Skip to main content

Electronic Noses and Tongue-Based Sensor Systems in Food Science

  • Chapter
  • First Online:
Nanosensing and Bioanalytical Technologies in Food Quality Control

Abstract

Food safety is a multifaceted term and also a predominant element in food and beverage industries. It ensures safe handling, storage, and preparation of food and drinks to prevent food-related illness and diseases. The worldwide significance of food safety is continuously growing. With the advent of new technologies, innovative methods are being developed for the identification, assessment, and monitoring of the foodborne hazards. Great technological advances are being made for the development of electronic nose (e-nose) and electronic tongue (E-tongue)-based sensors for food safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera T, Lozano J, Paredes JA, Alvarez FJ, Suarez JI (2012) Electronic nose based on independent component analysis combined with partial least squares and artificial neural networks for wine prediction. Sensors 12(6):8055–8072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aheto JH, Huang X, Tian X, Ren Y, Ernest B, Alenyorege EA, Dai C, Hongyang T, Xiaorui Z, Wang P (2020) Multi-sensor integration approach based on hyperspectral imaging and electronic nose for quantitation of fat and peroxide value of pork meat. Anal Bioanal Chem. https://doi.org/10.1007/s00216-019-02345-5

  • Ampuero S, Bosset J (2003) The electronic nose applied to dairy products: a review. Sens Actuators B 94(1):1–12

    Article  CAS  Google Scholar 

  • Apetrei C (2012) Novel method based on polypyrrole- modified sensors and emulsions for the evaluation of bitterness in extra virgin oils. Food Res Int 48(2):673–680

    Article  CAS  Google Scholar 

  • Apetrei IM, Apetrei C (2013) Voltammetric e- tongue for the quantification of total polyphenol content in olive oils. Food Res Int 54(2):2075–2082

    Article  CAS  Google Scholar 

  • Apetrei C, Ghasemi-Varnamkhasti M, Mirela Apetrei I (2016) Olive oil and combined electronic nose and tongue. In Electronic noses and tongues in food science, pp 277–289.

    Google Scholar 

  • Bai H, Shi GQ (2007) Gas sensors based on conducting polymers. Sensors 7(3):267–307

    Article  CAS  PubMed Central  Google Scholar 

  • Bajpai VK, Kamle M, Shukla S, Mahato DK, Chandra P, Hwang SK, Kumar P, Huh YS, Han YK (2018) Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Anal 26:1201–1214

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian S, Amamcharla J, Shin JE (2016) Possible application of electronic nose systems for meat safety: an overview. In Electronic noses and tongues in food sciences, pp 59–71.

    Google Scholar 

  • Baskar C, Nesakumar N, Rayappan JBB, Doraipandian M (2017) A framework for analysing E-nose data based on fuzzy set multiple linear regression: Paddy quality assessment. Sens Actuators A Phys 267:200–209

    Article  CAS  Google Scholar 

  • Boeker P (2014) On ‘electronic nose’ methodology. Sens Actuators B 204:2–17

    Article  CAS  Google Scholar 

  • Boskou D (ed) (2006) Olive oil chemistry and technology, 2nd edn. AOCS Press, Champaign, IL

    Google Scholar 

  • Buratti S, Benedetti S, Giovanelli G (2016) Application of electronic senses to characterize espresso coffees brewed with different thermal profiles. Eur Food Res Technol 243(3):511–520

    Article  Google Scholar 

  • Buratti S, Malegori C, Benedetti S, Oliveri P (2018) E-nose, e-tongue and e-eye for edible olive oil characterization and shelf life assessment: a powerful data fusion approach. Talanta 182:131–141

    Article  CAS  PubMed  Google Scholar 

  • Carolina Torres A, Barsan MM, Brett CMA (2014) Simple electrochemicalsensor for caffeine based on carbon and Nafion-modified carbon electrodes. Food Chem 149:215–220

    Article  CAS  PubMed  Google Scholar 

  • Casio MS, Ballabio D, Benedetti S, Gigliotti C (2007) Evaluation of different storage conditions of extra virgin olive oils with an innovative recognition tool built by means of electronic nose and electronic tongue. Food Chem 101(2):485–491

    Article  Google Scholar 

  • Chandra P (2016) Nanobiosensors for personalized and onsite biomedical diagnosis. In Nanobiosensors for personalized and onsite biomedical diagnosis.

