Skip to main content

Enzyme-Linked Immunosorbent Assay (ELISA) Technique for Food Analysis

  • Chapter
  • First Online:
Techniques to Measure Food Safety and Quality

Abstract

Enzyme-linked immunosorbent assay (ELISA) techniques employ a highly sensitive and specific form of immunological reactions, and this technique shows wide applications in food analysis. The versatility functions of ELISA techniques render them suitable to detect specific constituents in food, including the natural components, pesticide, therapeutic agents, beneficial and spoilage microorganisms, and toxins. It is a convenient and reliable analysis tool for the detection and quantification of constituents related to food production and processing as well as food safety. The post-production of food products requires proper authenticity testing to ensure that their labeling does not falsify their adulterations. ELISA is also suitable to validate such food adulterations thereby providing the consumers to make diet choice. The most used ELISA techniques in the food industry include indirect, sandwich, and competitive ELISA that use both polyclonal and monoclonal antibodies as necessary. ELISA provides a suitable complementary approach in food analysis and minimizes the use of sophisticated, expensive, and time-consuming techniques by maintaining the sensitivity and reliability of this technique. Thus, the present chapter aims to present the basics of the ELISA technique and its application in food analysis. Its application can significantly contribute to the food industry in securing food quality control and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amchova, P., Kotolova, H., & Ruda-Kucerova, J. (2015). Health safety issues of synthetic food colorants. Regulatory Toxicology and Pharmacology, 73(3), 914–922.

    Article  CAS  PubMed  Google Scholar 

  2. Bender, A. E. (2016). Dictionary of nutrition and food technology. Amsterdam: Elsevier.

    Google Scholar 

  3. Hanaysha, J. (2016). Testing the effects of food quality, price fairness, and physical environment on customer satisfaction in fast food restaurant industry. Journal of Asian Business Strategy, 6(2), 31–40.

    Article  Google Scholar 

  4. Danezis, G. P., Tsagkaris, A. S., Camin, F., Brusic, V., & Georgiou, C. A. (2016). Food authentication: Techniques, trends & emerging approaches. TrAC Trends in Analytical Chemistry, 85, 123–132.

    Article  CAS  Google Scholar 

  5. Li, J., Maggadottir, S. M., & Hakonarson, H. (2016). Are genetic tests informative in predicting food allergy? Current Opinion in Allergy and Clinical Immunology, 16(3), 257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Muralidharan, S., Zhao, Y., Taylor, S. L., & Lee, N. A. (2017). Detection of food allergen residues by immunoassays and mass spectrometry (pp. 229–282). Food Allergy: Molecular and Clinical Practice: CRC Press.

    Google Scholar 

  7. Li, Y.-F., Sun, Y.-M., Beier, R. C., Lei, H.-T., Gee, S., Hammock, B. D., et al. (2017). Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review. TrAC Trends in Analytical Chemistry, 88, 25–40.

    Article  CAS  Google Scholar 

  8. Weng, X., Gaur, G., & Neethirajan, S. (2016). Rapid detection of food allergens by microfluidics ELISA-based optical sensor. Biosensors, 6(2), 24.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Voller, A., Bartlett, A., & Bidwell, D. (1978). Enzyme immunoassays with special reference to ELISA techniques. Journal of Clinical Pathology, 31(6), 507–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Asensio, L., González, I., García, T., & Martín, R. (2008). Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control, 19(1), 1–8.

    Article  CAS  Google Scholar 

  11. Lequin, R. M. (2005). Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clinical Chemistry, 51(12), 2415–2418.

    Article  CAS  PubMed  Google Scholar 

  12. Gan, S. D., & Patel, K. R. (2013). Enzyme immunoassay and enzyme-linked immunosorbent assay. The Journal of Investigative Dermatology, 133(9), e12.

    Article  CAS  PubMed  Google Scholar 

  13. Abbott, M., Hayward, S., Ross, W., Godefroy, S. B., Ulberth, F., Van Hengel, A. J., et al. (2010). Validation procedures for quantitative food allergen ELISA methods: Community guidance and best practices. Journal of AOAC International, 93(2), 442–450.

    Article  CAS  PubMed  Google Scholar 

  14. Suh, K. S., Chon, S., & Choi, E. M. (2017). Limonene protects osteoblasts against methylglyoxal-derived adduct formation by regulating glyoxalase, oxidative stress, and mitochondrial function. Chemico-biological Interactions, 278, 15–21.

