Skip to main content

Electronic Tongue for Food Safety and Quality Assessment

  • Chapter
  • First Online:
Techniques to Measure Food Safety and Quality

Abstract

The sense of smell and taste play a fundamental role in human development and biosocial interactions. Taste is an important organoleptic property governing the assessment of food products. It is one of the prime factors determining the quality, market potential, and commercial success of foods. Thus, taste assessment is one of the most important quality control parameters for evaluating foods. The primary subjective method for taste measurement is generally by human panelists. However, the sensory method is very complicated to perform and analyze; it is variable depending on the panelists and conditions of assessment. In addition, it is time-consuming and thus difficult to include in the quality assessment in the food production line. Recruiting taste panelists and maintaining them can be highly difficult, especially when working with food products not preferred by the panelists. Furthermore, unsafe and toxic molecules are not allowed to be tested by the sensory method. Therefore, the analytical taste-sensing multichannel sensory system called as electronic tongue (also known as e-tongue or artificial tongue) could replace the sensory panelists. The concept of the electronic tongue is to measure a “fingerprint” of a sample allowing sensitive comparison in relation to the taste measurements. A sound basis for electronic tongues is provided by the extensive progress of developing well-known selective sensors, especially electrochemical and biological mimicking sensory systems of mammalians. The electronic tongue can be used for a wide range of food items to characterize, authenticate, quality evaluation, process monitoring, and quantitative analysis of foods. Thus, electronic tongue includes benefits like reducing reliance on human panel, and it could be rapid and used in the quality control in the food production line. This article briefly discusses the mechanism and application of electronic tongue with respect to food safety and quality assessment, and the contents would be highly useful to the food professionals working in the academic, research, and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Scampicchio, M., Ballabio, D., Arecchi, A., Cosio, S. M., & Mannino, S. (2008). Amperometric electronic tongue for food analysis. Microchimica Acta, 163, 11–21.

    Article  CAS  Google Scholar 

  2. Tahara, Y., & Toko, K. (2013). Electronic tongues–A review. IEEE Sensors Journal, 13(8).

    Google Scholar 

  3. Kimball, J. (2002). The sense of taste.

    Google Scholar 

  4. Riul, A., Jr., Dantas, C. A. R., Miyazaki, C. M., & Oliveira, O. N., Jr. (2010). Recent advances in electronic tongues. Analyst, 135, 2481–2495.

    Article  CAS  PubMed  Google Scholar 

  5. Nu’nez-Jaramillo, L., Ramírez-Lugo, L., Herrera-Morales, W., & Miranda, M. I. (2010). Taste memory formation: Latest advances and challenges. Behavioural Brain Research, 207(2), 232–248.

    Article  Google Scholar 

  6. Mattes, R. D. (2009). Oral thresholds and suprathreshold intensity ratings for free fatty acids on 3 tongue sites in humans: Implications for transduction mechanisms. Chemical Senses, 34(5), 415–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dockray, G. J. (2010). How the gut sends signals in response to food. International Dairy Journal, 20(4), 226–230.

    Article  CAS  Google Scholar 

  8. Heath, T. P., Melichar, J. K., Nutt, D. J., & Donaldson, L. F. (2006). Human taste thresholds are modulated by serotonin and noradrenaline. Journal of Neuroscience, 26(39).

    Google Scholar 

  9. Toko, K. (1998). A taste sensor. Measurement Science and Technology, 9, 1919–1936.

    Article  CAS  Google Scholar 

  10. Toko, K. (1996). Taste sensor with global selectivity. Materials Science and Engineering C, 4, 69–82.

    Article  Google Scholar 

  11. Toko, K., Matsuno, T., Yamafuji, K., Hayashi, K., Ikezaki, H., Sato, K., et al. (1994). Multichannel taste sensor using electrical potential changes in lipid membranes. Biosensors and Bioelectronics, 9, 359–364.

    Article  CAS  PubMed  Google Scholar 

  12. Burattia, S., Scampicchioa, M., & Pangerod, E. C. (2004). Characterization and classification of Italian Barbera wines by using an electronic nose and an amperometric electronic tongue. Analytica Chimica Acta, 525, 133–139.

    Article  Google Scholar 

  13. Wadehra, A., & Patil, P. (2016). Application of electronic tongue in food processing. Analytical Methods, 8, 474–480.