    Google Scholar 

  • Cheeke JDN, Wang Z (1999) Acoustic wave gas sensors. Sens Actuators B 59(2–3):146–153

    Article  CAS  Google Scholar 

  • Chodavarapu VP, Shubin DO, Bukowski RM, Titus AH, Cartwright AN, Bright FV (2007) CMOS based phase fluorometric oxygen sensor system. IEEE Trans Circuits Syst I: Regul Pap 54(1):111–118

    Article  Google Scholar 

  • Ciosek P, Wróblewski W (2007) Sensor arrays for liquid sensing—electronic tongue systems. Analyst 132:963–978

    Article  CAS  PubMed  Google Scholar 

  • Craven MA, Gardner JW, Bartlett PN (1996) Electronic noses-development and future prospects. Trends Anal Chem 15(9):486–493

    Article  CAS  Google Scholar 

  • Dutta R, Hines EL, Gardner JW, Kashwan KR, Bhuyan M (2003) Tea quality prediction using a tin oxide-based electronic nose: an artificial intelligence approach. Sens Actuators B 94:228–237

    Article  CAS  Google Scholar 

  • Dymerski TM, Chmiel TM, Wardencki W (2011) Invited review article: an odor-sensing system-powerful technique for foodstuff studies. Rev Sci Instrum 82(11):111101

    Article  CAS  PubMed  Google Scholar 

  • Esfahani S, Covington JA (2017) Low cost optical electronic nose for biomedical applications. Proceedings 1(4):589

    Google Scholar 

  • Feng H, Zhang M, Liu P, Liu Y, Zhang X (2020) Evaluation of IoT-enabled monitoring and electronic nose spoilage detection for salmon freshness during cold storage. Food 9(11):1579

    Article  Google Scholar 

  • Ghasemi-Varnamkhasti M, Mohtasebi SS, Siadat M, Razavi SH, Ahmadi H, Dicko A (2012) Discriminatory power assessment of the sensor array of an electronic nose system for the detection of non-alcoholic beer aging. Czech J Food Sci 30:236–240

    Article  Google Scholar 

  • Gila DMM, Garcia JG, Bellincontro A, Mencarelli F, Ortega JG (2020) Fast tool based on electronic nose to predict olive fruit quality after harvest. Postharvest Biol Technol 160:111058

    Article  Google Scholar 

  • Giungato P, Laiola E, Nicolardi V (2017) Evaluation of industrial roasting degree of coffee beans by using an electronic nose and a stepwise backward selection of predictors. Food Anal Methods 10(10):3424–3433

    Article  Google Scholar 

  • Gliszczynska-Swiglo A, Chmielewski J (2017) Electronic nose as a tool for monitoring the authenticity of food: a review. Food Anal Methods 10:1800–1816

    Article  Google Scholar 

  • Haddi Z, Alami H, Bari NE, Tounsi M, Barhoumi H, Maaref M, Jaffrezic-Renault N, Bouchikhi B (2013) Electronic nose and tongue combination for improved classification of Moroccan virgin olive oil profiles. Food Res Int 54(2):1488–1498

    Article  CAS  Google Scholar 

  • Han F, Huang X, Aheto JH, Zhang D, Feng F (2020) Detection of beef adulterated with pork using a low-cost electronic nose based on colorimetric sensors. Foods 9(2):193

    Article  CAS  PubMed Central  Google Scholar 

  • Huang XH, Bai QS, Hu JG, Hou D (2017) A practical model of quartz crystal microbalance in actual applications. Sensors 17(8):1785

    Article  PubMed Central  Google Scholar 

  • Ismaila I, Hwang YH, Joo ST (2020) Low-temperature and long-time heating regimes on non-volatile compound and taste traits of beef assessed by the electronic tongue system. Food Chem 320:126656

