Skip to main content

Physicochemical and Hydrodynamic Aspects of Soil

  • Chapter
  • First Online:
Electrochemically Assisted Remediation of Contaminated Soils

Part of the book series: Environmental Pollution ((EPOL,volume 30))

  • 597 Accesses

Abstract

Soil is a natural porous material with fluids in its voids. The distribution of the space occupied by solid particles, water, and gases is fundamental to understanding soil behavior under the influence of external actions. The mineralogical and geochemical composition of the system and the characteristics of solid–liquid–gas complex under different fluxes of matter and energy also play determining roles in soil behavior. Changes in the boundary conditions of a soil generate these fluxes, some of which may be of interest for the eventual decontamination of a site. In the specific case of electrokinetic soil remediation, the application of a direct electric current generates a flow of water and solutes and, at the same time, induces other thermal, hydraulic, mechanical, and chemical phenomena, which may favor or hinder the remediation process. To better understand and optimize electrokinetic remediation processes, the soil complexity should be analyzed prior to a more in-depth study of the electrokinetic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I.M.R. Duarte, C.M.G. Rodrigues, Residual Soils, in Encyclopedia of Engineering Geology, ed. by P. T. Bobrowsky, B. Marker, (Springer International Publishing, Cham, 2018), pp. 751–752

    Chapter  Google Scholar 

  2. L.D. Wesley, Geotechnical Engineering in Residual Soils (Wiley, Hoboken, 2010)

    Book  Google Scholar 

  3. B.B.K. Huat, D.G. Toll, A. Prasad, Handbook of Tropical Residual Soils Engineering (CRC Press, Boca Raton, 2012)

    Book  Google Scholar 

  4. L.M. Highland, P. Bobrowsky, The Landslide Handbook—A Guide to Understanding Landslides (Geological Survey Circular 1325, Reston, 2008)

    Book  Google Scholar 

  5. J.K. Mitchell, K. Soga, Fundamentals of Soil Behavior (John Wiley & Sons, Inc., Hoboken, 2005)

    Google Scholar 

  6. T. Zádorová, V. Penížek, Formation, morphology and classification of colluvial soils: a review. Eur. J. Soil Sci. 69, 577–591 (2018)

    Article  Google Scholar 

  7. R.P.C. Morgan, Soil Erosion and Conservation, 3rd edn. (Blackwell Science, Hoboken, 2005)

    Google Scholar 

  8. R.E. Hunt, Geotechnical Engineering Investigation Handbook, 2nd edn. (Taylor and Francis Group, Abingdon, 2005)

    Book  Google Scholar 

  9. A.T. Yeung, S. Datla, Fundamental formulation of electrokinetic extraction of contaminants from soil. Can. Geotech. J. 32, 569–583 (1995)

    Article  CAS  Google Scholar 

  10. A.S. Goudie, Arid and Semi-Arid Geomorphology (Cambridge University Press, New York, 2013)

    Book  Google Scholar 

  11. A. Assadi-Langroudi, S. Ng’ambi, I. Smalley, Loess as a collapsible soil: some basic particle packing aspects. Quat. Int. 469, 20–29 (2018)

    Article  Google Scholar 

  12. S.L. Houston, W.N. Houston, C.E. Zapata, C. Lawrence, Geotechnical engineering practice for collapsible soils. Geotech. Geol. Eng. 19, 333–355 (2001)

    Article  Google Scholar 

  13. M. Bendixen, J. Best, C. Hackney, L.L. Iversen, Time is running out for sand. Nature 571, 29–31 (2019)

    Article  CAS  Google Scholar 

  14. G. Mesri, J.R. Funk, Settlement of the Kansai International Airport Islands. J. Geotech. Geoenviron. 141 (2015)

    Google Scholar 

  15. The construction record of Kansai International Airport. World Dredg. Min. Constr. 37, 6–30 (2001)

    Google Scholar 

  16. S.Y. Chee, A.G. Othman, Y.K. Sim, A.N. Mat Adam, L.B. Firth, Land reclamation and artificial islands: walking the tightrope between development and conservation. Glob. Ecol. Conserv. 12, 80–95 (2017)

    Article  Google Scholar 

  17. J. Bear, Dynamics of fluids in porous media (Dover, New York, 1972)

    Google Scholar 

  18. M. Hassanizadeh, W.G. Gray, General conservation equations for multi-phase systems: 1. Averaging procedure. Adv. Water Resour. 2, 131–144 (1979)

    Article  Google Scholar 

  19. G. Sposito, The Chemistry of Soils (Oxford University Press, Cary, 2008)

    Google Scholar 

  20. ASTM, ASTM D2216-19. Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass (2019)

    Google Scholar 

  21. ASTM, ASTM D854-14. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer (2014)

    Google Scholar 

  22. Skaven-Haug, S.V.: Volumetric relations in soil materials. Proceedings of the Fourth International Peat Congress, Espoo (1972)