    Article  Google Scholar 

  14. Escuder-Gilaberta, L., & Perisb, M. (2010). Review: Highlights in recent applications of electronic tongues in food analysis. Analytica Chimica Acta, 665, 15–25.

    Article  Google Scholar 

  15. Viswanathan, S. (2011). In J. Gliński, J. Horabik, & J. Lipiec (Eds.), Nanomaterials in soil and food analysis (Encyclopedia of agrophysics). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  16. Legin, A., et al. (1999). Application of electronic tongue for quantitative analysis of mineral water and wine. Sensors and Actuators, 11(10–11), 814–820.

    CAS  Google Scholar 

  17. Katharina Woertz, C. T., Kleinebudde, P., & Breitkreutz, J. (2011). Taste sensing systems (electronic tongues) for pharmaceutical applications. International Journal of Pharmaceutics, 417, 256–271.

    Article  PubMed  Google Scholar 

  18. Science, F.o.B. The histology guide. University of Leeds: UK.

    Google Scholar 

  19. Spielman, A. I., Nagai, H., Sunavala, G., Dasso, M., Breer, H., Boekhoff, I., et al. (1996). Rapid kinetics of second messenger formation in bitter taste. American Journal of Physiology, 270(3), C926–C931.

    Article  CAS  Google Scholar 

  20. Hofer, D., Puschel, B., & Drenckhahn, D. (1996). Taste receptor-like cells in the rat gut identified by expression of alpha gustducin. Proceedings of the National Academy of Sciences, USA, 93, 6631–6634.

    Article  CAS  Google Scholar 

  21. Escuder-Gilabert, L., & Peris, M. (2010). Review: Highlights in recent applications of electronic tongues in food analysis. Analytica Chimica Acta, 665(1), 15–25.

    Article  CAS  PubMed  Google Scholar 

  22. Latha, R. S., & Lakshmi, P. K. (2012). Electronic tongue: An analytical gustatory tool. Journal of Advanced Pharmaceutical Technology & Research, 3(1), 3–8.

    Google Scholar 

  23. Vignesh Ramamoorthy, H., Natheem Mohamed, S., & Devi, D. S. (2014). E-Nose and E-Tongue: Applications and advances in sensor technology. Journal of NanoScience and Nanotechnology, 2(3).

    Google Scholar 

  24. Jain, H., Panchal, R., Pradhan, P., Patel, H., & Pasha, T. Y. (2010). Electronic tongue: A new taste sensor. International Journal of Pharmaceutical Sciences Review and Research, 5(2).

    Google Scholar 

  25. Patrik Ivarsson, C. K.-R., Winquist, F., & Lundström, I. (2001). A voltammetric electronic tongue. Analytica Chimica Acta, 426, 217.

    Google Scholar 

  26. Paolesse, R., Lvova, L., Nardis, S., Di Natale, C., D’Amico, A., & Lo Castro, F. (2008). Chemical images by porphyrin arrays of sensors. Microchimica Acta, 163, 103.

    Article  CAS  Google Scholar 

  27. Jordi Gallardo, S. A., & del Valle, M. (2005). Application of a potentiometric electronic tongue as a classification tool in food analysis. Talanta, 66, 1303–1309.

    Article  PubMed  Google Scholar 

  28. Boyko Iliev, M. L., Robertsson, L., & Wide, P. (2006). A fuzzy technique for food- and water quality assessment with an electronic tongue. Fuzzy Sets and Systems, 157, 1155–1168.

    Article  Google Scholar 

  29. Ciosek, P., & Wróblewski, W. (2007). Sensor arrays for liquid sensing--electronic tongue systems. Analyst, 132, 963.

    Article  CAS  PubMed  Google Scholar 

  30. Pioggia, G., Di Francesco, F., Ferro, M., Sorrentino, F., Salvo, P., & Ahluwalia, A. (2008). Characterization of a carbon nanotube polymer composite sensor for an impedimetric electronic tongue. Microchimica Acta, 163(1), 57–62.

    Article  CAS  Google Scholar 

  31. Edelmann, A., & Lendl, B. (2002). Toward the optical tongue: Flow-through sensing of tannin-protein interactions based on FTIR spectroscopy. Journal of the American Chemical Society, 124, 14741.

