Skip to main content

Non-invasive Brain–Computer Interfaces for Control of Grasp Neuroprosthesis: The European MoreGrasp Initiative

  • Chapter
  • First Online:
Neuroprosthetics and Brain-Computer Interfaces in Spinal Cord Injury

Abstract

Restoration of grasping has the highest priority for people with cervical spinal cord injury (SCI). This chapter describes the non-invasive brain–computer interface (BCI)-controlled grasp neuroprosthesis developed within the European Horizon 2020 project MoreGrasp. Based on former projects of the collaborators, several innovative technologies were developed within the MoreGrasp project with the aim to achieve an intuitive thought-controlled restoration of hand function in end users with tetraplegia for supporting activities of daily living. The end users in the focus of this project have been people with sufficiently preserved elbow and shoulder movements, but missing hand and finger functions.

In particular, within MoreGrasp a novel, closed-loop upper limb grasp neuroprosthesis was developed which could be controlled by different multimodal control options, namely user-friendly BCIs based on gel-less electrodes and wireless electroencephalogram (EEG) amplifiers using natural movement attempt strategies, a shoulder joystick and instrumented objects. All these control modalities could be tailored to the end users’ needs and capabilities. Furthermore, a web-based service infrastructure for registration, assessment, and training of end users was developed. It assisted experimenters as well as end users in prototype assessment and operation. Finally, a clinical study involving end users with tetraplegia evaluating the MoreGrasp technology at their homes was initiated. The first results obtained and the lessons learned are provided at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agashe HA, Paek AY, Zhang Y, Contreras-Vidal JL (2015) Global cortical activity predicts shape of hand during grasping. Front Neurosci 9:121

    Article  Google Scholar 

  • Anderson KD (2004) Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma 21(10):1371–1383

    Article  Google Scholar 

  • ASIA and ISCoS International Standards Committee (2019) The 2019 revision of the international standards for neurological classification of spinal cord injury (ISNCSCI)—what’s new? Spinal Cord 57:815–817. https://doi.org/10.1038/s41393-019-0350-9

    Article  Google Scholar 

  • Blokland Y, Vlek R, Karaman B, Özin F, Thijssen D, Eijsvogels T, Colier W, Floor-Westerdijk M, Bruhn J, Farquhar J (2012) Detection of event-related desynchronization during attempted and imagined movements in tetraplegics for brain switch control. In: Conference Proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 2012. IEEE, San Diego, CA, pp 3967–3969

    Chapter  Google Scholar 

  • Carlson T, Monnard G, Leeb R, del Millan J (2011) Evaluation of proportional and discrete shared control paradigms for low resolution user inputs. In: 2011 IEEE International conference on systems, man, and cybernetics. IEEE, New York. https://doi.org/10.1109/icsmc.2011.6083812

    Chapter  Google Scholar 

  • Dremstrup K, Niazi IK, Jochumsen M, Jiang N, Mrachacz-Kersting N, Farina D (2014) Rehabilitation using a brain computer interface based on movement related cortical potentials—a review. In: IFMBE Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-319-00846-2_409

    Chapter  Google Scholar 

  • Friedrich EVC, Neuper C, Scherer R (2013) Whatever works: a systematic user-centered training protocol to optimize brain-computer interfacing individually. PLoS One 8(9):e76214

    Article  CAS  Google Scholar 

  • Iturrate I, Chavarriaga R, Pereira M, Zhang H, Corbet T, Leeb R, Millán JDR (2018) Human EEG reveals distinct neural correlates of power and precision grasping types. NeuroImage 181:635–644

    Article  Google Scholar 

  • Jochumsen M, Niazi IK, Mrachacz-Kersting N, Farina D, Dremstrup K (2013) Detection and classification of movement-related cortical potentials associated with task force and speed. J Neural Eng 10(5):056015

    Article  Google Scholar 

  • Kornhuber HH, Deecke L (1965) Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere 284:1–17. https://doi.org/10.1007/bf00412364

    Article  CAS  Google Scholar 

  • Kreilinger A, Kaiser V, Rohm M, Rupp R, Müller-Putz GR (2013) BCI and FES training of a spinal cord injured end-user to control a neuroprosthesis. Biomed Eng 58:1. https://doi.org/10.1515/bmt-2013-4443

    Article  Google Scholar 

  • Leclercq C, Lemouel M-A, Albert T (2005) Chirurgische funktionsverbesserung an der oberen extremität von tetraplegikern. Handchirurgie\Textperiodcentered Mikrochirurgie\Textperiodcentered Plastische Chirurgie 37(04):230–237