    Google Scholar 

  23. ASTM, ASTM D7263-09. Standard Test Methods for Laboratory Determination of Density (Unit Weight) of Soil Specimens (2018)

    Google Scholar 

  24. ASTM, ASTM D4531-15. Standard Test Methods for Bulk and Dry Density of Peat and Peat Products (2015)

    Google Scholar 

  25. R. López-Vizcaíno, E.V. dos Santos, A. Yustres, M.A. Rodrigo, V. Navarro, C.A. Martínez-Huitle, Calcite buffer effects in electrokinetic remediation of clopyralid-polluted soils. Sep. Purif. Technol. 212, 376–387 (2019)

    Article  CAS  Google Scholar 

  26. T. Grundl, C. Reese, Laboratory study of electrokinetic effects in complex natural sediments. J. Hazard. Mater. 55, 187–201 (1997)

    Article  CAS  Google Scholar 

  27. ASTM, ASTM D6913/D6913M—17. Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis (2017)

    Google Scholar 

  28. ASTM, ASTM D7928-17. Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis (2017)

    Google Scholar 

  29. A. Bieganowski, M. Ryżak, A. Sochan, G. Barna, H. Hernádi, M. Beczek, C. Polakowski, A. Makó, Chapter 5: Laser Diffractometry in the Measurements of Soil and Sediment Particle Size Distribution, in Advances in Agronomy, ed. by D. L. Sparks, (Academic Press, London, 2018), pp. 215–279

    Google Scholar 

  30. A. Scheuermann, A. Bieberstein, Determination of the Soil Water Retention Curve and the Unsaturated Hydraulic Conductivity from the Particle Size Distribution, in Experimental Unsaturated Soil Mechanics, ed. by T. Schanz, (Springer Berlin Heidelberg, Berlin, Heidelberg, 2007), pp. 421–433

    Chapter  Google Scholar 

  31. M.D. Fredlund, G.W. Wilson, D.G. Fredlund, Use of the grain-size distribution for estimation of the soil-water characteristic curve. Can. Geotech. J. 39, 1103–1117 (2002)

    Article  Google Scholar 

  32. Soil Science Division Staff, Soil Survey Manual, in USDA Handbook 18, ed. by C. Ditzler, K. Scheffe, H. C. Monger, (Government Printing Office, Washington, 2017), p. 603

    Google Scholar 

  33. ASTM, ASTM D2487-17. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), (2017)

    Google Scholar 

  34. ASTM, ASTM D3282-15. Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes (2015)

    Google Scholar 

  35. F. Bergaya, G. Lagaly, Handbook of Clay Science (Elsevier, London, 2013)

    Google Scholar 

  36. T.A. Hueckel, Water–mineral interaction in hygromechanics of clays exposed to environmental loads: a mixture-theory approach. Can. Geotech. J. 29, 1071–1086 (1992)

    Article  Google Scholar 

  37. A.T. Yeung, C.-n. Hsu, R.M. Menon, Physicochemical soil-contaminant interactions during electrokinetic extraction. J. Hazard. Mater. 55, 221–237 (1997)

    Article  CAS  Google Scholar 

  38. D.H. Gray, J.K. Mitchell, Fundamental aspects of electro-osmosis in soils. J. Soil Mech. Found. Div. 93, 209–236 (1967)

    Article  Google Scholar 

  39. R. López-Vizcaíno, C. Sáez, P. Cañizares, V. Navarro, M.A. Rodrigo, Influence of the type of surfactant on the mobility of flushing fluids for electro-remediation processes. Sep. Sci Techn. 46, 2148–2156 (2011)

    Article  CAS  Google Scholar 

  40. K.H. Head, Manual of Soil Laboratory Testing. Volume 1: Soil Classification and Compaction Tests (Whittles Publishing, Dunbeath, 2006)

    Google Scholar 

  41. ASTM, ASTM D4318—17e1. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils (2017)

    Google Scholar 

  42. B. Voight, Correlation between Atterberg plasticity limits and residual shear strength of natural soils. Geotechnique 23, 265–267 (1973)

    Article  Google Scholar 

  43. L.D. Wesley, Residual strength of clays and correlations using Atterberg limits. Geotechnique 53, 669–672 (2003)

    Article  Google Scholar 

  44. M.A. Kanji, The relationship between drained friction angles and Atterberg limits of natural soils. Geotechnique 24, 671–674 (1974)

    Article  Google Scholar 

  45. J.M. Lee, C.D. Shackelford, C.H. Benson, H.Y. Jo, T.B. Edil, Correlating index properties and hydraulic conductivity of geosynthetic clay liners. J. Geotech. Geoenviron. 131, 1319–1329 (2005)

    Article  CAS  Google Scholar 

  46. A. Bouazza, S. Jefferis, T. Vangpaisal, Investigation of the effects and degree of calcium exchange on the Atterberg limits and swelling of geosynthetic clay liners when subjected to wet-dry cycles. Geotext. Geomembr. 25, 170–185 (2007)

    Article  Google Scholar 

  47. E. Çokça, Relationship between methylene blue value, initial soil suction and swell percent of expansive soils. Turkish J. Eng. Environ. Sci. 26, 521–529 (2002)

    Google Scholar 

  48. J. Zhang, J. Peng, Y. Chen, J. Li, F. Li, Estimation of soil-water characteristic curve for cohesive soils with methylene blue value. Adv. Civil Eng. (2018)

    Google Scholar 

  49. M. Schaeffner, Introduction of methylene blue value of a soil into soil classification of recommendation for road earthworks. Bull. Liaison Lab. Ponts Chaussees, 9–16 (1989)

    Google Scholar 

  50. J.C. Santamarina, K.A. Klein, Y.H. Wang, E. Prencke, Specific surface: determination and relevance. Can. Geotech. J. 39, 233–241 (2002)

    Article  CAS  Google Scholar 

  51. Y. Yukselen, A. Kaya, Suitability of the methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils. Eng. Geol. 102, 38–45 (2008)

    Article  Google Scholar 

  52. D. Hillel, Introduction to Environmental Soil Physics (Elsevier Science & Technology, Burlington, 2003)

    Google Scholar 

  53. D.G. Strawn, H.L. Bohn, G.A. O’Connor, Soil Chemistry (John Wiley & Sons, Incorporated, Somerset, 2015)

    Google Scholar 

  54. R.N. Yong, M. Nakano, R. Pusch, Environmental Soil Properties and Behaviour (CRC Press LLC, Baton Rouge, 2012)

    Book  Google Scholar 

  55. N.M. Nagy, J. Konya, A.T. Hubbard, Interfacial Chemistry of Rocks and Soils (CRC Press LLC, Baton Rouge, 2009)

    Book  Google Scholar 

  56. S.D. Haigh, A review of the interaction of surfactants with organic contaminants in soil. Sci. Total Environ. 185, 161–170 (1996)

    Article  CAS  Google Scholar 

  57. R.T. Martin, in Adsorbed Water on Clay: A Review, ed. By E. Ingerson. Clays Clay Miner. (1962), pp. 28–70

    Google Scholar 

  58. R.H. Brooks, A.T. Corey, Hydraulic Properties of Porous Media (Colorado State University, Fort Collins, 1964)

    Google Scholar 

  59. G.S. Campbell, A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 117, 311–314 (1974)

    Article  Google Scholar 

  60. D.G. Fredlund, X. Anqing, Equations for the soil-water characteristic curve. Can. Geotech. J. 31, 521–532 (1994)

    Article  Google Scholar 

  61. W.R. Gardner, Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 85, 228–232 (1958)

    Article  Google Scholar 

  62. P.H. Groenevelt, C.D. Grant, A new model for the soil-water retention curve that solves the problem of residual water contents. Eur. J. Soil Sci. 55, 479–485 (2004)

    Article  Google Scholar 

  63. K. Kosugi, Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour. Res. 32, 2697–2703 (1996)

    Article  Google Scholar 

  64. M. Kutílek, Soil hydraulic properties as related to soil structure. Soil Till. Res. 79, 175–184 (2004)

    Article  Google Scholar 

  65. M.T. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  66. Meyer, P.D., Rockhold, M.L., Gee, G.W.: Uncertainty Analyses of Infiltration and Subsurface Flow and Transport for SDMP Sites, Pacific Northwest National Laboratory. U.S. Nuclear Regulatory Commission., (NUREG/CR-6565, PNNL-11705) NRC Job Code W6503 (1997)

    Google Scholar 

  67. Hem, J.D.: Study and Interpretation of the Chemical Characteristics of Natural Water. Water Supply Paper, U.S. Geological Survey, Reston, VA (1985), p. 263

    Google Scholar 

  68. Bartos, T.T., Ogle, K.M.: Water Quality and Environmental Isotopic Analyses of Ground-Water Samples Collected from the Wasatch and Fort Union Formations in Areas of Coalbed Methane Development—Implications to Recharge and Ground-Water Flow, Eastern Powder River Basin, Wyoming. Water-Resources Investigations Report 02-4045, USGS, Cheyenne, Wyoming (2002)

    Google Scholar 

  69. J.D. Rhoades, N.A. Manteghi, P.J. Shouse, W.J. Alves, Soil electrical conductivity and soil salinity: new formulations and calibrations. Soil Sci. Soc. Am. J. 53, 433–439 (1989)

    Article  Google Scholar 

  70. R.B. McCleskey, D.K. Nordstrom, J.N. Ryan, Comparison of electrical conductivity calculation methods for natural waters. Limnol. Oceanogr.-Meth. 10, 952–967 (2012)

    Article  CAS  Google Scholar 

  71. A. Tarantino, A.M. Ridley, D.G. Toll, Field Measurement of Suction, Water Content, and Water Permeability, in Laboratory and Field Testing of Unsaturated Soils, ed. by A. Tarantino, E. Romero, Y.-J. Cui, (Springer Netherlands, Dordrecht, 2009), pp. 139–170

    Chapter  Google Scholar 

  72. R. Bulut, E.C. Leong, Indirect Measurement of Suction, in Laboratory and Field Testing of Unsaturated Soils, ed. by A. Tarantino, E. Romero, Y.-J. Cui, (Springer Netherlands, Dordrecht, 2009), pp. 21–32

    Chapter  Google Scholar 

  73. K. Terzaghi, Erdbaumechanik (Deuticke, Vienna, 1925)

    Google Scholar 

  74. A.W. Skempton, in Terzaghi’s Discovery of Effective Stress. From Theory to Practice in Soil Mechanics (1960), pp. 42–53

    Google Scholar 

  75. R. de Boer, W. Ehlers, The development of the concept of effective stresses. Acta Mech. 83, 77–92 (1990)

    Article  Google Scholar 

  76. E.E. Alonso, J.M. Pereira, J. Vaunat, S. Olivella, A microstructurally based effective stress for unsaturated soils. Géotechnique 60, 913–925 (2010)

    Article  Google Scholar 

  77. A.W. Bishop, The principle of effective stress. Teknisk Ukeblad. 106, 859–863 (1959)

    Google Scholar 

  78. R. López-Vizcaíno, V. Navarro, M.J. León, C. Risco, M.A. Rodrigo, C. Sáez, P. Cañizares, Scale-up on electrokinetic remediation: engineering and technological parameters. J. Hazard. Mater. 315, 135–143 (2016)

    Article  CAS  Google Scholar 

  79. R. López-Vizcaíno, A. Yustres, M.J. León, C. Saez, P. Cañizares, M.A. Rodrigo, V. Navarro, Multiphysics implementation of electrokinetic remediation models for natural soils and porewaters. Electrochim. Acta 225, 93–104 (2017)

    Article  CAS  Google Scholar 

  80. A.T. Yeung, J.K. Mitchell, Coupled fluid, electrical and chemical flows in soil. Geotechnique 43, 121–134 (1993)

    Article  Google Scholar 

  81. V. Navarro, E.E. Alonso, Modeling swelling soils for disposal barriers. Comput. Geotech. 27, 19–43 (2000)

    Article  Google Scholar 

  82. D.W. Pollock, Simulation of fluid flow and energy transport processes associated with high-level radioactive waste disposal in unsaturated alluvium. Water Resour. Res. 22, 765–775 (1986)

    Article  CAS  Google Scholar 

  83. S. Barba, R. López-Vizcaíno, C. Saez, J. Villaseñor, P. Cañizares, V. Navarro, M.A. Rodrigo, Electro-bioremediation at the prototype scale: what it should be learned for the scale-up. Chem. Eng. 334, 2030–2038 (2018)

    Article  CAS  Google Scholar 

  84. R. López-Vizcaíno, C. Risco, J. Isidro, S. Rodrigo, C. Saez, P. Cañizares, V. Navarro, M.A. Rodrigo, Scale-up of the electrokinetic fence technology for the removal of pesticides. Part II: Does size matter for removal of herbicides? Chemosphere 166, 549–555 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding support from: (1) the Ministerio de Economía, Industria y Competitividad from Spanish Government and the European Union through the project [BIA2017-89287-R (AEI/FEDER, UE)] and (2) the Ministerio de Ciencia, Innovación y Universidades from Spanish Government through the Postdoctoral Grant [IJC-2018-035212] awarded to Dr. López-Vizcaíno.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Yustres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yustres, Á., López-Vizcaíno, R., Cabrera, V., Navarro, V. (2021). Physicochemical and Hydrodynamic Aspects of Soil. In: Rodrigo, M.A., Dos Santos, E.V. (eds) Electrochemically Assisted Remediation of Contaminated Soils. Environmental Pollution, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-68140-1_1

Download citation

Publish with us

Policies and ethics