    Article  CAS  PubMed  Google Scholar 

  32. Legin, A., Rudnitskaya, A., & Vlasov, Y. (2002). Electronic tongues: Sensors, systems, application. Sensors and Actuators, 10(1), 143–188.

    CAS  Google Scholar 

  33. Sliwinska, M., Wiśniewska, P., Dymerski, T., Namieśnik, J., & Wardencki, W. (2014). Food analysis using artificial senses. Journal of Agriculture and Food Chemistry, 62, 1423–1448.

    Article  CAS  Google Scholar 

  34. Winquist, F., Krantz-Rückler, I. L., Östergren, K., & Skoglund, T. (2005). Food analysis using artificial senses. Sensors and Actuators, 299, 111–112.

    Google Scholar 

  35. Podrazka, M., Bączyńska, E., Kundys, M., Jeleń, P. S., & Nery, E. W. (2017). Electronic tongue—A tool for all tastes? Biosensors, 8(1), 3.

    Article  PubMed Central  Google Scholar 

  36. Dias, L. A., Peres, A. M., Vilas-Boas, M., Rocha, M. A., Estevinho, L., & Machado, A. A. S. C. (2008). An electronic tongue for honey classification. Microchimica Acta, 163, 97.

    Article  CAS  Google Scholar 

  37. Dias, L. A., Peres, A. M., Veloso, A. C. A., Reis, F. S., Vilas-Boasa, M., & Machado, A. A. S. C. (2009). An electronic tongue taste evaluation: Identification of goat milk adulteration with bovine milk. Sensors and Actuators B, 136, 209.

    Article  CAS  Google Scholar 

  38. Dias, L. G., Fernandes, A., Veloso, A. C. A., Machado, A. A. S. C., Pereira, J. A., & Peres, A. M. (2014). Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue. Food Chemistry, 160, 321–329.

    Article  CAS  PubMed  Google Scholar 

  39. Blanco, C. A., de la Fuente, R., Caballe, I., & Rodríguez-Méndezro, M. L. (2015). Beer discrimination using a portable electronic tongue based on screen-printed electrodes. Journal of Food Engineering, 157, 57–62.

    Article  CAS  Google Scholar 

  40. Nery, E. W., & Kubota, L. T. (2016). Integrated, paper-based potentiometric electronic tongue for the analysis of beer and wine. Analytica Chimica Acta, 918, 60–68.

    Article  CAS  PubMed  Google Scholar 

  41. Apetrei, I. M., & Apetrei, C. (2016). Application of voltammetric e-tongue for the detection of ammonia and putrescine in beef products. Sensors and Actuators B: Chemical, 234, 371–379.

    Article  CAS  Google Scholar 

  42. Gil, L., Barat, J. M., Escriche, I., Garcia-Breijo, E., Martínez-Máñez, R., & Soto, J. (2008). Application of electronic tongues in food processing. Microchimica Acta, 163, 121.

    Article  CAS  Google Scholar 

  43. Rodríguez-Méndez, M. L., Apetrei, C., & de Saja, J. A. (2008). Evaluation of the polyphenolic content of extra virgin olive oils using an array of voltammetric sensors. Electrochimica Acta, 53, 5867.

    Article  Google Scholar 

  44. Peris, M., & Escuder-Gilabert, L. (2013). On-line monitoring of food fermentation processes using electronic noses and electronic tongues: A review. Analytica Chimica Acta, 804, 29–36.

    Article  CAS  PubMed  Google Scholar 

  45. Ciosek, P., Buczkowska, A., Nery, E. W., Wroblewski, W., Zamojska-Jaroszewicz, A., & Szewczyk, K. (2009). Miniaturized flow-through sensor array for methane fermentation monitoring. 2009. Christchurch, New Zealand: IEEE Sensors.

    Book  Google Scholar 

  46. Deisingh, A. K., Stone, D. C., & Thompson, M. (2004). Applications of electronic noses and tongues in food analysis. International Journal of Food Science and Technology, 39, 587–604.

    Article  CAS  Google Scholar 

  47. Parra, V., Arrieta, A., Fernández-Escudero, J. A., Iñiguez, M., Rodríguez-Méndez, M. L., & de Saja, J. A. (2006). Recent advances in electronic tongues. Analytica Chimica Acta, 563, 229.

