Skip to main content

The Cingulate Cortex

  • Chapter
  • First Online:
The Neuropathology of Schizophrenia

Abstract

The cingulate cortex has been extensively examined. The unusual structural organisation of the cingulate cortex, covering a significant region and many Brodmann areas, is reflected in both its connections and the distribution of research focus. The anterior cingulate cortex, Brodmann area 24, includes the subgenual region and has been the overwhelming focus of post-mortem research. Whilst such issues as whole anterior cingulate volume are still inconclusive due to the heterogeneity of findings both from imaging and pathology, the number of high-quality studies showing neuronal, glial and synaptic change in the anterior cingulate seem to confirm that there is significant disruption in schizophrenia. Fine anatomical breakdown of the results also suggests support for cingulate disruption being focused on issues of connectivity with common findings of pathological alterations in layer V.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ide A, Dolezal C, Fernández M, Labbé E, Mandujano R, Montes S, Segura P, Verschae G, Yarmuch P, Aboitiz F. Hemispheric differences in variability of fissural patterns in parasylvian and cingulate regions of human brains. J Comp Neurol. 1999;410(2):235–42.

    Article  CAS  PubMed  Google Scholar 

  2. Palomero-Gallagher N, Zilles K, Schleicher A, Vogt BA. Cyto- and receptor architecture of area 32 in human and macaque brains. J Comp Neurol. 2013;521(14):3272–86.

    Article  CAS  PubMed  Google Scholar 

  3. Vogt BA. Midcingulate cortex: structure, connections, homologies, functions and diseases. J Chem Neuroanat. 2016;74:28–46.

    Article  CAS  PubMed  Google Scholar 

  4. Vogt BA, Absher JR, Bush G. Human retrosplenial cortex: where is it and is it involved in emotion? Trends Neurosci. 2000;23:195–7.

    Article  CAS  PubMed  Google Scholar 

  5. Vogt BA, Berger GR, Derbyshire SW. Structural and functional dichotomy of human midcingulate cortex. Eur J Neurosci. 2003;18(11):3134–44.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vogt BA, Vogt L, Laureys S. Cytology and functionally correlated circuits of human posterior cingulate areas. NeuroImage. 2006;29(2):452–66.

    Article  PubMed  Google Scholar 

  7. Brodmann K. Vergleichende lokalisationslehre der grobhirnrinde. Leipzig: Barth; 1909.

    Google Scholar 

  8. Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci. 2005;6(7):533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beckmann M, Johansen-Berg H, Rushworth MF. Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. J Neurosci. 2009;29(4):1175–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bortolon C, Macgregor A, Capdevielle D, Raffard S. Apathy in schizophrenia: a review of neuropsychological and neuroanatomical studies. Neuropsychologia. 2018;118(Pt B):22–33.

    Article  PubMed  Google Scholar 

  11. George MS, Ketter TA, Parekh PI, Horwitz B, Herscovitch P, Post RM. Brain activity during transient sadness and happiness in healthy women. Am J Psychiatry. 1995;152(3):341–51.

    Article  CAS  PubMed  Google Scholar 

  12. Kelley WM, Macrae CN, Wyland CL, Caglar S, Inati S, Heatherton TF. Finding the self? An event-related fMRI study. J Cogn Neurosci. 2002;14(5):785–94.

    Article  CAS  PubMed  Google Scholar 

  13. Kross E, Davidson M, Weber J, Ochsner K. Coping with emotions past: the neural bases of regulating affect associated with negative autobiographical memories. Biol Psychiatry. 2009;65(5):361–6.

    Article  PubMed  Google Scholar 

  14. Liotti M, Mayberg HS, Brannan SK, McGinnis S, Jerabek P, Fox PT. Differential limbic--cortical correlates of sadness and anxiety in healthy subjects: implications for affective disorders. Biol Psychiatry. 2000;48(1):30–42.

    Article  CAS  PubMed  Google Scholar 

  15. Luo Q, Mitchell D, Jones M, Mondillo K, Vythilingam M, Blair RJ. Common regions of dorsal anterior cingulate and prefrontal-parietal cortices provide attentional control of distracters varying in emotionality and visibility. NeuroImage. 2007;38(3):631–9.

    Article  PubMed  Google Scholar 

  16. Maguire EA. The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand J Psychol. 2001;42(3):225–38.

    Article  CAS  PubMed  Google Scholar 

  17. Paus T, Tomaiuolo F, Otaky N, MacDonald D, Petrides M, Atlas J, Morris R, Evans AC. Human cingulate and paracingulate sulci: pattern, variability, asymmetry, and probabilistic map. Cereb Cortex. 1996;6(2):207–14.

    Article  CAS  PubMed  Google Scholar 

  18. Picard N, Strick PL. Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex. 1996;6(3):342–53.

    Article  CAS  PubMed  Google Scholar 

  19. Picard N, Strick PL. Imaging the premotor areas. Curr Opin Neurobiol. 2001;11(6):663–72.

    Article  CAS  PubMed  Google Scholar 

  20. Pourtois G, Vocat R, N'Diaye K, Spinelli L, Seeck M, Vuilleumier P. Errors recruit both cognitive and emotional monitoring systems: simultaneous intracranial recordings in the dorsal anterior cingulate gyrus and amygdala combined with fMRI. Neuropsychologia. 2010;48(4):1144–59.