    Article  CAS  PubMed  Google Scholar 

  15. Mansell, R. L., & Weiler, E. W. (1980). Radioimmunoassay for the determination of limonin in citrus. Phytochemistry, 19(7), 1403–1407.

    Article  CAS  Google Scholar 

  16. Barre, A., Caze-Subra, S., Gironde, C., Bienvenu, F., Bienvenu, J., & Rougé, P. (2015). Allergénicité des protéines édulcorantes. Revue Française d'Allergologie, 55(5), 363–371.

    Article  Google Scholar 

  17. Huxtable, R. (1992). The toxicology of alkaloids in foods and herbs. Handbook of Natural Toxins, 7, 237–262.

    Google Scholar 

  18. Robertson, J., & Stevens, K. (2017). Pyrrolizidine alkaloids: Occurrence, biology, and chemical synthesis. Natural Product Reports, 34(1), 62–89.

    Article  CAS  PubMed  Google Scholar 

  19. Hellenäs, K. E. (1986). A simplified procedure for quantification of potato glycoalkaloids in tuber extracts by hplc; comparison with ELISA and a colorimetric method. Journal of the Science of Food and Agriculture, 37(8), 776–782.

    Article  Google Scholar 

  20. Samarajeewa, U., Wei, C., Huang, T., & Marshall, M. (1991). Application of immunoassay in the food industry. Critical Reviews in Food Science & Nutrition, 29(6), 403–434.

    Article  CAS  Google Scholar 

  21. Bushway, R. J., & Ponnampalam, R. (1981). alpha.-Chaconine and. alpha.-solanine content of potato products and their stability during several modes of cooking. Journal of Agricultural and Food Chemistry, 29(4), 814–817.

    Article  CAS  Google Scholar 

  22. Ward, C., Franklin, J., & Morgan, M. (1988). Investigations into the visual assessment of ELISA end points: Application to determination of potato total glycoalkaloids. Food Additives & Contaminants, 5(4), 621–627.

    Article  CAS  Google Scholar 

  23. Shanthakumari, S., Mohan, V., & Britto, J. d. (2008). Nutritional evaluation and elimination of toxic principles in wild yam (Dioscorea spp.). Tropical and Subtropical Agroecosystems, 8(3).

    Google Scholar 

  24. Jordan, W. J. (2005). Enzyme-linked immunosorbent assay. In Medical biomethods handbook (pp. 419–427). New York: Springer.

    Chapter  Google Scholar 

  25. Huisjes, R., & Card, D. J. (2019). Methods for assessment of pantothenic acid (vitamin B5). In Laboratory assessment of vitamin status (pp. 173–179). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  26. Hansen, P. M., & Narvhus, J. A. (2016). Postharvest food technology for village operations. Food Security and Environmental Quality in the Developing World, 277.

    Google Scholar 

  27. Weiler, E. W. (1982). An enzyme-immunoassay for cis-(+)-abscisic acid. Physiologia Plantarum, 54(4), 510–514.

    Article  CAS  Google Scholar 

  28. Barthe, G. A., & Stewart, I. (1985). Enzyme immunoassay (EIA) of endogenous cytokinins in citrus. Journal of Agricultural and Food Chemistry, 33(2), 293–297.

    Article  CAS  Google Scholar 

  29. Atzorn, R., & Weiler, E. W. (1983). The immunoassay of gibberellins. Planta, 159(1), 1–6.

    Article  CAS  PubMed  Google Scholar 

  30. Mertens, R., & Weiler, E. W. (1983). Kinetic studies on the redistribution of endogenous growth regulators in gravireacting plant organs. Planta, 158(4), 339–348.

    Article  CAS  PubMed  Google Scholar 

  31. Sagee, O., Maoz, A., Mertens, R., Goren, R., & Riov, J. (1986). Comparison of different enzyme immunoassays for measuring indole-3-acetic acid in vegetative citrus tissues. Physiologia Plantarum, 68(2), 265–270.