    Article  CAS  Google Scholar 

  48. Apetrei, I. M., & Apetrei, C. (2014). Detection of virgin olive oil adulteration using a voltammetric e-tongue. Computers and Electronics in Agriculture, 108, 148–154.

    Article  Google Scholar 

  49. Mishra, R. K. A., Alonso, G. A., Istamboulie, G., Bhand, S., & Marty, J.-L. (2015). Automated flow based biosensor for quantification of binary organophosphates mixture in milk using artificial neural network. Sensors and Actuators B: Chemical, 208, 228–237.

    Article  CAS  Google Scholar 

  50. Bueno, L., De Araujo, W. R., Salles, M. O., Kussuda, M. Y., & Paixão, T. R. L. C. (2014). Voltammetric electronic tongue for discrimination of milk adulterated with urea, formaldehyde and melamine. Chemosensors, 2, 251–266.

    Article  Google Scholar 

  51. Campos, I. M., Masot, R., Alcañiz, M., Gil, L., Soto, J., Vivancos, J. L., et al. (2010). Accurate concentration determination of anions nitrate, nitrite and chloride in minced meat using a voltammetric electronic tongue. Sensors and Actuators B: Chemical, 149, 71–78.

    Article  CAS  Google Scholar 

  52. Kaur, K. (2012). Tasting with an electronic tongue. AZO Sensors.

    Google Scholar 

  53. Peris, M., & Escuder-Gilabert, L. (2016). Electronic noses and tongues to assess food authenticity and adulteration. Trends in Food Science and Technology, 58, 40–54.

    Article  CAS  Google Scholar 

  54. Dias, L. A., Peres, A. M., Veloso, A. C. A., Reis, F. S., Vilas-Boas, M., & Machado, A. A. S. C. (2009). An electronic tongue taste evaluation: Identification of goat milk adulteration with bovine milk. Sensors and Actuators B: Chemical, 136(1), 209–217.

    Article  CAS  Google Scholar 

  55. Wadehra, A., & Patil, P. S. (2016). Application of electronic tongues in food processing. Analytical Methods, 8(3), 474–480.

    Article  Google Scholar 

  56. Winquist, F., et al. (1998). Monitoring of freshness of milk by an electronic tongue on the basis of voltammetry. Measurement Science and Technology, 9(12), 1937–1946.

    Article  CAS  Google Scholar 

  57. Wei, Z., Wang, J., & Zhang, X. (2013). Monitoring of quality and storage time of unsealed pasteurized milk by voltammetric electronic tongue. Electrochimica Acta, 88, 231–239.

    Article  CAS  Google Scholar 

  58. Ciosek, P., Brudzewski, K., & Wróblewski, W. (2006). Milk classification by means of an electronic tongue and SVM neural network. Measurement Science and Technology, 17, 1379.

    Article  CAS  Google Scholar 

  59. Wei, Z., & Wang, J. (2011). Detection of antibiotic residues in bovine milk by a voltammetric electronic tongue system. Analytica Chimica Acta, 694(1–2), 46–56.

    Article  CAS  PubMed  Google Scholar 

  60. Mottram, T., Rudnitskaya, A., Legin, A., Fitzpatrick, J. L., & Eckersall, P. D. (2007). Evaluation of a novel chemical sensor system to detect clinical mastitis in bovine milk. Biosensors and Bioelectronics, 22(11), 2689–2693.

    Article  CAS  PubMed  Google Scholar 

  61. Mabrook, M. F., Darbyshire, A. M., & Petty, M. C. (2005). Quality control of dairy products using single frequency admittance measurements. Measurement Science and Technology, 17(2), 275–280.

    Article  Google Scholar 

  62. Parra, V., Arrieta, Á. A., Fernández-Escudero, J.-A., Rodríguez-Méndez, M. L., & De Saja, J. A. (2006). Electronic tongue based on chemically modified electrodes and voltammetry for the detection of adulterations in wines. Sensors and Actuators B: Chemical, 118(1), 448–453.

    Article  CAS  Google Scholar 

  63. Legin, A., Rudnitskaya, A., Lvova, L., Vlasov, Y., Di Natale, C., & Amico, A. D. (2003). Evaluation of Italian wine by the electronic tongue: recognition, quantitative analysis and correlation with human sensory perception. Analytica Chimica Acta, 484, 33–44.