    Article  Google Scholar 

  • Jiang H, Zhang M, Bhandaric B, Adhikari B (2018) Application of electronic tongue for fresh foods quality evaluation: a review. Food Rev Intl. https://doi.org/10.1080/87559129.2018.1424184

  • Karakaya D, Ulucan O, Turkan M (2020) Electronic nose and its applications: a survey. Int J Autom Comput. https://doi.org/10.1007/s11633-019-1212-9

  • Khoo WYH, Pumera M, Bonanni A (2013) Graphene platforms for the detection of caffeine in real samples. Anal Chim Acta 804:92–97

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Lee JH (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens Actuators B 192:607–627

    Article  CAS  Google Scholar 

  • Laref R, Losson E, Sava A, Adjallah K, Siadat M (2018) A comparison between SVM and PLS for E-nose based gas concentration monitoring. In Proceedings of IEEE International Conference on Industrial Technology, IEEE, Lyon, France, pp 1335–1339

    Google Scholar 

  • Leal RV, Quiming AXC, Villaverde JF, Yumang AN, Linsangan NB, Caya MVC (2019) Determination of schizophrenia using electronic nose via support vector machine. In Proceedings of the 9th International Conference on Biomedical Engineering and Technology, ACM, Tokyo, Japan, pp 13–17

    Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  CAS  Google Scholar 

  • Liu X, Cheng ST, Liu H, Hu S, Zhang DQ, Ning HS (2012) A survey on gas sensing technology. Sensors 12(7):9635–9665

    Article  PubMed  PubMed Central  Google Scholar 

  • Marek G, Dobrzanski B, Oniszczuk T, Combrzynski M, Cwikla D, Rusinek R (2020) Detection and differentiation of volatile compound profiles in roasted coffee arabica beans from different countries using an electronic nose and GC-MS. Sensors 20(7):2124

    Article  CAS  PubMed Central  Google Scholar 

  • Mersal GM (2012) Experimental and computational studies on the electrochemical oxidation of caffeine at pseudo carbon paste electrode and its voltammetric determination in different real samples. Food Anal Methods 5:520–529

    Article  Google Scholar 

  • Paup VD, Barnett SM, Diako C, Ross CF (2019) Detection of spicy compounds using the electronic tongue. J Food Sci. https://doi.org/10.1111/1750-3841.14709

  • Purohit B, Kumar A, Mahato K, Chandra P (2020a) Electrodeposition of metallic nanostructures for biosensing applications in health care. J Sci Res. https://doi.org/10.37398/jsr.2020.640109

  • Purohit B, Vernekar PR, Shetti NP, Chandra P (2020b) Biosensor nanoengineering: design, operation, and implementation for biomolecular analysis. Sensors Int 1:100040

    Article  Google Scholar 

  • Qi PF, Meng QH, Zeng M (2017) A CNN-based simplified data processing method for electronic noses. In Proceedings of ISOCS/IEEE International Symposium on Olfaction and Electronic Nose, IEEE, Montreal, Canada, pp 1–3

    Google Scholar 

  • Rodrigues N, Dias LG, Veloso ACA, Pereira JA, Peres AM (2016) Monitoring olive oils quality and oxidative resistance during storage using an electronic tongue. LWT 73:683–692

    Article  CAS  Google Scholar 

  • Romani S, Cevoli C, Fabbri A, Alessandrini L, Dalla Rosa M (2012) Evaluation of coffee roasting degree by using electronic nose and artificial neural network for off-line quality control. J Food Sci 77(9):C960–C965

    Article  CAS  PubMed  Google Scholar 

  • de Santos WJR, Santhiago M, Yoshida IVP, Kubota LT (2011) Novel electrochemical sensor for the selective recognition of chlorogenic acid. Anal Chim Acta 695(1-2):44–50

    Article  CAS  Google Scholar 

  • Tang CT, Huang CM, Tang KT, Chen H (2015) A scalable and adaptable probabilistic model embedded in an electronic nose for intelligent sensor fusion. In Proceedings of IEEE Biomedical Circuits and Systems Conference, IEEE, Atlanta, USA

    Google Scholar 

  • Teixeira GG, Dias LG, Rodrigues N, Marx IMG, Veloso ACA, Pereira A, Peres AM (2021) Application of a lab-made electronic nose for extra virgin olive oils commercial classification according to the perceived fruitiness intensity. Talanta 226:122122