    Article  PubMed  Google Scholar 

  21. Rogers RD, Ramnani N, Mackay C, Wilson JL, Jezzard P, Carter CS, Smith SM. Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biol Psychiatry. 2004;55(6):594–602.

    Article  PubMed  Google Scholar 

  22. Rolls ET, Grabenhorst F, Parris BA. Warm pleasant feelings in the brain. NeuroImage. 2008;41(4):1504–13.

    Article  PubMed  Google Scholar 

  23. Sohn MH, Albert MV, Jung K, Carter CS, Anderson JR. Anticipation of conflict monitoring in the anterior cingulate cortex and the prefrontal cortex. Proc Natl Acad Sci U S A. 2007;104(25):10330–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ursu S, Clark KA, Aizenstein HJ, Stenger VA, Carter CS. Conflict-related activity in the caudal anterior cingulate cortex in the absence of awareness. Biol Psychol. 2009;80(3):279–86.

    Article  PubMed  Google Scholar 

  25. Vann SD, Aggleton JP, Maguire EA. What does the retrosplenial cortex do? Nat Rev Neurosci. 2009;10(11):792–802.

    Article  CAS  PubMed  Google Scholar 

  26. Walter M, Bermpohl F, Mouras H, Schiltz K, Tempelmann C, Rotte M, Heinze HJ, Bogerts B, Northoff G. Distinguishing specific sexual and general emotional effects in fMRI-subcortical and cortical arousal during erotic picture viewing. NeuroImage. 2008;40(4):1482–94.

    Article  PubMed  Google Scholar 

  27. Walter M, Henning A, Grimm S, Schulte RF, Beck J, Dydak U, Schnepf B, Boeker H, Boesiger P, Northoff G. The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. Arch Gen Psychiatry. 2009;66(5):478–86.

    Article  CAS  PubMed  Google Scholar 

  28. Vogt BA, Gabriel M. Neurobiology of cingulate cortex and limbic thalamus: a comprehensive handbook. Boston, MA: Birkhäuser; 1993. https://doi.org/10.1007/978-1-4899-6704-6.

  29. Vogt B, Hof P, Vogt L. Cingulate gyrus. New York: Academic; 2004.

    Book  Google Scholar 

  30. Vogt BA, Vogt L, Farber NB, Bush G. Architecture and neurocytology of monkey cingulate gyrus. J Comp Neurol. 2005;485(3):218–39.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chu CC, Tranel D, Damasio AR, Van Hoesen GW. The autonomic-related cortex: pathology in Alzheimer’s disease. Cereb Cortex. 1997;7(1):86–95.

    Article  CAS  PubMed  Google Scholar 

  32. Williams MR, Pearce RKB, Hirsch SR, Ansorge O, Thom M, Maier M. The subgenual cingulate gyrus exhibits lower rates of bifurcation in schizophrenia than in controls, bipolar disorder and depression. Open J Psychiatry. 2012;2(4):253–7.

    Article  Google Scholar 

  33. Palomero-Gallagher N, Mohlberg H, Zilles K, Vogt B. Cytology and receptor architecture of human anterior cingulate cortex. J Comp Neurol. 2008;508(6):906–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vogt BA, Pandya DN, Rosene DL. Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J Comp Neurol. 1987;262(2):256–70.

    Article  CAS  PubMed  Google Scholar 

  35. Williams M, Pearce RK, Hirsch SR, Ansorge O, Thom M, Maier M. Fibrillary astrocytes are decreased in the subgenual cingulate in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2014;264(4):357–62.

    Article  PubMed  Google Scholar 

  36. Williams MR, Chaudhry R, Perera S, Pearce RK, Hirsch SR, Ansorge O, Thom M, Maier M. Changes in cortical thickness in the frontal lobes in schizophrenia are a result of thinning of pyramidal cell layers. Eur Arch Psychiatry Clin Neurosci. 2013a;263(1):25–39.

    Article  CAS  PubMed  Google Scholar 

  37. Williams MR, Hampton T, Pearce RK, Hirsch SR, Ansorge O, Thom M, Maier M. Astrocyte decrease in the subgenual cingulate and callosal genu in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2013b;263(1):41–52.

    Article  PubMed  Google Scholar 

  38. Alexander L, Clarke HF, Roberts AC. A focus on the functions of area 25. Brain Sci. 2019;9(6):129.

    Article  PubMed Central  Google Scholar 

  39. Joyce MKP, Barbas H. Cortical connections position primate area 25 as a keystone for interoception, emotion, and memory. J Neurosci. 2018;38(7):1677–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ongür D, Ferry AT, Price JL. Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol. 2003;460(3):425–49.

    Article  PubMed  Google Scholar 

  41. Wallis CU, Cardinal RN, Alexander L, Roberts AC, Clarke HF. Opposing roles of primate areas 25 and 32 and their putative rodent homologs in the regulation of negative emotion. Proc Natl Acad Sci U S A. 2017;114(20):E4075–e4084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Neafsey EJ, Terreberry RR, Hurley KM, Ruit KG, Frysztak RJ. Anterior cingulate cortex in rodents: connections, visceral control functions, and implications for emotion. Boston, MA: Birkhäuser; 1993.