    Article  CAS  Google Scholar 

  64. Kirsanov, D., Mednova, O., Vietoris, V., Kilmartin, P. A., & Legin, A. (2012). Towards reliable estimation of an “electronic tongue” predictive ability from PLS regression models in wine analysis. Talanta, 90, 109–116.

    Article  CAS  PubMed  Google Scholar 

  65. Riul, A., de Sousa, H. C., Malmegrim, R. R., dos Santos, D. S., Jr., Carvalho, A. C. P. L. F., Fonseca, F. J., et al. (2004). Wine classification by taste sensors made from ultra-thin films and using neural networks. Sensors and Actuators B: Chemical, 98(1), 77–82.

    Article  CAS  Google Scholar 

  66. Chen, Q., Zhao, J., Guo, Z., & Wang, X. (2010). Determination of caffeine content and main catechins contents in green tea (Camellia sinensis L.) using taste sensor technique and multivariate calibration. Journal of Food Composition and Analysis, 23(4), 353–358.

    Article  CAS  Google Scholar 

  67. Peres, A. M., Dias, L. G., Barcelos, T. P., Morais, J. S., & Machado, A. A. S. C. (2009). An electronic tongue for juice level evaluation in non-alcoholic beverages. Procedia Chemistry, 1(1), 1023–1026.

    Article  CAS  Google Scholar 

  68. Beullens, K., Meszaros, P., Vermeir, S., Kirsanov, D., Legin, A., Buysens, S., et al. (2008). Analysis of tomato taste using two types of electronic tongues. Sensors and Actuators B: Chemical, 131(1), 10–17.

    Article  CAS  Google Scholar 

  69. Kantor, D. B., Hitka, G., Fekete, A., & Balla, C. (2008). Electronic tongue for sensing taste changes with apricots during storage. Sensors and Actuators B: Chemical, 131(1), 43–47.

    Article  CAS  Google Scholar 

  70. Rudnitskaya, A., Kirsanov, D., Legin, A., Beullens, K., Lammertyn, J., Nicolaï, B. M., et al. (2006). Analysis of apples varieties – Comparison of electronic tongue with different analytical techniques. Sensors and Actuators B: Chemical, 116(1), 23–28.

    Article  CAS  Google Scholar 

  71. Wei, Z., & Wang, J. (2013). The evaluation of sugar content and firmness of non-climacteric pears based on voltammetric electronic tongue. Journal of Food Engineering, 117(1), 158–164.

    Article  CAS  Google Scholar 

  72. Labrador, R. H., Masot, R., Alcañiz, M., Allende, D. B., Soto, J., Martínez-Máñez, R., et al. (2010). Prediction of NaCl, nitrate and nitrite contents in minced meat by using a voltammetric electronic tongue and an impedimetric sensor. Food Chemistry, 122(3), 864–870.

    Article  CAS  Google Scholar 

  73. Gil, L., Barat, J. M., Escriche, I., Garcia-Breijo, E., Martínez-Máñez, R., & Soto, J. (2008). An electronic tongue for fish freshness analysis using a thick-film array of electrodes. Microchimica Acta, 163(1), 121–129.

    Article  CAS  Google Scholar 

  74. Rodríguez-Méndez, M. L., Gay, M., Apetrei, C., & De Saja, J. A. (2009). Biogenic amines and fish freshness assessment using a multisensor system based on voltammetric electrodes. Comparison between CPE and screen-printed electrodes. Electrochimica Acta, 54(27), 7033–7041.

    Article  Google Scholar 

  75. Uyen Tran, T., Suzuki, K., Okadome, H., Homma, S., & Ohtsubo, K.-I. (2004). Analysis of the tastes of brown rice and milled rice with different milling yields using a taste sensing system. Food Chemistry, 88(4), 557–566.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohidus Samad Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nowshad, F., Khan, M.S. (2021). Electronic Tongue for Food Safety and Quality Assessment. In: Khan, M.S., Shafiur Rahman, M. (eds) Techniques to Measure Food Safety and Quality. Springer, Cham. https://doi.org/10.1007/978-3-030-68636-9_11

Download citation

Publish with us

Policies and ethics