    Article  CAS  Google Scholar 

  • López-Larraz E, Montesano L, Gil-Agudo Á, Minguez J (2014) Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates. J Neuroeng Rehabilit 11:153

    Article  Google Scholar 

  • Medical Research Council, Nerve Injuries Committee; University of Edinburgh, Department of Surgery (1943) Aids to investigation of peripheral nerve injuries. Medical Research Council memorandum no. 7. Her Majesty’s Stationary Office, London

    Google Scholar 

  • Müller-Putz GR, Scherer R, Pfurtscheller G, Rupp R (2005) EEG-based neuroprosthesis control: a step towards clinical practice. Neurosci Lett 382:169–174. https://doi.org/10.1016/j.neulet.2005.03.021

    Article  CAS  PubMed  Google Scholar 

  • Muller-Putz G, Leeb R, Tangermann M, Hohne J, Kubler A, Cincotti F, Mattia D, Rupp R, Muller K-R, del Millan J (2015) Towards noninvasive hybrid brain–computer interfaces: framework, practice, clinical application, and beyond. Proc IEEE 103:926–943. https://doi.org/10.1109/jproc.2015.2411333

    Article  Google Scholar 

  • Muller-Putz GR, Ofner P, Pereira J, Pinegger A, Schwarz A, Zube M, Eck U, Hessing B, Schneiders M, Rupp R (2019) Applying intuitive EEG-controlled grasp neuroprostheses in individuals with spinal cord injury: preliminary results from the MoreGrasp clinical feasibility study. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Berlin. https://doi.org/10.1109/embc.2019.8856491

    Chapter  Google Scholar 

  • Müller-Putz GR, Ofner P, Pereira J, Pinegger A, Schwarz A, Zube M, Eck U, Hessing B, Schneiders M, Rupp R (2019) Applying intuitive EEG-controlled grasp neuroprostheses in individuals with spinal cord injury: preliminary results from the MoreGrasp clinical feasibility study. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Berlin, pp 5949–5955

    Chapter  Google Scholar 

  • Niazi IK, Jiang N, Tiberghien O, Nielsen JF, Dremstrup K, Farina D (2011) Detection of movement intention from single-trial movement-related cortical potentials. J Neural Eng 8(6):066009

    Article  Google Scholar 

  • Oda S, Moritani T (1995) Movement-related cortical potentials during handgrip contractions with special reference to force and electromyogram bilateral deficit. Eur J Appl Physiol Occup Physiol 72(1–2):1–5

    Article  CAS  Google Scholar 

  • Ofner P, Schwarz A, Pereira J, Müller-Putz GR (2017) Upper limb movements can be decoded from the time-domain of low-frequency EEG. PLoS One 12(8):e0182578

    Article  Google Scholar 

  • Ofner P, Schwarz A, Pereira J, Wyss D, Wildburger R, Müller-Putz GR (2019) Attempted arm and hand movements can be decoded from low-frequency EEG from persons with spinal cord injury. Sci Rep 9(1):7134

    Article  Google Scholar 

  • Omedes J, Schwarz A, Montesano L, Muller-Putz G (2017) Hierarchical decoding of grasping commands from EEG. In: Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society Conference 2017 (July). IEEE, Seogwipo, pp 2085–2088

    Google Scholar 

  • Pereira J, Ofner P, Schwarz A, Sburlea AI, Müller-Putz GR (2017) EEG neural correlates of goal-directed movement intention. NeuroImage 149:129–140

    Article  Google Scholar 

  • Pfurtscheller G (2010) The hybrid BCI. Front Neurosci. https://doi.org/10.3389/fnpro.2010.00003

  • Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rupp R (2003) ‘Thought’—Control of functional electrical stimulation to restore hand grasp in a patient with Tetraplegia. Neurosci Lett 351:33–36. https://doi.org/10.1016/s0304-3940(03)00947-9

    Article  CAS  PubMed  Google Scholar 

  • Pohl H, Murray-Smith R (2013) Focused and casual interactions. In: Proceedings of the SIGCHI conference on human factors in computing systems—CHI ’13. Association for Computing Machinery, New York. https://doi.org/10.1145/2470654.2481307

    Chapter  Google Scholar 

  • Rohm M, Schneiders M, Müller C, Kreilinger A, Kaiser V, Müller-Putz GR, Rupp R (2013) Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artif Intell Med 59(2):133–142

    Article  Google Scholar 

  • Rupp R, Rohm M, Schneiders M, Weidner N, Kaiser V, Kreilinger A, Müller-Putz GR (2013) Think2grasp—BCI-controlled neuroprosthesis for the upper extremity. Biomed Tech 58:1. https://doi.org/10.1515/bmt-2013-4440

    Article  Google Scholar 

  • Rupp R, Rohm M, Schneiders M, Kreilinger A, Müller-Putz GR (2015) Functional rehabilitation of the paralyzed upper extremity after spinal cord injury by noninvasive hybrid neuroprostheses. Proc IEEE 103(6):954–968

    Article  Google Scholar 

  • Schwarz A, Ofner P, Pereira J, Sburlea AI, Müller-Putz GR (2018) Decoding natural reach-and-grasp actions from human EEG. J Neural Eng 15(1):016005

    Article  Google Scholar 

  • Schwarz A, Pereira J, Kobler R, Muller-Putz GR (2019) Unimanual and bimanual reach-and-grasp actions can be decoded from human EEG. IEEE Trans Biomed Eng. https://doi.org/10.1109/tbme.2019.2942974

  • Schwarz A, Escolano C, Montesano L, Müller-Putz G (2020a) Analyzing and decoding natural reach-and-grasp actions using gel, water and dry EEG systems. Front Neurosci 14:849ff

    Article  Google Scholar 

  • Schwarz A, Höller MK, Pereira J, Ofner P, Müller-Putz GR (2020b) Decoding hand movements from human EEG to control a robotic arm in a simulation environment. J Neural Eng 17(3):036010

    Article  Google Scholar 

  • Schwarz A, Pereira J, Kobler R, Muller-Putz GR (2020c) Unimanual and bimanual reach-and-grasp actions can be decoded from human EEG. IEEE Trans Biomed Eng 67(6):1684–1695

    Article  Google Scholar 

  • Sheridan TB (2002) Some musings on four ways humans couple: implications for systems design. In: IEEE transactions on systems, man, and cybernetics—Part A: systems and humans. IEEE, New York. https://doi.org/10.1109/3468.995525

    Chapter  Google Scholar 

  • Shibasaki H, Hallett M (2006) What is the bereitschaftspotential? Clin Neurophysiol 117:2341–2356. https://doi.org/10.1016/j.clinph.2006.04.025

    Article  PubMed  Google Scholar 

  • Snoek GJ, IJzerman MJ, Hermens HJ, Maxwell D, Biering-Sorensen F (2004) Survey of the needs of patients with spinal cord injury: impact and priority for improvement in hand function in tetraplegics. Spinal Cord 42(9):526–532

    Article  CAS  Google Scholar 

  • Tonin L, Leeb R, Tavella M, Perdikis S, del Millan J (2010) The role of shared-control in BCI-based telepresence. In: 2010 IEEE International conference on systems, man and cybernetics. IEEE, Istanbul. https://doi.org/10.1109/icsmc.2010.5642338

    Chapter  Google Scholar 

  • van Zyl N, Hill B, Cooper C, Hahn J, Galea MP (2019) Expanding traditional tendon-based techniques with nerve transfers for the restoration of upper limb function in tetraplegia: a prospective case series. Lancet 394(10198):565–575

    Article  Google Scholar 

  • Williamson J, Murray-Smith R (2012) Rewarding the original. In: Proceedings of the 2012 ACM annual conference on human factors in computing systems—CHI ’12. Association for Computing Machinery, New York. https://doi.org/10.1145/2207676.2208301

    Chapter  Google Scholar 

  • Wuolle KS, Van Doren CL, Thrope GB, Keith MW, Peckham PH (1994) Development of a quantitative hand grasp and release test for patients with tetraplegia using a hand neuroprosthesis. J Hand Surg 19(2):209–218

    Article  CAS  Google Scholar 

  • Xu R, Jiang N, Vuckovic A, Hasan M, Mrachacz-Kersting N, Allan D, Fraser M et al (2014) Movement-related cortical potentials in paraplegic patients: abnormal patterns and considerations for BCI-rehabilitation. Front Neuroeng 7:35

    Article  Google Scholar 

  • Yang L, Yao L (2018) EEG neural correlates of self-paced left- and right-hand movement intention during a reaching task. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Honolulu. https://doi.org/10.1109/embc.2018.8512725

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Müller-Putz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Müller-Putz, G. et al. (2021). Non-invasive Brain–Computer Interfaces for Control of Grasp Neuroprosthesis: The European MoreGrasp Initiative. In: Müller-Putz, G., Rupp, R. (eds) Neuroprosthetics and Brain-Computer Interfaces in Spinal Cord Injury. Springer, Cham. https://doi.org/10.1007/978-3-030-68545-4_13

Download citation

Publish with us

Policies and ethics