    Google Scholar 

  43. Baleydier C, Mauguiere F. Anatomical evidence for medial pulvinar connections with the posterior cingulate cortex, the retrosplenial area, and the posterior parahippocampal gyrus in monkeys. J Comp Neurol. 1985;232(2):219–28.

    Article  CAS  PubMed  Google Scholar 

  44. Cavada C, Goldman-Rakic PS. Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol. 1989a;287(4):393–421.

    Article  CAS  PubMed  Google Scholar 

  45. Cavada C, Goldman-Rakic PS. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol. 1989b;287(4):422–45.

    Article  CAS  PubMed  Google Scholar 

  46. Koski L, Paus T. Functional connectivity of the anterior cingulate cortex within the human frontal lobe: a brain-mapping meta-analysis. Exp Brain Res. 2000;133(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  47. Erpelding N, Davis KD. Neural underpinnings of behavioural strategies that prioritize either cognitive task performance or pain. Pain. 2013;154(10):2060–71.

    Article  PubMed  Google Scholar 

  48. Huster RJ, Westerhausen R, Kreuder F, Schweiger E, Wittling W. Morphologic asymmetry of the human anterior cingulate cortex. NeuroImage. 2007;34(3):888–95.

    Article  PubMed  Google Scholar 

  49. Jin F, Zheng P, Liu H, Guo H, Sun Z. Functional and anatomical connectivity-based parcellation of human cingulate cortex. Brain Behav. 2018;8(8):e01070.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ma X, Qiu Y, Tian J, Wang J, Li S, Zhan W, Wang T, Zeng S, Jiang G, Xu Y. Aberrant default-mode functional and structural connectivity in heroin-dependent individuals. PLoS One. 2015;10(4):e0120861.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Pandya DN, Van Hoesen GW, Mesulam MM. Efferent connections of the cingulate gyrus in the rhesus monkey. Exp Brain Res. 1981;42(3–4):319–30.

    Article  CAS  PubMed  Google Scholar 

  52. Reser DH, Majka P, Snell S, Chan JM, Watkins K, Worthy K, Quiroga MD, Rosa MG. Topography of claustrum and insula projections to medial prefrontal and anterior cingulate cortices of the common marmoset (Callithrix jacchus). J Comp Neurol. 2017;525(6):1421–41.

    Article  PubMed  Google Scholar 

  53. Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. Functional-anatomic fractionation of the brain’s default network. Neuron. 2010;65(4):550–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bludau S, Bzdok D, Gruber O, Kohn N, Riedl V, Sorg C, Palomero-Gallagher N, Müller VI, Hoffstaedter F, Amunts K, Eickhoff SB. Medial prefrontal aberrations in major depressive disorder revealed by Cytoarchitectonically informed voxel-based Morphometry. Am J Psychiatry. 2016;173(3):291–8.

    Article  PubMed  Google Scholar 

  55. Bzdok D, Heeger A, Langner R, Laird AR, Fox PT, Palomero-Gallagher N, Vogt BA, Zilles K, Eickhoff SB. Subspecialization in the human posterior medial cortex. NeuroImage. 2015;106:55–71.

    Article  PubMed  Google Scholar 

  56. Cauda F, D'Agata F, Sacco K, Duca S, Cocito D, Paolasso I, Isoardo G, Geminiani G. Altered resting state attentional networks in diabetic neuropathic pain. J Neurol Neurosurg Psychiatry. 2010;81(7):806–11.

    Article  CAS  PubMed  Google Scholar 

  57. Habeck C, Steffener J, Rakitin B, Stern Y. Can the default-mode network be described with one spatial-covariance network? Brain Res. 2012;1468:38–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ham TE, Bonnelle V, Hellyer P, Jilka S, Robertson IH, Leech R, Sharp DJ. The neural basis of impaired self-awareness after traumatic brain injury. Brain. 2014;137(Pt 2):586–97.

    Article  PubMed  Google Scholar 

  59. Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014;137(Pt 1):12–32.

    Article  PubMed  Google Scholar 

  60. Bonnelle V, Leech R, Kinnunen KM, Ham TE, Beckmann CF, De Boissezon X, Greenwood RJ, Sharp DJ. Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J Neurosci. 2011;31(38):13442–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Leech R, Kamourieh S, Beckmann CF, Sharp DJ. Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J Neurosci. 2011;31(9):3217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Margulies DS, Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. Mapping the functional connectivity of anterior cingulate cortex. NeuroImage. 2007;37(2):579–88.

    Article  PubMed  Google Scholar 

  63. Burles F, Slone E, Iaria G. Dorso-medial and ventro-lateral functional specialization of the human retrosplenial complex in spatial updating and orienting. Brain Struct Funct. 2017;222(3):1481–93.

    Article  PubMed  Google Scholar 

  64. Maddock RJ. The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain. Trends Neurosci. 1999;22(7):310–6.

    Article  CAS  PubMed  Google Scholar 

  65. Iaria G, Chen JK, Guariglia C, Ptito A, Petrides M. Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. Eur J Neurosci. 2007;25(3):890–9.