    Article  CAS  PubMed  Google Scholar 

  • Thazin Y, Pobkrut T, Kerdcharoen T (2018) Prediction of acidity levels of fresh roasted coffees using e-nose and artificial neural network. In Proceedings of the 10th International Conference on Knowledge and Smart Technology, IEEE, Chiang Mai, Thailand, pp 210–215

    Google Scholar 

  • Tian XJ, Wang J, Cui SQ (2013) Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors. J Food Eng 119(4):744–749

    Article  CAS  Google Scholar 

  • Turner NW, Bloxham M, Piletsky SA, Whitcombe MJ, Chianella I (2017) The use of a quartz crystal microbalance as an analytical tool to monitor particle/surface and particle/particle interactions under dry ambient and pressurized conditions: A study using common inhaler components. Analyst 142(1):229–236

    Article  CAS  Google Scholar 

  • Tyszczuk-Rotko K, Beczkowska I (2015) Nafion covered lead film electrode for the voltammetric determination of caffeine in beverage samples and pharmaceutical formulations. Food Chem 172:24–29

    Article  CAS  PubMed  Google Scholar 

  • Vlasov Y, Legin A, Rudnitskaya A, Di Natale C, D’amico A (2005) Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids (IUPAC Technical Report). Pure Appl Chem 77(11):1965–1983

    Article  CAS  Google Scholar 

  • Wang CX, Yin LW, Zhang LY, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3):2088–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei ZB, Xiao XZ, Wang J, Wang H (2017) Identification of the rice wines with different marked ages by electronic nose coupled with smartphone and cloud storage platform. Sensor 17(11):2500

    Article  PubMed Central  Google Scholar 

  • Wijaya DR, Sarno R, Zulaika E (2021) DWTLSTM for electronic nose signal processing in beef quality monitoring. Sens Actuators B 326:128931

    Article  CAS  Google Scholar 

  • Winquist F, Krantz-Rülcker C, Wide P, Lundström I (1998) Monitoring of freshness of milk by an electronic tongue on the basis of voltammetry. Meas Sci Technol 9:1937

    Article  CAS  Google Scholar 

  • Xu M, Wang J, Zhu L (2019) The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics. Food Chem 289:482–489

    Article  CAS  PubMed  Google Scholar 

  • Yan MY, Lu YQ, Chen DW (2015) Application of electronic nose in freshness evaluation of tilapia fillets as affected by ozone treatment. Food Sci Technol 36:265–269

    Google Scholar 

  • Yin X, Lv Y, Wen R, Wang Y, Chen Q, Kong B (2021) Characterization of selected Harbin red sausages on the basis of their flavour profiles using HS-SPME-GC/MS combined with electronic nose and electronic tongue. Meat Sci 172:108345

    Article  CAS  PubMed  Google Scholar 

  • Zaukuu JLZ, Gillay Z, Kovacs Z (2021) Standardized extraction techniques for meat analysis with the electronic tongue: a case study of poultry and red meat adulteration. Sensors 21(2):481

    Article  PubMed Central  Google Scholar 

  • Zhang L, Hu Y, Wang Y, Kong B, Chen Q (2021) Evaluation of the flavour properties of cooked chicken drumsticks as affected by sugar smoking times using an electronic nose, electronic tongue, and HS-SPME/GC-MS. LWT 140:110764

    Article  CAS  Google Scholar 

  • Zou Y, Wan H, Zhang X, Ha D, Wang P (2015) Electronic nose and electronic tongue. In Bioinspired smell and taste sensors, pp 19–44. https://doi.org/10.1007/978-94-017-7333-1_2

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, G., Bhari, R., Kumar, K. (2022). Electronic Noses and Tongue-Based Sensor Systems in Food Science. In: Chandra, P., Panesar, P.S. (eds) Nanosensing and Bioanalytical Technologies in Food Quality Control. Springer, Singapore. https://doi.org/10.1007/978-981-16-7029-9_13

Download citation

Publish with us

Policies and ethics