University.

    Google Scholar 

  2. Buszewski, B., Rogowska, A., Pomastowski, P., et al. (2017). Identification of microorganisms by modern analytical techniques. Journal of AOAC International, 100(6), 1607–1623.

    Article  CAS  PubMed  Google Scholar 

  3. Kumar, S. (2012). Textbook of microbiology. Jaypee Brothers Medical Publishers (P) Ltd.

    Book  Google Scholar 

  4. Vandeppity, J., Verhaegen, J., Engbaek, K., et al. (2003). Basic laboratory procedures in clinical bacteriology (2nd ed.). World Health Organization.

    Google Scholar 

  5. Parija, S. C. (2012). Microbiology and immunology (2nd ed.). Elsevier, a Division of Reed Elsevier India Private Limited.

    Google Scholar 

  6. Armstrong, D. W., Schneiderheinze, J. M., Kullman, J. P., et al. (2001). Rapid CE microbial assays for consumer products that contain active bacteria. FEMS Microbiology Letters, 194(1), 33–37.

    Article  CAS  PubMed  Google Scholar 

  7. Šalplachta, J., Kubesová, A., Moravcová, D., et al. (2013). Use of electrophoretic techniques and MALDI–TOF MS for rapid and reliable characterization of bacteria: Analysis of intact cells, cell lysates, and “washed pellets”. Analytical and Bioanalytical Chemistry, 405(10), 3165–3175.

    Article  PubMed  CAS  Google Scholar 

  8. Dziubakiewicz, E., & Buszewski, B. (2014). Capillary electrophoresis of microbial aggregates. Electrophoresis, 35(8), 1160–1164.

    Article  CAS  PubMed  Google Scholar 

  9. Desai, M. J., & Armstrong, D. W. (2003). Separation, Identification, and Characterization of Microorganisms by Capillary Electrophoresis. Microbiology and Molecular Biology Reviews, 67(1), 38–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Horká, M., Šlais, K., Šalplachta, J., et al. (2017). Preparative isoelectric focusing of microorganisms in cellulose-based separation medium and subsequent analysis by CIEF and MALDI-TOF MS. Analytica Chimica Acta, 990, 185–193.

    Article  PubMed  CAS  Google Scholar 

  11. Talaiekhozani, A., Alaee, S., & Mohanadoss, P. (2015). Guidelines for quick application of biochemical tests to identify unknown bacteria. Accounts of Biotechnology Research, 2(2), 64–82.

    Google Scholar 

  12. Innovation. The magazine from Carl Zeiss, 15, 2005.

    Google Scholar 

  13. Stuart, H. (2005). Essential microbiology. Wiley.

    Google Scholar 

  14. Cappuccino, J. G., & Sherman, N. (1999). Microbiology. A laboratory manual (5th ed.). Benjamin/Cummings Science Publishing.

    Google Scholar 

  15. Sousa, A. M., Machado, I., Nicolau, A., et al. (2013). Improvements on colony morphology identification towards bacterial profiling. Journal of Microbiological Methods, 95(3), 327–335.

    Article  PubMed  Google Scholar 

  16. Akter, M. L., Haque, R., & Salam, M. A. (1969). Comparative evaluation of chromogenic agar medium and conventional culture system for isolation and presumptive identification of uropathogens. Pakistan Journal of Medical Sciences, 30(5).

    Google Scholar 

  17. Olsen, J. E., Brown, D. J., Skov, M. N., et al. (1993). Bacterial typing methods suitable for epidemiological analysis. Applications in investigations of salmonellosis among livestock. Veterinary Quarterly, 15(4), 125–135.

    Article  CAS  PubMed  Google Scholar 

  18. Tarasiuk, K., & Truszczynski, M. (1995). Znaczenie fenotypowych i genotypowych metod klasyfikacji bakterii w epidemiologii i zwalczaniu chorob zakaznych. Medycyna Weterynaryjna, 51(6), 323–326.

    Google Scholar 

  19. Van der Merwe, R. G., van Helden, P. D., Warren, R. M., et al. (2014). Phage-based detection of bacterial pathogens. Analyst, 139(11), 2617–2626.

    Article  PubMed  Google Scholar 

  20. Bahador, N., Baserisalehi, M., & Kapadnis, B. P. (2007). Application of phages. Research Journal of Microbiology, 2(5), 445–453.

    Article  Google Scholar 

  21. Karpiński, T. M., & Szkaradkiewicz, A. K. (2013). Characteristic of bacteriocines and their application. Polish Journal of Microbiology, 62(3), 223–235.

    Article  PubMed  Google Scholar 

  22. Kaur, B., Balgir, P. P., Mittu, B., et al. (2012). Isolation and In vitro characterization of anti- Gardnerella vaginalis bacteriocin producing Lactobacillus fermentum HV6b isolated from human vaginal ecosystem. International Journal of Fundamental Physical Sciences, 1(3), 41–50.

    Google Scholar 

  23. Busse, H.-J., Denner, E. B. M., & Lubitz, W. (1996). Classification and identification of bacteria: Current approaches to an old problem. Overview of methods used in bacterial systematics. Journal of Biotechnology, 47(1), 3–38.

    Article  CAS  PubMed  Google Scholar 

  24. Dickinson and Company. (2018). BD BBLTM crystal MIND and BBL crystal autoreader user’s manual. Becton.

    Google Scholar 

  25. Miller, M. J. (Ed.). (2013). Encyclopedia of rapid microbiological methods (Vol. 4). Davis Healthcare International Publishing, LLC, River Grove.

    Google Scholar 

  26. Zapata, A., & Ramirez-Arcos, S. (2015). A comparative study of McFarland turbidity standards and the Densimat photometer to determine bacterial cell density. Current Microbiology, 70(6), 907–909.

    Article  CAS  PubMed  Google Scholar 

  27. Stager, C. E., & Davis, J. R. (1992). Automated systems for identification of microorganisms. Clinical Microbiology Reviews, 5(3), 302–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O’Hara, C. M. (2005). Manual and automated instrumentation for identification of Enterobacteriaceae and other aerobic Gram-Negative Bacilli. Clinical Microbiology Reviews, 18(1), 147–162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Habermehl, K.-O. (Ed.). (1985). Rapid methods and automation in microbiology and immunology. Springer Verlag.

    Google Scholar 

  30. Ramírez-Guízar, S., Sykes, H., Perry, J. D., et al. (2017). A chromatographic approach to distinguish Gram-positive from Gram-negative bacteria using exogenous volatile organic compound metabolites. Journal of Chromatography. A, 150, 179–188.

    Google Scholar 

  31. Gorbach, S. L., Mayhew, J. W., Bartlett, J. G., et al. (1976). Rapid diagnosis of anaerobic infections by direct gas-liquid chromatography of clinical specimens. Journal of Clinical Investigation, 57, 478–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ladas, S., Arapakis, G., Malamou-Ladas, H., et al. (1979). Rapid diagnosis of anaerobic infections by gas-liquid chromatography. Journal of Clinical Pathology, 32, 1163–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garrity, G. (Ed.). (2005). Bergey’s manual of systematic bacteriology: Vol 2: The proteobacteria (2nd ed.). Springer US.

    Google Scholar 

  34. Coloe, P. J., Sinclair, A. J., Slattery, J. F., et al. (1984). Differentiation of Brucella ovis from Brucella abortus by gas-liquid chromatographic analysis of cellular fatty acids. Journal of Clinical Microbiology, 19(6), 896–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. French, G. L., Chan, C. Y., Cheung, S. W., et al. (1987). Diagnosis of pulmonary tuberculosis by detection of tuberculostearic acid in sputum by using gas chromatography-mass spectrometry with selected ion monitoring. The Journal of Infectious Diseases, 156(2), 356–362.

    Article  CAS  PubMed  Google Scholar 

  36. http://midi-inc.com/pages/about.html. Accessed 5 Nov 2020.

  37. Sasser, M. (2001). Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note, 10, 11–16.

    Google Scholar 

  38. Atawodi, S., Atawodi, J., & Dzikwi, A. (2011). Polymerase chain reaction: Theory, practice and application: A review. Sahel Medical Journal, 13(2).

    Google Scholar 

  39. Barghouthi, S. A. (2011). A universal method for the identification of bacteria based on general PCR primers. Indian Journal of Microbiology, 51(4), 430–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leitner, E., & Kessler, H. H. (2015). Broad-range PCR for the identification of bacterial and fungal pathogens from blood: A sequencing approach. Methods in Molecular Biology, 1237, 129–138.

    Article  CAS  PubMed  Google Scholar 

  41. Anderson, A. C., Sanunu, M., Schneider, C., et al. (2014). Rapid species-level identification of vaginal and oral lactobacilli using MALDI-TOF MS analysis and 16S rDNA sequencing. BMC Microbiology, 14(1), 312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Milanowski, M., Pomastowski, P., Railean-Plugaru, V., et al. (2017). Biosorption of silver cations onto Lactococcus lactis and Lactobacillus casei isolated from dairy products. PLoS One, 12(3), 1–23.

    Article  CAS  Google Scholar 

  43. Railean-Plugaru, V., Pomastowski, P., Meller, K., et al. (2017). Lactococcus lactis as a safe and inexpensive source of bioactive silver composites. Applied Microbiology and Biotechnology, 101(19), 7141–7153.

    Article  CAS  Google Scholar 

  44. Kostic, T., Butaye, P., & Schrenzel, J. (2009). Detection of highly dangerous pathogens: Microarray method for BSL 3 and BSL 4 agents. Wiley-VCH Verlag GmbH&Co KGaA.

    Book  Google Scholar 

  45. Cao, B., Li, R., Xiong, S., et al. (2011). Use of a DNA microarray for detection and identification of bacterial pathogens associated with fishery products. Applied and Environmental Microbiology, 77(23), 8219–8225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoffmann, E., & Stroobant, V. (2007). Mass spectrometry: Principles and applications (3rd ed.). Wiley.

    Google Scholar 

  47. Anhalt, J. P., & Fenselau, C. (1975). Identification of bacteria using mass spectrometry. Analytical Chemistry, 47(2), 219–225.

    Article  CAS  Google Scholar 

  48. Singhal, N., Kumar, M., Kanaujia, P. K., et al. (2015). MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Frontiers in Microbiology, 6791.

    Google Scholar 

  49. Pomastowski, P., Szultka-Młyńska, M., Kupczyk, W., et al. (2015). Evaluation of intact cell matrix-assisted laser desorption/ionization time of- flight mass spectrometry for capillary electrophoresis detection of controlled bacterial clumping. Journal of Analytical & Bioanalytical Techniques.

    Google Scholar 

  50. Buszewski, B., & Pomastowski, P. (2015). Wpływ heterogeniczności powierzchni biokoloidów na ich rozdzielanie elektroforetyczne. Wiadomości Chemiczne, 6, 99–10.

    Google Scholar 

  51. Sonntag Hans. (1982). Koloidy. PWN.

    Google Scholar 

  52. Oćwieja, M., Adamczyk, Z., Morga, M., et al. (2015). Silver particle monolayers – Formation, stability, applications. Advances in Colloid and Interface Science, 222, 530–563.

    Article  PubMed  CAS  Google Scholar 

  53. Kłodzińska, E., & Buszewski, B. (2009). Electrokinetic detection and characterization of intact microorganisms. Analytical Chemistry, 81(1), 8–15.

    Article  PubMed  CAS  Google Scholar 

  54. Pomastowski, P. P., Dziubakiewicz, E., & Buszewski, B. (2012). Potencjał zeta – jego rola i znaczenie. Analityka, 2(January 2016), 19–23.

    Google Scholar 

  55. Dziubakiewicz, E., & Buszewski, B. (2013). Principles of electromigration techniques. In B. Buszewski, E. Dziubakieicz, & M. Szumski (Eds.), Electromigration techniques (pp. 5–26). Springer-Verlag.

    Chapter  Google Scholar 

  56. Brody, J. R., & Kern, S. E. (2004). History and principles of conductive media for standard DNA electrophoresis. Analytical Biochemistry, 333(1), 1–13.

    Article  CAS  PubMed  Google Scholar 

  57. Glick, D. (Ed.). (1970). Methods of biochemical analysis. Wiley.

    Google Scholar 

  58. Chankvetadze, B. (1997). Capillary electrophoresis in chiral analysis. Wiley.

    Google Scholar 

  59. Kristle, T., Stutz, H., Wenz, C., et al. (2014). Principles and applications of capillary isoelectric focusing. Agient Technologies.

    Google Scholar 

  60. Buszewski, B., Król, A., Pomastowski, P., et al. (2019). Electrophoretic determination of Lactococcus lactis modified by zinc ions. Chromatographia, 82(1), 347–355.

    Article  CAS  Google Scholar 

  61. Szumski, M., Kłodzińska, E., & Buszewski, B. (2005). Separation of microorganisms using electromigration techniques. Journal of Chromatography. A, 1084(1–2), 186–193.

    Article  CAS  PubMed  Google Scholar 

  62. Buszewski, B., & Kłodzińska, E. (2008). Determination of pathogenic bacteria by CZE with surface-modified capillaries. Electrophoresis, 29(20), 4177–4184.

    Article  CAS  PubMed  Google Scholar 

  63. Armstrong, D. W., Schulte, G., Schneiderheinze, J. M., et al. (1999). Separating microbes in the manner of molecules. 1. Capillary electrokinetic approaches. Analytical Chemistry, 71(24), 5465–5469.

    Article  CAS  PubMed  Google Scholar 

  64. Buszewski, B., Szumski, M., Kłodzińska, E., et al. (2003). Separation of bacteria by capillary electrophoresis. Journal of Separation Science, 26(11), 1045–1049.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogusław Buszewski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pryshchepa, O. et al. (2022). Modern Approaches for Microorganisms’ Identification. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-95660-8_40

Download citation

Publish with us

Policies and ethics