    Article  PubMed  Google Scholar 

  66. Broadbelt K, Byne W, Jones LB. Evidence for a decrease in basilar dendrites of pyramidal cells in schizophrenic medial prefrontal cortex. Schizophr Res. 2002;58(1):75–81.

    Article  PubMed  Google Scholar 

  67. Todtenkopf MS, Vincent SL, Benes FM. A cross-study meta-analysis and three-dimensional comparison of cell counting in the anterior cingulate cortex of schizophrenic and bipolar brain. Schizophr Res. 2005;73(1):79–89.

    Article  PubMed  Google Scholar 

  68. Fornito A, Yücel M, Dean B, Wood SJ, Pantelis C. Anatomical abnormalities of the anterior cingulate cortex in schizophrenia: bridging the gap between neuroimaging and neuropathology. Schizophr Bull. 2009;35(5):973–93.

    Article  PubMed  Google Scholar 

  69. Selemon LD. Increased cortical neuronal density in schizophrenia. Am J Psychiatry. 2004;161(9):1564.

    Article  PubMed  Google Scholar 

  70. Palaniyappan L, Maayan N, Bergman H, Davenport C, Adams CE, Soares-Weiser K. Voxel-based morphometry for separation of schizophrenia from other types of psychosis in first episode psychosis. Cochrane Database Syst Rev. 2015a;8:CD011021.

    Google Scholar 

  71. Zipursky RB, Lim KO, Sullivan EV, Brown BW, Pfefferbaum A. Widespread cerebral gray matter volume deficits in schizophrenia. Arch Gen Psychiatry. 1992;49(3):195–205.

    Article  CAS  PubMed  Google Scholar 

  72. Lauer M, Senitz D, Beckmann H. Increased volume of the nucleus accumbens in schizophrenia. J Neural Transm (Vienna). 2001;108(6):645–60.

    Article  CAS  Google Scholar 

  73. Lesch A, Bogerts B. The diencephalon in schizophrenia: evidence for reduced thickness of the periventricular grey matter. Eur Arch Psychiatry Neurol Sci. 1984;234(4):212–9.

    Article  CAS  PubMed  Google Scholar 

  74. Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry. 1999;45(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  75. Convit A, Wolf OT, de Leon MJ, Patalinjug M, Kandil E, Caraos C, Scherer A, Saint Louis LA, Cancro R. Volumetric analysis of the pre-frontal regions: findings in aging and schizophrenia. Psychiatry Res. 2001;107(2):61–73.

    Article  CAS  PubMed  Google Scholar 

  76. Crespo-Facorro B, Kim J, Andreasen NC, O'Leary DS, Magnotta V. Regional frontal abnormalities in schizophrenia: a quantitative gray matter volume and cortical surface size study. Biol Psychiatry. 2000;48(2):110–9.

    Article  CAS  PubMed  Google Scholar 

  77. Hirayasu Y, Shenton ME, Salisbury DF, Kwon JS, Wible CG, Fischer IA, Yurgelun-Todd D, Zarate C, Kikinis R, Jolesz FA, McCarley RW. Subgenual cingulate cortex volume in first-episode psychosis. Am J Psychiatry. 1999;156(7):1091–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Noga JT, Aylward E, Barta PE, Pearlson GD. Cingulate gyrus in schizophrenic patients and normal volunteers. Psychiatry Res. 1995;61(4):201–8.

    Article  CAS  PubMed  Google Scholar 

  79. Szeszko PR, Bilder RM, Lencz T, Pollack S, Alvir JM, Ashtari M, Wu H, Lieberman JA. Investigation of frontal lobe subregions in first-episode schizophrenia. Psychiatry Res. 1999;90(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  80. Goldstein JM, Goodman JM, Seidman LJ, Kennedy DN, Makris N, Lee H, Tourville J, Caviness VS Jr, Faraone SV, Tsuang MT. Cortical abnormalities in schizophrenia identified by structural magnetic resonance imaging. Arch Gen Psychiatry. 1999;56(6):537–47.

    Article  CAS  PubMed  Google Scholar 

  81. Le Provost JB, Bartres-Faz D, Paillere-Martinot ML, Artiges E, Pappata S, Recasens C, Perez-Gomez M, Bernardo M, Baeza I, Bayle F, Martinot JL. Paracingulate sulcus morphology in men with early-onset schizophrenia. Br J Psychiatry. 2003;182:228–32.

    Article  PubMed  Google Scholar 

  82. Marquardt RK, Levitt JG, Blanton RE, Caplan R, Asarnow R, Siddarth P, Fadale D, McCracken JT, Toga AW. Abnormal development of the anterior cingulate in childhood-onset schizophrenia: a preliminary quantitative MRI study. Psychiatry Res. 2005;138(3):221–33.

    Article  PubMed  Google Scholar 

  83. Narr KL, Bilder RM, Toga AW, Woods RP, Rex DE, Szeszko PR, Robinson D, Sevy S, Gunduz-Bruce H, Wang YP, DeLuca H, Thompson PM. Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cereb Cortex. 2005a;15(6):708–19.