    Article  CAS  Google Scholar 

  32. Harris, M. J., & Dugger, W. M. (1986). The occurrence of abscisic acid and abscisyl-β-D-glucopyranoside in developing and mature citrus fruit as determined by enzyme immunoassay. Plant Physiology, 82(2), 339–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bober, M. A., Milco, L. A., Miller, R. B., Mount, M., Wicks, B., & Kurth, M. J. (1989). A competitive enzyme-linked immunosorbent assay (ELISA) to detect retronecine and monocrotaline in vitro. Toxicon, 27(9), 1059–1064.

    Article  CAS  PubMed  Google Scholar 

  34. Valdimarsdottir, T., Glad, C., & Nair, B. M. (1989). A sandwich inhibition enzyme-linked immunosorbent assay of water-soluble pentosans in rye grain. Food Chemistry, 32(2), 81–97.

    Article  CAS  Google Scholar 

  35. Bonwick, G. A., & Smith, C. J. (2004). Immunoassays: Their history, development and current place in food science and technology. International Journal of Food Science & Technology, 39(8), 817–827.

    Article  CAS  Google Scholar 

  36. Rawat, S. (2015). Food spoilage: Microorganisms and their prevention. Asian Journal of Plant Science and Research, 5(4), 47–56.

    CAS  Google Scholar 

  37. Notermans, S., Dufrenne, J., & Soentoro, P. (1988). Detection of molds in nuts and spices: The mold colony count versus the enzyme linked immunosorbent assay (ELISA). Journal of Food Science, 53(6), 1831–1833.

    Article  Google Scholar 

  38. Klopmeyer, M., & Kelman, A. (1988). Use of monoclonal antibodies specific for pectate lyase as serological probes in the identification of soft rot Erwinia spp. Phytopathology, 78(11), 1430–1434.

    Article  Google Scholar 

  39. Goyal, S. M., & Cannon, J. L. (2006). Viruses in foods. New York: Springer.

    Book  Google Scholar 

  40. Uggla, A., & Nilsson, L. (1985). A solid phase immunoassay (DIG-ELISA) as a serodiagnostic tool in bovine and porcine toxoplasma gondii infection. Developments in Biological Standardization, 62, 37–42.

    CAS  PubMed  Google Scholar 

  41. Seawright, G. L., Despommier, D., Zimmermann, W., & Isenstein, R. S. (1983). Enzyme immunoassay for swine trichinellosis using antigens purified by immunoaffinity chromatography. The American Journal of Tropical Medicine and Hygiene, 32(6), 1275–1284.

    Article  CAS  PubMed  Google Scholar 

  42. Partoutomo, S., Tampubolon, M., & Hutchinson, G. (1983). A comparative study of enzyme-linked immunosorbent assay (ELISA), double immunodiffusion and immunoelectrophoresis in experimental prepatent Stephanurus dentatus infections of pigs. International Journal for Parasitology, 13(1), 45–49.

    Article  CAS  PubMed  Google Scholar 

  43. Sherman, D., & Gezon, H. (1980). Comparison of agar gel immunodiffusion and fecal culture for identification of goats with paratuberculosis. Journal of the American Veterinary Medical Association, 177(12), 1208–1211.

    CAS  PubMed  Google Scholar 

  44. Jones, L. M., Berman, D., Moreno, E., Deyoe, B., Gilsdorf, M., Huber, J., et al. (1980). Evaluation of a radial immunodiffusion test with polysaccharide B antigen for diagnosis of bovine brucellosis. Journal of Clinical Microbiology, 12(6), 753–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Anguita, G., Martín, R., García, T., Morales, P., Haza, A. I., González, I., et al. (1995). Indirect ELISA for detection of cows’ milk in ewes’ and goats’ milks using a monoclonal antibody against bovine β-casein. Journal of Dairy Research, 62(4), 655–659.

    Article  CAS  Google Scholar 

  46. Hurley, I. P., Coleman, R. C., Ireland, H. E., & Williams, J. H. (2004). Measurement of bovine IgG by indirect competitive ELISA as a means of detecting milk adulteration. Journal of Dairy Science, 87(3), 543–549.

    Article  CAS  PubMed  Google Scholar 

  47. Murphy, D. J., Cummins, I., & Kang, A. S. (1989). Immunological investigation of lipases in germinating oilseed rape, Brassica napus. Journal of the Science of Food and Agriculture, 47(1), 21–31.

    Article  CAS  Google Scholar 

  48. Brandon, D. L., & Bates, A. H. (1988). Definition of functional and antibody-binding sites on Kunitz soybean trypsin inhibitor isoforms using monoclonal antibodies. Journal of Agricultural and Food Chemistry, 36(6), 1336–1341.

    Article  CAS  Google Scholar 

  49. Dewey, F., MacDonald, M., Phillips, S., & Priestley, R. (1990). Development of monoclonal-antibody-ELISA and-DIP-STICK immunoassays for Penicillium islandicum in rice grains. Microbiology, 136(4), 753–760.

    CAS  Google Scholar 

  50. Dewey, F., Munday, C., & Brasier, C. (1989). Monoclonal antibodies to specific components of the Dutch elm disease pathogen Ophiostoma ulmi. Plant Pathology, 38(1), 9–20.

    Article  Google Scholar 

  51. Leach, J. E., & White, F. (1991). Molecular probes for disease diagnosis and monitoring. In Rice biotechnology (pp. 281–307). Oxon, United Kingdom: CAB International.

    Google Scholar 

  52. Stall, R. (1982). Xanthomonas campestris pv. citri detection and identification by enzyme-linked immunosorbent assay. Plant Disease, 231, 231–236.

    Google Scholar 

  53. Koenig, R., Lesemann, D. E., & Burgermetster, W. (1984). Beet necrotic yellow vein virus: Purification, preparation of antisera and detection by means of ELISA, and electro-blot immunoassay. Journal of Phytopathology, 111(3–4), 244–250.

    Article  Google Scholar 

  54. Jackson, S. G., Yip-Chuck, D. A., & Brodsky, M. H. (1986). Evaluation of the diagnostic application of an enzyme immunoassay for Clostridium perfringens type A enterotoxin. Applied and Environmental Microbiology, 52(4), 969–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bartholomew, B. A., Stringer, M., Watson, G., & Gilbert, R. (1985). Development and application of an enzyme linked immunosorbent assay for Clostridium perfringens type A enterotoxin. Journal of Clinical Pathology, 38(2), 222–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gibson, A. M., Modi, N., Roberts, T., Hambleton, P., & Melling, J. (1988). Evaluation of a monoclonal antibody-based immunoassay for detecting type B Clostridium botulinum toxin produced in pure culture and an inoculated model cured meat system. Journal of Applied Bacteriology, 64(4), 285–291.

    Article  CAS  Google Scholar 

  57. Ashton, A. C., Crowther, J. S., & Dolly, J. O. (1985). A sensitive and useful radioimmunoassay for neurotoxin and its haemagglutinin complex from Clostridium botulinum. Toxicon, 23(2), 235–246.

    Article  CAS  PubMed  Google Scholar 

  58. Shone, C., Wilton-Smith, P., Appleton, N., Hambleton, P., Modi, N., Gatley, S., et al. (1985). Monoclonal antibody-based immunoassay for type A Clostridium botulinum toxin is comparable to the mouse bioassay. Applied and Environmental Microbiology, 50(1), 63–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kimble, C., & Anderson, A. (1973). Rapid, sensitive assay for staphylococcal enterotoxin A by reversed immuno-osmophoresis. Applied Microbiology, 25, 693–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fey, H., Pfister, H., & Rüegg, O. (1984). Comparative evaluation of different enzyme-linked immunosorbent assay systems for the detection of staphylococcal enterotoxins A, B, C, and D. Journal of Clinical Microbiology, 19(1), 34–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Windemann, H., Lüthy, J., & Maurer, M. (1989). ELISA with enzyme amplification for sensitive detection of staphylococcal enterotoxins in food. International Journal of Food Microbiology, 8(1), 25–34.

    Article  CAS  PubMed  Google Scholar 

  62. Lapeyre, C., Janin, F., & Kaveri, S. (1988). Indirect double sandwich ELISA using monoclonal antibodies for detection of staphylococcal enterotoxins A, B, C1 and D in food samples. Food Microbiology, 5(1), 25–31.

    Article  CAS  Google Scholar 

  63. Schönwälder, H., Haaijman, J., Holbrook, R., intVELD, J. H., Notermans, S., Schäffers, I., et al. (1988). A collaborative study comparing three ELISA systems for detecting Staphylococcus aureus enterotoxin A in sausage extracts. Journal of Food Protection, 51(9), 680–684.

    Article  PubMed  Google Scholar 

  64. Tian, B., Bejhed, R. S., Svedlindh, P., & Strömberg, M. (2016). Blu-ray optomagnetic measurement based competitive immunoassay for Salmonella detection. Biosensors and Bioelectronics, 77, 32–39.

    Article  CAS  PubMed  Google Scholar 

  65. Schenk, F., Weber, P., Vogler, J., Hecht, L., Dietzel, A., & Gauglitz, G. (2018). Development of a paper-based lateral flow immunoassay for simultaneous detection of lipopolysaccharides of Salmonella serovars. Analytical and Bioanalytical Chemistry, 410(3), 863–868.

    Article  CAS  PubMed  Google Scholar 

  66. Magliulo, M., Simoni, P., Guardigli, M., Michelini, E., Luciani, M., Lelli, R., et al. (2007). A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157: H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. Journal of Agricultural and Food Chemistry, 55(13), 4933–4939.

    Article  CAS  PubMed  Google Scholar 

  67. Lambiri, M., Mavridou, A., Richardson, S., & Papadakis, J. (1990). Comparison of the TECRA Salmonella immunoassay with the conventional culture method. Letters in Applied Microbiology, 11(4), 182–184.

    Article  Google Scholar 

  68. Nakao, J., Talkington, D., Bopp, C., Besser, J., Sanchez, M., Guarisco, J., et al. (2018). Unusually high illness severity and short incubation periods in two foodborne outbreaks of Salmonella Heidelberg infections with potential coincident Staphylococcus aureus intoxication. Epidemiology & Infection, 146(1), 19–27.

    Article  CAS  Google Scholar 

  69. Mattingly, J. A., & Gehle, W. D. (1984). An improved enzyme immunoassay for the detection of Salmonella. Journal of Food Science, 49(3), 807–809.

    Article  Google Scholar 

  70. Mattingly, J., Butman, B., Plank, M., Durham, R., & Robison, B. (1988). Rapid monoclonal antibody-based enzyme-linked immunosorbent assay for detection of Listeria in food products. Journal-Association of Official Analytical Chemists, 71(3), 679–681.

    CAS  PubMed  Google Scholar 

  71. McLauchlin, J., & Pini, P. (1989). The rapid demonstration and presumptive identification of Listeria monocytogenes in food using monoclonal antibodies in a direct immunofluorescence test (DIFT). Letters in Applied Microbiology, 8(1), 25–27.

    Article  Google Scholar 

  72. Farber, J., Sanders, G., & Speirs, J. (1988). Methodology for isolation of Listeria from foods--a Canadian perspective. Journal-Association of Official Analytical Chemists, 71(3), 675–678.

    CAS  PubMed  Google Scholar 

  73. Hübner, I., Steinmetz, I., Obst, U., Giebel, D., & Bitter-Suermann, D. (1992). Rapid determination of members of the family Enterobacteriaceae in drinking water by an immunological assay using a monoclonal antibody against enterobacterial common antigen. Applied and Environmental Microbiology, 58(9), 3187–3191.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Holt, S. M., Hartman, P. A., & Kaspar, C. W. (1989). Enzyme-capture assay for rapid detection of Escherichia coli in oysters. Applied and Environmental Microbiology, 55(1), 229–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Annan-Prah, A., & Janc, M. (1988). Chicken-to-human infection with Campylobacter jejuni and Campylobacter coli: Biotype and serotype correlation. Journal of Food Protection, 51(7), 562–564.

    Article  CAS  PubMed  Google Scholar 

  76. Turner, N. W., Bramhmbhatt, H., Szabo-Vezse, M., Poma, A., Coker, R., & Piletsky, S. A. (2015). Analytical methods for determination of mycotoxins: An update (2009–2014). Analytica Chimica Acta, 901, 12–33.

    Article  CAS  PubMed  Google Scholar 

  77. Shan, S., Lai, W., Xiong, Y., Wei, H., & Xu, H. (2015). Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens. Journal of Agricultural and Food Chemistry, 63(3), 745–753.

    Article  CAS  PubMed  Google Scholar 

  78. El-Nakib, O., Pestka, J., & Chu, F. (1981). Determination of aflatoxin B1 in corn, wheat, and peanut butter by enzyme-linked immunosorbent assay and solid phase radioimmunoassay. Journal-Association of Official Analytical Chemists, 64(5), 1077–1082.

    CAS  PubMed  Google Scholar 

  79. Yao, H., Hruska, Z., & Di Mavungu, J. D. (2015). Developments in detection and determination of aflatoxins. World Mycotoxin Journal, 8(2), 181–191.

    Article  Google Scholar 

  80. Staack, R. F., & Maurer, H. H. (2000). New Bühlmann ELISA for determination of Amanitins in urine-Are there false positive results due to interferences with urine matrix, drugs or their metabolites? Toxichem Krimtech, 68, 68–71.

    Google Scholar 

  81. Baden, D. G., Mende, T. J., Walling, J., & Schultz, D. R. (1984). Specific antibodies directed against toxins of Ptychodiscus brevis (Florida's red tide dinoflagellate). Toxicon, 22(5), 783–789.

    Article  CAS  PubMed  Google Scholar 

  82. Chu, F. S., & Fan, T. (1985). Indirect enzyme-linked immunosorbent assay for saxitoxin in shellfish. Journal-Association of Official Analytical Chemists, 68(1), 13–16.

    CAS  PubMed  Google Scholar 

  83. He, K., Zhang, X., Wang, L., Du, X., & Wei, D. (2016). Production of a soluble single-chain variable fragment antibody against okadaic acid and exploration of its specific binding. Analytical Biochemistry, 503, 21–27.

    Article  CAS  PubMed  Google Scholar 

  84. Yang, Z., Luo, Q., Liang, Y., & Mazumder, A. (2016). Processes and pathways of ciguatoxin in aquatic food webs and fish poisoning of seafood consumers. Environmental Reviews, 24(2), 144–150.

    Article  Google Scholar 

  85. Lawrence, D. N., Enriquez, M. B., Lumish, R. M., & Maceo, A. (1980). Ciguatera fish poisoning in Miami. Journal of the American Medical Association, 244(3), 254–258.

    Article  CAS  PubMed  Google Scholar 

  86. Schlaeppi, J. M., Foery, W., & Ramsteiner, K. (1989). Hydroxyatrazine and atrazine determination in soil and water by enzyme-linked immunosorbent assay using specific monoclonal antibodies. Journal of Agricultural and Food Chemistry, 37(6), 1532–1538.

    Article  CAS  Google Scholar 

  87. Wie, S. I., & Hammock, B. D. (1982). Development of enzyme-linked immunosorbent assays for residue analysis of diflubenzuron and BAY SIR 8514. Journal of Agricultural and Food Chemistry, 30(5), 949–957.

    Article  CAS  Google Scholar 

  88. Newsome WH, Shields JB. A radioimmunoassay for benomyl and methyl 2-benzimidazolecarbamate on food crops. Journal of Agricultural and Food Chemistry 1981;29(2):220–2.

    Google Scholar 

  89. Newsome, W. H. (1985). An enzyme-linked immunosorbent assay for metalaxyl in foods. Journal of Agricultural and Food Chemistry, 33(3), 528–530.

    Article  CAS  Google Scholar 

  90. Schwalbe, M., Dorn, E., & Beyermann, K. (1984). Enzyme immunoassay and fluoroimmunoassay for herbicide diclofop-methyl. Journal of Agricultural and Food Chemistry, 32(4), 734–741.

    Article  CAS  Google Scholar 

  91. Medina, M. B. (1986). Direct radioimmunoassay of 17. beta.-estradiol in ether extracts of bovine sera. Journal of Agricultural and Food Chemistry, 34(6), 1046–1049.

    Article  CAS  Google Scholar 

  92. Amaral, J., Meira, L., Oliveira, M., & Mafra, I. (2016). Advances in authenticity testing for meat speciation. In Advances in food authenticity testing (pp. 369–414). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  93. Back, S.-Y., Do, J.-R., & Shon, D.-H. (2015). Development of Sandwich ELISA for the detection of pork in processed foods. Korean Journal of Food Science and Technology, 47(3), 401–404.

    Article  Google Scholar 

  94. Kumar, A., Kumar, R. R., Sharma, B. D., Gokulakrishnan, P., Mendiratta, S. K., & Sharma, D. (2015). Identification of species origin of meat and meat products on the DNA basis: A review. Critical Reviews in Food Science and Nutrition, 55(10), 1340–1351.

    Article  CAS  PubMed  Google Scholar 

  95. Hitchcock, C. H., Bailey, F. J., Crimes, A. A., Dean, D. A., & Davis, P. J. (1981). Determination of soya proteins in food using an enzyme-linked immunosorbent assay procedure. Journal of the Science of Food and Agriculture, 32(2), 157–165.

    Article  CAS  Google Scholar 

  96. Wang, Y., Li, Z., Pei, Y., Li, Q., Sun, Y., Yang, J., et al. (2017). Establishment of a lateral flow colloidal gold immunoassay strip for the rapid detection of soybean allergen β-conglycinin. Food Analytical Methods, 10(7), 2429–2435.

    Article  Google Scholar 

  97. Martin, R., Azcona, J. I., Casas, C., Hernandez, P. E., & Sanz, B. (1988). Sandwich ELISA for detection of pig meat in raw beef using antisera to muscle soluble proteins. Journal of Food Protection, 51(10), 790–798.

    Article  PubMed  Google Scholar 

  98. Kang'ethe, E., & Gathuma, J. (1987). Species identification of autoclaved meat samples using antisera to thermostable muscle antigens in an enzyme immunoassay. Meat Science, 19(4), 265–270.

    Article  CAS  PubMed  Google Scholar 

  99. Sawaya, W., Mameesh, M., El-Rayes, E., Husain, A., & Dashti, B. (1990). Detection of pork in processed meat by an enzyme-linked immunosorbent assay using antiswine antisera. Journal of Food Science, 55(2), 293–297.

    Article  Google Scholar 

  100. Ward, C., & Morgan, M. (1988). An immunoassay for determination of quinine in soft drinks. Food Additives & Contaminants, 5(4), 555–561.

    Article  CAS  Google Scholar 

  101. Berrini, A., Tepedino, V., Borromeo, V., & Secchi, C. (2006). Identification of freshwater fish commercially labelled “perch” by isoelectric focusing and two-dimensional electrophoresis. Food Chemistry, 96(1), 163–168.

    Article  CAS  Google Scholar 

  102. Mayer, H. (2005). Milk species identification in cheese varieties using electrophoretic, chromatographic and PCR techniques. International Dairy Journal, 15(6–9), 595–604.

    Article  CAS  Google Scholar 

  103. Grassi, S., Casiraghi, E., & Alamprese, C. (2018). Handheld NIR device: A non-targeted approach to assess authenticity of fish fillets and patties. Food Chemistry, 243, 382–388.

    Article  CAS  PubMed  Google Scholar 

  104. Mackie, I. (1996). Authenticity of fish. In Food authentication (pp. 140–170). New York: Springer.

    Chapter  Google Scholar 

  105. Renčová, E., Svoboda, I., & Necidova, L. (2000). Identification by ELISA of poultry, horse, kangaroo, and rat muscle specific proteins in heat-processed products. Veterinární Medicína, 45(12), 353–356.

    Google Scholar 

  106. Liu, L., Chen, F. C., Dorsey, J. L., & Hsieh, Y. H. P. (2006). Sensitive monoclonal antibody-based sandwich ELISA for the detection of porcine skeletal muscle in meat and feed products. Journal of Food Science, 71(1), M1–M6.

    Article  CAS  Google Scholar 

  107. Giovannacci, I., Guizard, C., Carlier, M., Duval, V., Martin, J. L., & Demeulemester, C. (2004). Species identification of meat products by ELISA. International Journal of Food Science & Technology, 39(8), 863–867.

    Article  CAS  Google Scholar 

  108. Rehbein, H., Sotelo, C. G., Perez-Martin, R. I., Chapela-Garrido, M.-J., Hold, G. L., Russell, V. J., et al. (2002). Differentiation of raw or processed eel by PCR-based techniques: Restriction fragment length polymorphism analysis (RFLP) and single strand conformation polymorphism analysis (SSCP). European Food Research and Technology, 214(2), 171–177.

    Article  CAS  Google Scholar 

  109. Cespedez, A., Garcia, T., Carrera, E., Gonzalez, I., Fernandez, A., Asensio, L., et al. (1999). Indirect enzyme-linked immunosorbent assay for the identification of sole (Solea solea), European plaice (Pleuronectes platessa), flounder (Platichthys flesus), and Greenland halibut (Reinhardtius hippoglossoides). Journal of Food Protection, 62(10), 1178–1182.

    Article  Google Scholar 

  110. Taylor, W. J., & Jones, J. L. (1992). An immunoassay for verifying the identity of canned sardines. Food and Agricultural Immunology, 4(3), 169–175.

    Article  Google Scholar 

  111. Fernández, A., García, T., Asensio, L., Rodríguez, M. Á., González, I., Lobo, E., et al. (2002). Identification of the clam species Ruditapes decussatus (grooved carpet shell), Venerupis rhomboides (yellow carpet shell) and Venerupis pullastra (pullet carpet shell) by ELISA. Food and Agricultural Immunology, 14(1), 65–71.

    Article  Google Scholar 

  112. Huang, T.-s., Marshall, M. R., Kao, K.-j., Otwell, W. S., & Wei, C.-i. (1995). Development of monoclonal antibodies for red snapper (Lutjanus campechanus) identification using enzyme-linked immunosorbent assay. Journal of Agricultural and Food Chemistry, 43(8), 2301–2307.

    Article  CAS  Google Scholar 

  113. Asensio, L., González, I., Rodríguez, M., Hernández, P., García, T., & Martín, R. (2003). Development of a monoclonal antibody for grouper (Epinephelus marginatus) and wreck fish (Polyprion americanus) authentication using an indirect ELISA. Journal of Food Science, 68(6), 1900–1903.

    Article  CAS  Google Scholar 

  114. Bottero, M. T., Civera, T., Anastasio, A., Turi, R. M., & Rosati, S. (2002). Identification of cow's milk in “buffalo” cheese by duplex polymerase chain reaction. Journal of Food Protection, 65(2), 362–366.

    Article  CAS  PubMed  Google Scholar 

  115. Lopez-Calleja, I. M., Gonzalez, I., Fajardo, V., Hernandez, P. E., Garcia, T., & Martin, R. (2007). Application of an indirect ELISA and a PCR technique for detection of cows’ milk in sheep's and goats’ milk cheeses. International Dairy Journal, 17(1), 87–93.

    Article  CAS  Google Scholar 

  116. Mears, R., & Shenton, A. (1973). Adulteration and characterization of orange and grapefruit juices. International Journal of Food Science & Technology, 8(4), 357–389.

    Article  CAS  Google Scholar 

  117. Sass-Kiss, A., & Sass, M. (2000). Immunoanalytical method for quality control of orange juice products. Journal of Agricultural and Food Chemistry, 48(9), 4027–4031.

    Article  CAS  PubMed  Google Scholar 

  118. Miraglia, M., Berdal, K., Brera, C., Corbisier, P., Holst-Jensen, A., Kok, E., et al. (2004). Detection and traceability of genetically modified organisms in the food production chain. Food and Chemical Toxicology, 42(7), 1157–1180.

    Article  CAS  PubMed  Google Scholar 

  119. Regulation (EC) No. 1830/2003 of the European Parliament and of the Council of 22 September 2003 concerning the traceability and labeling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms.

    Google Scholar 

  120. Lipp, M., Anklam, E., & Stave, J. W. (2000). Validation of an immunoassay for detection and quantitation of a genetically modified soybean in food and food fractions using reference materials: Interlaboratory study. Journal of AOAC International, 83(4), 919–927.

    Article  CAS  PubMed  Google Scholar 

  121. García-Cañas, V., Cifuentes, A., & González, R. (2004). Detection of genetically modified organisms in foods by DNA amplification techniques. Critical Reviews in Food Science and Nutrition, 44(6), 425–436.

    Article  PubMed  Google Scholar 

  122. Ehlermann, D. A. (2016). Particular applications of food irradiation: Meat, fish and others. Radiation Physics and Chemistry, 129, 53–57.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Feei Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sengupta, P., Wang, C.W., Ma, Z.F. (2021). Enzyme-Linked Immunosorbent Assay (ELISA) Technique for Food Analysis. In: Khan, M.S., Shafiur Rahman, M. (eds) Techniques to Measure Food Safety and Quality. Springer, Cham. https://doi.org/10.1007/978-3-030-68636-9_5

Download citation

Publish with us

Policies and ethics