    Article  PubMed  Google Scholar 

  84. Rushworth MF, Buckley MJ, Behrens TE, Walton ME, Bannerman DM. Functional organization of the medial frontal cortex. Curr Opin Neurobiol. 2007;17(2):220–7.

    Article  CAS  PubMed  Google Scholar 

  85. Takahashi T, Suzuki M, Kawasaki Y, Hagino H, Yamashita I, Nohara S, Nakamura K, Seto H, Kurachi M. Perigenual cingulate gyrus volume in patients with schizophrenia: a magnetic resonance imaging study. Biol Psychiatry. 2003;53(7):593–600.

    Article  PubMed  Google Scholar 

  86. Yücel M, Stuart GW, Maruff P, Wood SJ, Savage GR, Smith DJ, Crowe SF, Copolov DL, Velakoulis D, Pantelis C. Paracingulate morphologic differences in males with established schizophrenia: a magnetic resonance imaging morphometric study. Biol Psychiatry. 2002;52(1):15–23.

    Article  PubMed  Google Scholar 

  87. Choi JS, Kang DH, Kim JJ, Ha TH, Roh KS, Youn T, Kwon JS. Decreased caudal anterior cingulate gyrus volume and positive symptoms in schizophrenia. Psychiatry Res. 2005;139(3):239–47.

    Article  PubMed  Google Scholar 

  88. Haznedar MM, Buchsbaum MS, Hazlett EA, Shihabuddin L, New A, Siever LJ. Cingulate gyrus volume and metabolism in the schizophrenia spectrum. Schizophr Res. 2004;71(2–3):249–62.

    Article  PubMed  Google Scholar 

  89. Kopelman A, Andreasen NC, Nopoulos P. Morphology of the anterior cingulate gyrus in patients with schizophrenia: relationship to typical neuroleptic exposure. Am J Psychiatry. 2005;162(10):1872–8.

    Article  PubMed  Google Scholar 

  90. Zhou SY, Suzuki M, Hagino H, Takahashi T, Kawasaki Y, Matsui M, Seto H, Kurachi M. Volumetric analysis of sulci/gyri-defined in vivo frontal lobe regions in schizophrenia: Precentral gyrus, cingulate gyrus, and prefrontal region. Psychiatry Res. 2005;139(2):127–39.

    Article  PubMed  Google Scholar 

  91. Fujiwara H, Hirao K, Namiki C, Yamada M, Shimizu M, Fukuyama H, Hayashi T, Murai T. Anterior cingulate pathology and social cognition in schizophrenia: a study of gray matter, white matter and sulcal morphometry. NeuroImage. 2007;36(4):1236–45.

    Article  PubMed  Google Scholar 

  92. Qiu A, Younes L, Wang L, Ratnanather JT, Gillepsie SK, Kaplan G, Csernansky J, Miller MI. Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulate gyrus in schizophrenia. NeuroImage. 2007;37(3):821–33.

    Article  PubMed  Google Scholar 

  93. Suzuki M, Zhou SY, Hagino H, Niu L, Takahashi T, Kawasaki Y, Matsui M, Seto H, Ono T, Kurachi M. Morphological brain changes associated with Schneider's first-rank symptoms in schizophrenia: a MRI study. Psychol Med. 2005;35(4):549–60.

    Article  CAS  PubMed  Google Scholar 

  94. Wang L, Hosakere M, Trein JC, Miller A, Ratnanather JT, Barch DM, Thompson PA, Qiu A, Gado MH, Miller MI, Csernansky JG. Abnormalities of cingulate gyrus neuroanatomy in schizophrenia. Schizophr Res. 2007;93(1–3):66–78.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Narr KL, Toga AW, Szeszko P, Thompson PM, Woods RP, Robinson D, Sevy S, Wang Y, Schrock K, Bilder RM. Cortical thinning in cingulate and occipital cortices in first episode schizophrenia. Biol Psychiatry. 2005b;58(1):32–40.

    Article  PubMed  Google Scholar 

  96. Szeszko PR, Robinson DG, Sevy S, Kumra S, Rupp CI, Betensky JD, Lencz T, Ashtari M, Kane JM, Malhotra AK, Gunduz-Bruce H, Napolitano B, Bilder RM. Anterior cingulate grey-matter deficits and cannabis use in first-episode schizophrenia. Br J Psychiatry. 2007;190:230–6.

    Article  PubMed  Google Scholar 

  97. Guo S, Iwabuchi S, Balain V, Feng J, Liddle P, Palaniyappan L. Cortical folding and the potential for prognostic neuroimaging in schizophrenia. Br J Psychiatry. 2015;207(5):458–9.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Palaniyappan L, Park B, Balain V, Dangi R, Liddle P. Abnormalities in structural covariance of cortical gyrification in schizophrenia. Brain Struct Funct. 2015b;220(4):2059–71.

    Article  CAS  PubMed  Google Scholar 

  99. Matsuda Y, Ohi K. Cortical gyrification in schizophrenia: current perspectives. Neuropsychiatr Dis Treat. 2018;14:1861–9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Benes FM, Vincent SL, Todtenkopf M. The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects. Biol Psychiatry. 2001;50(6):395–406.

    Article  CAS  PubMed  Google Scholar 

  101. Bouras C, Kövari E, Hof PR, Riederer BM, Giannakopoulos P. Anterior cingulate cortex pathology in schizophrenia and bipolar disorder. Acta Neuropathol. 2001;102(4):373–9.

    Article  CAS  PubMed  Google Scholar 

  102. Drevets WC, Price JL, Simpson JR, Todd RD, Reich T, Vannier M, Raichle ME. Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 1997;386(6627):824–7.

    Article  CAS  PubMed  Google Scholar 

  103. Heckers S, Heinsen H, Geiger B, Beckmann H. Hippocampal neuron number in schizophrenia. A stereological study. Arch Gen Psychiatry. 1991;48(11):1002–8.

    Article  CAS  PubMed  Google Scholar 

  104. Highley JR, Walker MA, Esiri MM, McDonald B, Harrison PJ, Crow TJ. Schizophrenia and the frontal lobes: post-mortem stereological study of tissue volume. Br J Psychiatry. 2001;178:337–43.

    Article  CAS  PubMed  Google Scholar 

  105. Ongür D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A. 1998;95(22):13290–5.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Radewicz K, Garey LJ, Gentleman SM, Reynolds R. Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol. 2000;59(2):137–50.

    Article  CAS  PubMed  Google Scholar 

  107. Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL. Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry. 1991;48(11):996–1001.

    Article  CAS  PubMed  Google Scholar 

  108. Cotter D, Mackay D, Landau S, Kerwin R, Everall I. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry. 2001;58(6):545–53.

    Article  CAS  PubMed  Google Scholar 

  109. Benes FM, Davidson J, Bird ED. Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Arch Gen Psychiatry. 1986;43(1):31–5.

    Article  CAS  PubMed  Google Scholar 

  110. Chana G, Landau S, Beasley C, Everall IP, Cotter D. Two-dimensional assessment of cytoarchitecture in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia: evidence for decreased neuronal somal size and increased neuronal density. Biol Psychiatry. 2003;53(12):1086–98.

    Article  PubMed  Google Scholar 

  111. Benes FM, Bird ED. An analysis of the arrangement of neurons in the cingulate cortex of schizophrenic patients. Arch Gen Psychiatry. 1987;44(7):608–16.

    Article  CAS  PubMed  Google Scholar 

  112. Cotter D, Landau S, Beasley C, Stevenson R, Chana G, MacMillan L, Everall I. The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. Biol Psychiatry. 2002;51(5):377–86.

    Article  CAS  PubMed  Google Scholar 

  113. Benes FM, Todtenkopf MS, Taylor JB. Differential distribution of tyrosine hydroxylase fibers on small and large neurons in layer II of anterior cingulate cortex of schizophrenic brain. Synapse. 1997;25(1):80–92.

    Article  CAS  PubMed  Google Scholar 

  114. Kalus P, Senitz D, Beckmann H. Altered distribution of parvalbumin-immunoreactive local circuit neurons in the anterior cingulate cortex of schizophrenic patients. Psychiatry Res. 1997;75(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  115. Woo TU, Walsh JP, Benes FM. Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch Gen Psychiatry. 2004;61(7):649–57.

    Article  CAS  PubMed  Google Scholar 

  116. Brune M, Schobel A, Karau R, Benali A, Faustmann PM, Juckel G, Petrasch-Parwez E. Von Economo neuron density in the anterior cingulate cortex is reduced in early onset schizophrenia. Acta Neuropathol. 2010;119(6):771–8.

    Article  PubMed  Google Scholar 

  117. Krause M, Theiss C, Brüne M. Ultrastructural alterations of Von Economo neurons in the anterior cingulate cortex in schizophrenia. Anat Rec (Hoboken). 2017;300(11):2017–24.

    Article  Google Scholar 

  118. Eastwood SL, Harrison PJ. Hippocampal and cortical growth-associated protein-43 messenger RNA in schizophrenia. Neuroscience. 1998;86(2):437–48.

    Article  CAS  PubMed  Google Scholar 

  119. Woo TU, Shrestha K, Amstrong C, Minns MM, Walsh JP, Benes FM. Differential alterations of kainate receptor subunits in inhibitory interneurons in the anterior cingulate cortex in schizophrenia and bipolar disorder. Schizophr Res. 2007;96(1–3):46–61.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Woo TU, Shrestha K, Lamb D, Minns MM, Benes FM. N-methyl-D-aspartate receptor and calbindin-containing neurons in the anterior cingulate cortex in schizophrenia and bipolar disorder. Biol Psychiatry. 2008;64(9):803–9.

    Article  CAS  PubMed  Google Scholar 

  121. Gabriel SM, Bierer LM, Davidson M, Purohit DP, Perl DP, Harotunian V. Galanin-like immunoreactivity is increased in the postmortem cerebral cortex from patients with Alzheimer's disease. J Neurochem. 1994;62(4):1516–23.

    Article  CAS  PubMed  Google Scholar 

  122. Gabriel SM, Haroutunian V, Powchik P, Honer WG, Davidson M, Davies P, Davis KL. Increased concentrations of presynaptic proteins in the cingulate cortex of subjects with schizophrenia. Arch Gen Psychiatry. 1997;54(6):559–66.

    Article  CAS  PubMed  Google Scholar 

  123. Honer WG, Falkai P, Young C, Wang T, Xie J, Bonner J, Hu L, Boulianne GL, Luo Z, Trimble WS. Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neuroscience. 1997;78(1):99–110.

    Article  CAS  PubMed  Google Scholar 

  124. Aganova EA, Uranova NA. Morphometric analysis of synaptic contacts in the anterior limbic cortex in the endogenous psychoses. Neurosci Behav Physiol. 1992;22(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  125. Benes FM, Majocha R, Bird ED, Marotta CA. Increased vertical axon numbers in cingulate cortex of schizophrenics. Arch Gen Psychiatry. 1987;44(11):1017–21.

    Article  CAS  PubMed  Google Scholar 

  126. Benes FM, Sorensen I, Vincent SL, Bird ED, Sathi M. Increased density of glutamate-immunoreactive vertical processes in superficial laminae in cingulate cortex of schizophrenic brain. Cereb Cortex. 1992;2(6):503–12.

    Article  CAS  PubMed  Google Scholar 

  127. Roberts RC, Barksdale KA, Roche JK, Lahti AC. Decreased synaptic and mitochondrial density in the postmortem anterior cingulate cortex in schizophrenia. Schizophr Res. 2015;168(1–2):543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sinka L, Kovari E, Santos M, Herrmann FR, Gold G, Hof PR, Bouras C, Giannakopoulos P. Microvascular changes in late-life schizophrenia and mood disorders: stereological assessment of capillary diameters in anterior cingulate cortex. Neuropathol Appl Neurobiol. 2012;38(7):696–709.

    Article  CAS  PubMed  Google Scholar 

  129. Hoistad M, Heinsen H, Wicinski B, Schmitz C, Hof PR. Stereological assessment of the dorsal anterior cingulate cortex in schizophrenia: absence of changes in neuronal and glial densities. Neuropathol Appl Neurobiol. 2013;39(4):348–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stark AK, Uylings HB, Sanz-Arigita E, Pakkenberg B. Glial cell loss in the anterior cingulate cortex, a subregion of the prefrontal cortex, in subjects with schizophrenia. Am J Psychiatry. 2004;161(5):882–8.

    Article  PubMed  Google Scholar 

  131. Farkas N, Lendeckel U, Dobrowolny H, Funke S, Steiner J, Keilhoff G, Schmitt A, Bogerts B, Bernstein HG. Reduced density of ADAM 12-immunoreactive oligodendrocytes in the anterior cingulate white matter of patients with schizophrenia. World J Biol Psychiatry. 2010;11(3):556–66.

    Article  PubMed  Google Scholar 

  132. Steiner J, Bernstein HG, Bielau H, Farkas N, Winter J, Dobrowolny H, Brisch R, Gos T, Mawrin C, Myint AM, Bogerts B. S100B-immunopositive glia is elevated in paranoid as compared to residual schizophrenia: a morphometric study. J Psychiatr Res. 2008;42(10):868–76.

    Article  PubMed  Google Scholar 

  133. Mosebach J, Keilhoff G, Gos T, Schiltz K, Schoeneck L, Dobrowolny H, Mawrin C, Müller S, Schroeter ML, Bernstein HG, Bogerts B, Steiner J. Increased nuclear Olig1-expression in the pregenual anterior cingulate white matter of patients with major depression: a regenerative attempt to compensate oligodendrocyte loss? J Psychiatr Res. 2013;47(8):1069–79.

    Article  PubMed  Google Scholar 

  134. Segal D, Schmitz C, Hof PR. Spatial distribution and density of oligodendrocytes in the cingulum bundle are unaltered in schizophrenia. Acta Neuropathol. 2009;117(4):385–94.

    Article  PubMed  Google Scholar 

  135. Steiner J, Mawrin C, Ziegeler A, Bielau H, Ullrich O, Bernstein HG, Bogerts B. Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathol. 2006;112(3):305–16.

    Article  CAS  PubMed  Google Scholar 

  136. Hercher C, Chopra V, Beasley CL. Evidence for morphological alterations in prefrontal white matter glia in schizophrenia and bipolar disorder. J Psychiatry Neurosci. 2014;39(6):376–85.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Webster MJ, O'Grady J, Kleinman JE, Weickert CS. Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia. Neuroscience. 2005;133(2):453–61.

    Article  CAS  PubMed  Google Scholar 

  138. Romão LF, Sousa Vde O, Neto VM, Gomes FC. Glutamate activates GFAP gene promoter from cultured astrocytes through TGF-beta1 pathways. J Neurochem. 2008;106(2):746–56.

    Article  PubMed  CAS  Google Scholar 

  139. Takizawa T, Gudla PR, Guo L, Lockett S, Misteli T. Allele-specific nuclear positioning of the monoallelically expressed astrocyte marker GFAP. Genes Dev. 2008;22(4):489–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Neame S, Safory H, Radzishevsky I, Touitou A, Marchesani F, Marchetti M, Kellner S, Berlin S, Foltyn VN, Engelender S, Billard JM, Wolosker H. The NMDA receptor activation by d-serine and glycine is controlled by an astrocytic Phgdh-dependent serine shuttle. Proc Natl Acad Sci U S A. 2019;116(41):20736–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Robin LM, Oliveira da Cruz JF, Langlais VC, Martin-Fernandez M, Metna-Laurent M, Busquets-Garcia A, Bellocchio L, Soria-Gomez E, Papouin T, Varilh M, Sherwood MW, Belluomo I, Balcells G, Matias I, Bosier B, Drago F, Van Eeckhaut A, Smolders I, Georges F, Araque A, Panatier A, Oliet SHR, Marsicano G. Astroglial CB(1) receptors determine synaptic D-serine availability to enable recognition memory. Neuron. 2018;98(5):935–944.e935.

    Article  CAS  PubMed  Google Scholar 

  142. Rosenberg D, Artoul S, Segal AC, Kolodney G, Radzishevsky I, Dikopoltsev E, Foltyn VN, Inoue R, Mori H, Billard JM, Wolosker H. Neuronal D-serine and glycine release via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J Neurosci. 2013;33(8):3533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Falkai P, Raabe F, Bogerts B, Schneider-Axmann T, Malchow B, Tatsch L, Huber V, Slapakova L, Dobrowolny H, Schmitz C, Cantuti-Castelvetri L, Simons M, Steiner J, Schmitt A. Association between altered hippocampal oligodendrocyte number and neuronal circuit structures in schizophrenia: a postmortem analysis. Eur Arch Psychiatry Clin Neurosci. 2020;270(4):413–24.

    Article  PubMed  Google Scholar 

  144. Felsky D, Voineskos AN, Lerch JP, Nazeri A, Shaikh SA, Rajji TK, Mulsant BH, Kennedy JL. Myelin-associated glycoprotein gene and brain morphometry in schizophrenia. Front Psych. 2012;3:40.

    CAS  Google Scholar 

  145. Katsel P, Davis KL, Haroutunian V. Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: a gene ontology study. Schizophr Res. 2005;79(2–3):157–73.

    Article  PubMed  Google Scholar 

  146. Raabe FJ, Galinski S, Papiol S, Falkai PG, Schmitt A, Rossner MJ. Studying and modulating schizophrenia-associated dysfunctions of oligodendrocytes with patient-specific cell systems. NPJ Schizophr. 2018;4(1):23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Raabe FJ, Slapakova L, Rossner MJ, Cantuti-Castelvetri L, Simons M, Falkai PG, Schmitt A. Oligodendrocytes as a new therapeutic target in schizophrenia: from histopathological findings to neuron-oligodendrocyte interaction. Cell. 2019;8(12):E1496.

    Article  CAS  Google Scholar 

  148. Voineskos AN, Felsky D, Kovacevic N, Tiwari AK, Zai C, Chakravarty MM, Lobaugh NJ, Shenton ME, Rajji TK, Miranda D, Pollock BG, Mulsant BH, McIntosh AR, Kennedy JL. Oligodendrocyte genes, white matter tract integrity, and cognition in schizophrenia. Cereb Cortex. 2013;23(9):2044–57.

    Article  PubMed  Google Scholar 

  149. Windrem MS, Osipovitch M, Liu Z, Bates J, Chandler-Militello D, Zou L, Munir J, Schanz S, McCoy K, Miller RH, Wang S, Nedergaard M, Findling RL, Tesar PJ, Goldman SA. Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia. Cell Stem Cell. 2017;21(2):195–208.e196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gibbons AS, Scarr E, Boer S, Money T, Jeon WJ, Felder C, Dean B. Widespread decreases in cortical muscarinic receptors in a subset of people with schizophrenia. Int J Neuropsychopharmacol. 2013;16(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  151. Newell KA, Zavitsanou K, Jew SK, Huang XF. Alterations of muscarinic and GABA receptor binding in the posterior cingulate cortex in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2007;31(1):225–33.

    Article  CAS  Google Scholar 

  152. Broadbelt K, Jones LB. Evidence of altered calmodulin immunoreactivity in areas 9 and 32 of schizophrenic prefrontal cortex. J Psychiatr Res. 2008;42(8):612–21.

    Article  PubMed  Google Scholar 

  153. Broadbelt K, Ramprasaud A, Jones LB. Evidence of altered neurogranin immunoreactivity in areas 9 and 32 of schizophrenic prefrontal cortex. Schizophr Res. 2006;87(1–3):6–14.

    Article  PubMed  Google Scholar 

  154. Li GL, Farooque M, Lewen A, Lennmyr F, Holtz A, Olsson Y. MAP 2 and neurogranin as markers for dendritic lesions in CNS injury. An immunohistochemical study in the rat. APMIS. 2000;108(2):98–106.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, M. (2021). The Cingulate Cortex. In: Williams, M. (eds) The Neuropathology of Schizophrenia. Springer, Cham. https://doi.org/10.1007/978-3-030-68308-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68308-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68306-1

  • Online ISBN: 978-3-030-68308-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics