Skip to main content

Field Measurement of Suction, Water Content, and Water Permeability

  • Chapter
Laboratory and Field Testing of Unsaturated Soils

Abstract

This paper presents a review of techniques for field measurement of suction, water content, and water hydraulic conductivity (permeability). Main problems in the use of field tensiometers are addressed and hints on how to improve tensiometer performance are given. Advantages and limitations of instruments for indirect measurement of suction including electrical conductivity sensors, thermal conductivity sensors, dielectric permittivity sensors, filter paper, and psychrometer are discussed. Techniques for water content measurement based on dielectric methods are then presented. These include time and amplitude domain reflectometry and capacitance. Finally, a brief overview of methods for measurement of water permeability in the field is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitchison GD, Richards BG (1965) A broad-scale study of moisture conditions in pavement subgrades throughout Australia. In: Proceedings of conference on moisture equilibrium and moisture changes in soils beneath covered areas. Sydney, Butterworths, pp 198–204

    Google Scholar 

  • Aitchison GD, Butler PF, Gurr CG (1951) Techniques associated with the use of gypsum block soil moisture meters. Aust J Appl Sci 2:57–75

    Google Scholar 

  • Alonso EE, Gens A, Josa A (1990) A constitutive model for partially saturated soils. Géotechnique 40(3):405–430

    Google Scholar 

  • Alonso EE, Lloret A, Delahaye CH, Vaunat J, Gens A, Volckaert G (1998) Coupled analysis of a backfill hydration test. Int J Numer Anal Methods Geomech 22:1–27

    Article  Google Scholar 

  • Baker JM, Allmaras RR (1990) System for automating andmultiplexing soil moisture measurement by time-domain reflectometry. Soil Sci Soc Am J 54(1):1–6

    Google Scholar 

  • Baker JM, Spaans EJA (1993) Comments on ‘‘Time domain reflectometry measurements of water content and electrical conductivity of layered soil columns.’’. Soil Sci Soc Am J 57:1395–1396

    Google Scholar 

  • Banin A, Amiel A (1970) A correlative study of the chemical and physical properties of a group of natural soils in Israel. Geoderma 3:185–198

    Article  Google Scholar 

  • Baumhardt RL, Lascano RJ, Evett SR (2000) Soil material, temperature, and salinity effects on calibration of multisensor capacitance probes. Soil Sci Soc Am J 64:1940–1941

    Google Scholar 

  • Benson CH, Gunter JA, Boutwell GP, Trautwein SJ, Berzanskis PH (1997) Comparison of four methods to assess hydraulic conductivity. J Geotech Geoenviron Eng 123(10):929–937

    Article  Google Scholar 

  • Bertolino AVFA, Souza AP, Fernandes NF, Rangel AM, de Campos TMP, Shock CC (2002) Monitoring the field soil matrix potential using mercury tensiometer and granular matrix sensors. In: Jucá JFT, de Campos TMP, Marinho FAM (eds) Unsaturated soils, Proceedings of 3rd international conference on unsaturated soils, vol 1. Balkema, Recife, Lisse, pp 335–338

    Google Scholar 

  • Bishop AW, Kennard MF, Vaughan PR (1964) Developments in the measurement and interpretation of pore water pressure in earth dams. Trans. 8th Int. Cong. On Large Dams, Edinburgh, vol. 1, pp 47–71

    Google Scholar 

  • Black WPM, Croney D, Jacobs JC (1958) Field studies of the movement of soil moisture. Road Research Technical Paper No. 41. HMSO. London

    Google Scholar 

  • Bockris JO, Gileadi E, Muller K (1966) Dielectric relaxation in the electric double layer. J Chem Phys 44:1445–1456

    Article  Google Scholar 

  • Bulut R, Leong EC (2008) Indirect measurement of suction. Geotech Geol Eng. doi:10.1007/s10706-008-9197-0

  • Cameron DA (2001) The extent of soil desiccation near trees in a semi-arid environment. In: Toll DG (ed) Unsaturated soil concepts and their application in geotechnical practice. Dordrecht: Kluwer Academic, pp 357–370

    Google Scholar 

  • Campbell JE (1990) Dielectric properties and influence of conductivity in soils at one to fifty megahertz. Soil Sci Soc Am J 54:332–341

    Google Scholar 

  • Campbell GS, Gee GW (1986) Water potential: miscellaneous methods. In: Klute A (ed) Methods of soil analysis, Part 1, 2nd ed. Agron. Monogr. 9, Madison, WI: ASA, CSSA and SSSA, pp 619

    Google Scholar 

  • Castiglione P, Shouse PJ (2003) The effect of ohmic cable losses on time-domain reflectometry measurements of electrical conductivity. Soil Sci Soc Am J 67:414–424

    Google Scholar 

  • Chen Y, Or D (2006a) Geometrical factors and interfacial processes affecting complex dielectric permittivity of partially saturated porous media. Water Resour Res 42:W06423

    Google Scholar 

  • Chen Y, Or D (2006b) Effects of Maxwell-Wagner polarization on soil complex dielectric permittivity under variable temperature and electrical conductivity. Water Resour Res 42:W06424

    Google Scholar 

  • Chipp PN, Clare DG, Henkel DJ, Pope RG (1982) Field measurement of suction in colluvium covered slopes in Hong Kong. In: Proceedings of 7th Southeast Asian Geotechnical conference, vol 1, pp 49–62

    Google Scholar 

  • Cosh MH, Jackson TJ, Bindlish R, Famiglietti JS, Ryu D (2005) Calibration of an impedance probe for estimation of surface soil water content over large regions. J Hydrol 311:49–58

    Article  Google Scholar 

  • Coutinho RQ, Souza Neto JB, Costa FQ (2000) Design strength parameters of a slope on unsaturated gneissic residual soil. In: Shackleford CD, Houston SL, Chang NY (ed) Advances in unsaturated geotechnics. Geotechnical Special Publication No. 99, Reston: American Society of Civil Engineers, pp 247–261

    Google Scholar 

  • Crilley MS, Schreiner HD, Gourley C (1991) A simple field suction measurement probe. In: Proceedings of 10th African regional conference on soil mechanics and foundation engineering, Lesoto, pp 291–298

    Google Scholar 

  • Cui YJ, Zornberg JG (2008) Water balance and evapotranspiration monitoring in geotechnical and geoenvironmental engineering. Geotech Geol Eng. doi:10.1007/s10706-008-9198-z

  • Cui YJ, Tang AM, Mantho AT, De Laure E (2008) Monitoring field soil suction using a miniature tensiometer. Geotech Testing J 31(1):95100

    Google Scholar 

  • Dalton FN, Herkelrath WN, Rawlins DS, Rhoades JD (1984) Time domain reflectometry: simultaneous measurements of soil water content and electrical conductivity with a single probe. Science 224:989–990

    Article  Google Scholar 

  • Dane JH, Topp GC (eds) (2002) Methods of soil analysis. Part 4-physical methods. SSSA Books Ser. 5. SSSA, Madison, WI, USA

    Google Scholar 

  • Dasberg S, Hopmans JW (1992) Time domain reflectometry calibration for uniformly and non-uniformly wetted sandy and clayey loam soils. Soil Sci Soc Am J 56:1341–1345

    Google Scholar 

  • De Loor GP (1968) Dielectric properties of heterogeneous mixtures containing water. J Microwave Power 3:67–73

    Google Scholar 

  • Dean TJ (1994) The IH capacitance probe for measurement of soil water content. IH Report No. 125. Institute of Hydrology, Wallingford, Oxon

    Google Scholar 

  • Dean TJ, Bell JP, Baty ABJ (1987) Soil moisture measurement by an improved capacitance technique. Part I. Sensor design and performance. J Hydrol 93:67–78

    Article  Google Scholar 

  • Debye P (1929) Polar molecules. Chemical Catalog Company, New York

    Google Scholar 

  • Delage P (2004) State of the art report—Experimental unsaturated soil mechanics. In: Proceedings of 3rd international conference on unsaturated soils, Recife, Brasil 3:973–998

    Google Scholar 

  • Delta-T (2005) Delta T Devices—Soil moisture sensors. http://www.delta-t.co.uk

  • Dirksen C, Dasberg S (1993) Improved calibration of time domain reflectometry soil water content measurements. Soil Sci Soc Am J 57:660–667

    Google Scholar 

  • Dobson MC, Ulaby FT, Hallikainen MT, El-Rayes MA (1985) Microwave dielectric behavior of wet soil-Part II: dielectric mixing models. IEEE Trans Geosci Remote Sens Ge-23(1):35–46

    Article  Google Scholar 

  • Drungil CEC, Abt K, Gish TJ (1989) Soil moisture determination in gravely soils with time domain reflectometry. Trans ASAE 32:177–180

    Google Scholar 

  • Evans NC, Lam JS (2003) Soil moisture conditions in vegetated cut slopes and possible implications for stability. GEO published report no. 140. Geotechnical Engineering Office, Hong Kong Special Administrative Region, 48 pp

    Google Scholar 

  • Evett SR (2000) The TACQ computer program from automatic time domain reflectyometry measurement: II. Waveform interpretation methods. Trans ASAE 43(6):1947–1956

    Google Scholar 

  • Evett SR, Tolk JA, Howell TA (2005) Time domain reflectometry laboratory calibration in travel time, bulk electrical conductivity, and effective frequency. Vadose Zone J 4:1020–1029

    Article  Google Scholar 

  • Feng M, Fredlund DG (2003) Calibration of thermal conductivity sensors for measuring soil suction. Can Geotech J 40(5):1048–1055

    Article  Google Scholar 

  • Feng W, Lin C-P, Deschamps RJ, Drnevich VP (1999) Theoretical model of a multisection time domain reflectometry measurement system. Water Resour Res 35(8):2321–2331

    Article  Google Scholar 

  • Ferre PA, Knight JH, Rudolph DL, Kachanoswki RG (1998) The sample areas of conventional and alternative time domain reflectometry probes. Water Resources Res 36:2461–2468

    Article  Google Scholar 

  • Flint AL, Campbell GS, Ellett KM, Calissendorff C (2002) Calibration and temperature correction of heat dissipation matric potential sensors. Soil Sci Soc Am J 66(5):1439–1445

    Google Scholar 

  • Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley

    Google Scholar 

  • Friedman SP (1997) Statistical mixing model for the apparent dielecflectometry tric constant of unsaturated porous media. Soil Sci Soc Am J 61:742–745

    Google Scholar 

  • Friedman SP (1998) A saturation degree-dependent composite spheres model for describing the effectivve dielectric constant of unsaturated porous media. Water Resources Res 34(11):2949–2961

    Article  Google Scholar 

  • Gallipoli D, Gens A, Sharma R, Vaunat J (2003) An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour. Géotechnique 53(1):123–136

    Article  Google Scholar 

  • Gardner CMK, Robinson DA, Blyth K, Cooper JD (2001) Soil water content measurement. In: Smith K, Mullins C (eds) Soil and environmental analysis: physical methods, 2nd edn. Marcell Dekker, Inc., 270 Madison Ave, New York, pp 1–64

    Google Scholar 

  • Gaskin GJ, Miller JD (1996) Measurement of soil water content using a simplified impedance measuring technique. J Agric Res 63:153–160

    Article  Google Scholar 

  • Gatmiri B, Delage P (1997) A formulation of fully coupled thermal-hydraulic-mechanical behaviour of saturated porous media: numerical approach. Int J Anal Numer Methods Geomech 21:199–225

    Article  Google Scholar 

  • Gatmiri B, Delage P, Cerrolaza M (1997) U-Dam: a powerful finite element software for the analysis of unsaturated porous media. Int J Adv Eng Software 29(1):29–43

    Article  Google Scholar 

  • Giese K, Tiemann R (1975) Determination of the complex permittivity from thin-sample time domain reflectometry improved analysis of the step response waveform. Adv Mol Relax Processes 7:45–59

    Article  Google Scholar 

  • Gourley C, Schreiner HD (1995) Field measurement of soil suction. In: Alonso EE, Delage P (eds) Unsaturated soils. Proceedings of 1st international conference on unsaturated soils, vol 2. Balkema, Paris, Rotterdam, pp 601–607

    Google Scholar 

  • Greacen EL, Walker GR, Cook PG (1987) Evaluation of the Filter Paper Method for Measuring Soil Water Suction, Int. Conf. on Measurement of Soil and Plant Water Status, pp 137–143

    Google Scholar 

  • Gribb MM, Kodešová R, Ordway SE (2004) Comparison of soil hydraulic property measurement methods. J Geotech Geoenviron Eng 130(10):1084–1095

    Article  Google Scholar 

  • Hasted JB (1973) Aqueous dielectrics. Chapman and Hall, London

    Google Scholar 

  • Heimovaara TJ (1992) Comments on ‘‘Time domain reflectometry measurements of water content and electrical conductivity of layered soil columns’’. Soil Sci Soc Am J 56:1657–1658

    Google Scholar 

  • Heimovaara TJ (1993) Design of triple-wire time domain reflectometry probes in practice and theory. Soil Sci Soc Am J 57:1410–1417

    Google Scholar 

  • Heimovaara TJ (1994) Frequency domain analysis of TDR waveforms 1. Measurement of the complex dielectric permittivity of soils. Water Resour Res 30(2):189–199

    Article  Google Scholar 

  • Heimovaara TJ, Bouten W (1990) A computer-controlled 36 channel time domain reflectometry system for monitoring soil water contents. Water Resour Res 26:2311–2316

    Google Scholar 

  • Heimovaara TJ, Bouten W, Verstraten JM (1994) Frequency domain analysis of time domain reflectometry waveform. 2. A four-component complex dielectric mixing model for soils. Water Resour Res 30(2):201–209

    Article  Google Scholar 

  • Herkelrath WN, Hamburg SP, Murphy F (1991) Automatic, real-time monitoring of soil moisture in a remote field area with TDR. Water Resour Res 27(5):857–864

    Article  Google Scholar 

  • Hignett C, Evett SR (2002) Neutron thermalisation. In: Dane JH, Topp GC (eds) Methods of soil analysis. Part 4. SSSA Book Ser. 5. SSSA, Madison, WI

    Google Scholar 

  • Hilhorst MA, Dirksen C, Kampers FWH, Feddes RA (2000) New dielectric mixture equation for porous materials based on depolarization factors. Soil Sci Soc Am J 64:1581–1587

    Google Scholar 

  • Hilhorst MA, Dirksen C, Kampers FWH, Feddes RA (2001) Dielectric relaxation of bound water versus soil matric pressure. Soil Sci Soc Am J 65:311–314

    Google Scholar 

  • Hoekstra P, Delaney A (1974) Dielectric properties of soils at UHF and microwave frequencies. J Geophys Res 79(11):1699–1708

    Article  Google Scholar 

  • Hook WR, Livingston NJ (1995) Propagation velocity errors in time domain reflectometry measurements of soil water. Soil Sci Soc Am J 59:92–96

    Google Scholar 

  • Hook WR, Livingston NJ, Sun ZJ, Hook PB (1992) Remote diode shorting improves measurememt of soil water by time domain reflectometry. Soil Sci Soc Am J 56:1384–1391

    Google Scholar 

  • Huisman JA, Lambot S, Vereecken H (2006) Determining soil water content variation along the TDR probe with inverse modelling: theory, practice and challenges. In: Proceedings of TDR 2006, Purdue University, West Lafayette, USA, Sept. 2006, Paper ID 28, 10 p, http://engineering.purdue.edu/TDR/Papers

  • Ireson AM, Wheater HS, Butler AP, Finch J, Cooper JD, Wyatt RG, Hewitt EJ (2005) Field monitoring of matric potential and soil water content in the chalk unsaturated zone. In: Proceedings of international symposium on advanced experimental unsaturated soil mechanics, Trento, Italy, pp 511–518

    Google Scholar 

  • Ishida T, Makino T (1999) Effects of pH on dielectric relaxation of montmorillonite, allophane, and imogolite suspensions. J Colloid Interf Sci 212:152–161

    Article  Google Scholar 

  • Jacobsen OH, Schjønning P (1993) A laboratory calibration of time domain reflectometry probes for soil water measurement including effects of bulk density and texture. J Hydrol 151:147–158

    Article  Google Scholar 

  • Johnston WH (2000) Calibration of gypsum blocks and data loggers and their evaluation for monitoring soil water status. Aust J Exp Agric 40(8):1131–1136

    Article  Google Scholar 

  • Jones SB, Or D (2001) Frequency-domain methods for extending TDr measurement range in saline soils. Symposium and Workshop on TDR for innovative geotechnical applications. Available at http://www.iti.northwestern, 2001

  • Jones SB, Wraith JM, Or D (2002) Time domain reflectometry measurement principles and applications. Hydrol Process 16:141–153

    Article  Google Scholar 

  • Kelleners TJ, Soppe RWO, Ayars JE, Skaggs TH (2004) Calibration of capacitance probe sensors in a saline silty slay. Soil Sci Soc Am J 68:770–778

    Google Scholar 

  • Keller GV (1989) Electrical properties. Section V. In: Carmichael RS (ed) CRC practical handbook of physical properties of rocks and minerals. CRC Press, Boca Raton, FL

    Google Scholar 

  • Knight JH, Ferre PA, Rudolph DL, Kachanoski RG (1997) A numerical analysis of the effects of coatings and gaps upon relative dielectric permittivity measurement with tome domain reflectometry. Water Resour Res 33:1455–1460

    Article  Google Scholar 

  • Kodešová R, Gribb MM, Šimůnek J (1998) A new CPT method for estimating soil hydraulic properties. In: Robertson PK, Mayne PW (eds) Proceedings of 1st international conference on site characterization, vol 2. Balkema, Rotterdam 1998, pp 1421–1425

    Google Scholar 

  • Kraus JD, Fleisch DA (1999) Electromagnetics with applications. McGraw-Hill

    Google Scholar 

  • Ledieu J, De Ridder P, De Clerck P, Dautrebande S (1986) A method of measuring soil moisture by time domain reflectometry. J Hydrol 88:319–328

    Article  Google Scholar 

  • Lichtenecker K (1926) Die dielektrizitatskonstante naturlicher und kunstlicher mischkorper. Physikalische Zeitschrift 27:115–158

    Google Scholar 

  • Lin CP (2003a) Analysis of nonuniform and dispersive time domain reflectometry measurement systems with application to the dielectric spectroscopy of soils. Water Resour Res 39 doi:10.1029/2002 WR001418

  • Lin CP (2003b) Frequency domain versus travel time analyses of TDR waveforms for soil moisture measurement. Soil Sci Soc Am J 67:720–729

    Google Scholar 

  • Lin C-P, Tang SH (2007) Comprehensive wave propagation model to improve TDR imtepretation for geotechnical applications. Geotech Testing J 30(2):90–97

    Google Scholar 

  • Lin C-P, Chung C-C, Tang S-H (2007) Accurate time domain reflectometry measurement of electrical conductivity accounting for cable resistance and recording time. Soil Sci Soc Am J 71:1278–1287

    Article  Google Scholar 

  • Lin C-P, Chung C-C, Huisman JA, Tang S-H (2008) Clarification and calibration of reflection coefficient for TDR electrical conductivity measurement. Soil Sci Soc Am J, accepted for publication

    Google Scholar 

  • Livingston BE (1908) A method of controlling plant moisture. Plant World 11:39–40

    Google Scholar 

  • Logsdon SD, Laird DA (2002) Dielectric spectra of bound water in hydrated Ca-smectite. J Non-Cryst Solids 305:243–246

    Article  Google Scholar 

  • Lynde CJ, Dupre HA (1913) On a new method of measuring the capillary lift of soils. J Am Soc Agron 5:107–116

    Google Scholar 

  • Mahler CF, Gonçalves H, Pacheco AC (2004) Development of an automatic tensiometer in laboratory using a mini-lysimeter. In: Jucá JFT, de Campos TMP, Marinho FAM (eds) Unsaturated soils. Proceedings of 3rd international conference on unsaturated soils, vol 3. Balkema, Recife, Lisse, 2004, pp 1021–1027

    Google Scholar 

  • Malicki MA, Plagge R, Roth CH (1996) Improving the calibration of dielectric TDR soil moisture determination taking into account the soild soil. Eur J Soil Sci 47:357–366

    Article  Google Scholar 

  • Marinho FAM, Take, WA, Tarantino A (2008) Measurement of matric suction using tensiometric and axis translation techniques. Geotech Geol Eng. doi:10.1007/s10706-008-9201-8

  • Masrouri F, Bicalho KV, Kawai K (2008) Hydraulic testing in unsaturated soils. Geotech Geol Eng. doi:10.1007/s10706-008-9202-7

  • Mendes J, Toll DG, Augarde CE, Gallipoli D (2008) A system for field measurement of suction using high capacity tensiometers. Proceedings of 1st European conference on unsaturated soils, Durham, UK, July 2008

    Google Scholar 

  • Miller JD, Gaskin GJ (1999) ThetaProbe ML2x. Principles of operation and applications. MLURI Technical Note (2nd edn)

    Google Scholar 

  • Mojid MA, Wyseure GCL, Rose DA (1998) The use of insulated time-domain reflectrometry sensors to measure water content in highly saline soils. Irrig Sci 18:55–61

    Article  Google Scholar 

  • Morii T, Takeshita Y, Inoue, M (2003) In-situ measurement and evaluation of soil permeability in sand sediment. In: Karube D, Iizuka A, Kato S, Kawai K, Tateyama K (eds) Proceedings of 2nd Asian conference on unsaturated soils, Kobe, UNSAT-ASIA 2003, pp 107–112

    Google Scholar 

  • Nadler A, Dasberg S, Lapid I (1991) Time domain reflectometry measurements of water content and electrical conductivity of layered soil columns. Soil Sci Soc Am J 55:938–943

    Google Scholar 

  • Neupane D, Bowders JJ, Loehr JE, Bouazza A, Trautwein SJ (2005) Sealed double-ring infiltrometers for estimating very low hydraulic conductivities. Geotech Testing J 28(3):247–252

    Google Scholar 

  • Ng CWW, Zhan LT, Bao CG, Fredlund DG, Gong BW (2003) Performance of an unsaturated expansive soil slope subjected to artificial rainfall infiltration. Geotechnique 53(2):143–157

    Article  Google Scholar 

  • Nichol C, Beckie R, Smith L (2002) Evaluation of uncoated and coated time domain reflectometry probes for high electrical conductivity systems. Soil Sci Soc Am J 66:1454–1465

    Google Scholar 

  • Nichol C, Smith L, Beckie R (2003) Long-term measurement of matric suction using thermal conductivity sensors. Can Geotech J 40:587–597

    Article  Google Scholar 

  • Nicolson AM (1973) Forming the fast fourier transform of a step response in time-domain metrology. Electronics Lett 9:317–318

    Article  Google Scholar 

  • Nishimura T, Irshad U, Kato M, Inoue M (2003) Measurement of near saturated hydraulic conductivity in situ. In: Karube D, Iizuka A, Kato S, Kawai K, Tateyama K (eds) Proceedings of 2nd Asian conference on unsaturated soils, Kobe, UNSAT-ASIA 2003, pp 375–378

    Google Scholar 

  • Nissen HH, Moldrup P (1994) Theoretical background for the TDR methodology. In: Proceedings of the symposium: time domain reflectometry applications in soil science, 16 September 1994, Tjele, Denmark. SP report no. 11, June 1995,vol 3, pp 9–23

    Google Scholar 

  • Noborio K (2001) Measurement of soil water content and electrical conductivity by TDR: a review. Comput Electron Agric 31:213–237

    Article  Google Scholar 

  • Noborio K, McInnes KJ, Heilman JL (1994) Field measurements of soil electrical conductivity and water content by time-domain reflectometry. Comput Electron Agric 11:131–142

    Article  Google Scholar 

  • O’Connor KM, Dowding CH (1999) Geomeasurements by pulsing TDR cables and probes. CRC Press

    Google Scholar 

  • O’Kane M, Wilson GW, Barbour SL (1998) Instrumentation and monitoring of an engineering soil cover system for mine waste rock. Can Geotech J 35:828–846

    Article  Google Scholar 

  • Öberg AL (1995) Negative pore pressures—seasonal variation and importance in slope stability analysis. In: Unsaturated soils—Proceedings of 1st international conference on unsaturated soils, Paris, 1995

    Google Scholar 

  • Olivella S, Gens A, Carrera J, Alonso EE (1996) Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media. Eng Comput 13:87–112

    Article  Google Scholar 

  • Oloo SY, Fredlund DG (1995) Matric suction monitoring in an expansive soil subgrade in Kenya. In: Alonso EE, Delage P (eds) Unsaturated soils, Proceedings of 1st international conference on unsaturated soils, vol 2. Balkema, Paris, Rotterdam, pp 631–635

    Google Scholar 

  • Or D, Wraith JM (1999) Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: a physical model. Water Resour Res 35:371–383

    Article  Google Scholar 

  • Or D, VanShaar T, Fisher JR, Hubscher RA, Wraith JM (2002) WinTDR99-Users guide. Utah State University—Plants, Soils, Metereology, Logan, UT. [online]—Available at http://soilphysics.usu.edu/wintdr/Documents/Manuals/2002Spr/WinTDRManual_Spr2002.pdf Accessed 08 May 2007

  • Paltineanu IC, Starr JL (1997) Real-time soil water dynamics using multisensor capacitance probes: laboratory calibration. Soil Sci Soc Am J 61:1576–1585

    Google Scholar 

  • Paquet JM, Caron J, Banton O (1993) In situ determination of the water desorption characteristics of peat substrates. Can J Soil Sci 73:329–339

    Google Scholar 

  • Patterson DE, Smith MW (1981) The measurement of frozen water content by time domain reflectometry: results from laboratory tests. Can Geotech J 18:131–144

    Google Scholar 

  • Pepin S, Livingston NJ, Hook WR (1995) Temperature-dependent measurement erros in time domain reflectometry determinations of soil water. Soil Sci Soc Am J 59:38–43

    Google Scholar 

  • Pépin S, Plamondon AP, Stein J (1992) Peat water content measurement using the time domain reflectometry. Can J For Res 115:564–540

    Google Scholar 

  • Perroux KM, White I (1988) Designs for disc permeameters. Soil Sci Soc Am J 52:1205–1215

    Google Scholar 

  • Persson M, Berndtsson R (1998) Texture and electrical conductivity effects on temperature dependency in time domain reflectometry. Soil Sci Soc Am J 62:887–893

    Google Scholar 

  • Reynolds WD, Elrick DE (1985) In situ measurement of field-saturated hydraulic conductivity, sorptivity and the α-parameter using the Guelph Permeameter. Soil Sci 140:292–302

    Article  Google Scholar 

  • Reynolds WD, Elrick DE (1991) Determination of hydraulic conductivity using a tension infiltrometer. Soil Sci Soc Am J 55(3):633–639

    Google Scholar 

  • Richards LA (1928) The usefulness of capillary potential to soil moisture and plant investigators. J Agric Res (Cambridge) 37:719–742

    Google Scholar 

  • Richards LA (1942) Soil moisture tensiometer materials and construction. Soil Sci 53:241–248

    Article  Google Scholar 

  • Richards LA (1949) Methods of measuring soil moisture tension. Soil Sci 68:95–112

    Article  Google Scholar 

  • Richards LA, Russell MS, Neal OR (1937) Further developments on apparatus for field moisture studies. Proc Soil Sci Soc Am 2:55–63

    Article  Google Scholar 

  • Ridley AM, Burland JB (1993) A new instrument for the measurement of soil moisture suction. Géotechnique 43(2):321–324

    Article  Google Scholar 

  • Ridley AM, Burland JB (1995) Measurement of suction in materials which swell. Appl Mech Rev 48(9):727–732

    Google Scholar 

  • Ridley AM, Burland JB (1996) A pore pressure probe for the in situ measurement of a wide range of soil suction. Advances in site investigation practice. Thomas Telford London, pp 510–520

    Google Scholar 

  • Ridley AM, Wray WK (1996) State of the art report—Suction measurement: a review of current theory and practices. In: Alonso EE, Delage P (eds) Proceedings of 1st international conference on unsaturated soils, unsaturated soils, vol 3. Paris, pp 1293–1322

    Google Scholar 

  • Ridley AM, Patel AR, Marsland F (1998) Tensiometers: their design and use for civil engineering purposes. Geotechnical Site Characterisation. Balkema Rotterdam, pp 851–856

    Google Scholar 

  • Ridley AM, Dineen K, Burland JB, Vaughan PR (2003) Soil matrix suction: some examples of its measurement and application in geotechnical engineering. Géotechnique 53(2):241–253

    Article  Google Scholar 

  • Robinson DA (2001) Discussion on: ‘Field calibration of a capacitance water content probe in fine sand soils’ by Morgan et al. 1999. Soil Sci Soc Am J 65:1570–1571

    Google Scholar 

  • Robinson DA, Friedman SP (2003) A method for measuring the solid particle permittivity or electrical conductivity of rocks, sediments, and granular materials. J Geophys Res B 108, B2 5:1–9

    Google Scholar 

  • Robinson DA, Gardner CMK, Evans J, Cooper JD, Hodnett MJ, Bell JP (1998) The dielectric calibration of capacitance probes for soil hydrology using an oscillation frequency response model. Hydrol Earth Syst Sci 2(1):111–120

    Google Scholar 

  • Robinson DA, Gardner CMK, Cooper JD (1999) Measurement of relative permittivity in sandy soils using TDR, capacitance and theta probes: comparison, including the effects of bulk soil electrical conductivity. J Hydrol 223:198–211

    Article  Google Scholar 

  • Robinson DA, Cooper JD, Gardner CMK (2002) Modelling the relative permittivity of soil using soil hygroscopic water content. J Hydrol 255:39–49

    Article  Google Scholar 

  • Robinson DA, Jones SB, Wraith JM, Or D, Friedman SP (2003a) A review of advances in dielectric and electrical conductivity measurement in soils using TDR. Vadose Zone J 2:444–475

    Article  Google Scholar 

  • Robinson DA, Schaap M, Jones SB, Friedman SP, Gardner CMK (2003b) Considerations for improving the accuracy of permittivity measurement using time domain reflectometry: air-water calibration, effects of cable length. Soil Sci Soc Am J 67:62–70

    Google Scholar 

  • Robinson DA, Schaap MG, Or D, Jones SB (2005) On the effective measurement frequency of time domain reflectometry in dispersive and nonconductive dielectric materials. Water Resour Res 41:W02007

    Article  Google Scholar 

  • Romero E (1999) Characterisation and thermo-hydromechanical behaviour of unsaturated Boom Clay: an experimental study. PhD Thesis, Universitad Politecnica de Cataluna

    Google Scholar 

  • Roth K, Schulin R, Flühler H, Attinger W (1990) Calibration of TDR for water content measurement using a composite dielectric approach . Water Resour Res 26(10):2267–2273

    Google Scholar 

  • Saarenketo T (1998) Electrical properties of water in clay and silty soils. J Appl Geophys 40:73–88

    Article  Google Scholar 

  • Scotto di Santolo A, Nicotera MV, Evangelista A (2005) Monitoring matric suction profiles in partially saturated pyroclastic topsoil slopes. In: Tarantino A, Romero E, Cui YJ (eds) Advanced experimental unsaturated soil mechanics. Taylor and Francis Group, London. pp 533–539

    Google Scholar 

  • Sentek (2001) Calibration of the Sentek Pty Ltd soil moisture sensors. Sentek Pty Ltd, Kent Town, South Australia

    Google Scholar 

  • Shuai F, Fredlund DG (2000) Use of a new thermal conductivity sensor to measure soil suction. In: Shackleford CD, Houston SL, Chang NY (eds) Advances in unsaturated geotechnics. Geotechnical Special Publication No. 99, Reston, American Society of Civil Engineers, pp 1–12

    Google Scholar 

  • Šimůnek J, Gribb MM, Hopmans JW, van Genuchten MT (1998) Estimating soil hydraulic properties from field data via inverse modeling. In: Proceedings of 2nd international conference on unsaturated soils, vol 1. International Academic Publishers, Beijing, 1998, pp 515–520

    Google Scholar 

  • Skinner A, Hignett C, Dearden J (1997) Resurrecting the gypsum block for soil moisture measurement, Australian Viticulture, October/November 1997, http://www.sowacs.com/feature/mea/mea.html

  • Smith MW, Patterson DE (1984) Determining the unfrozen water content in soils by time-domain reflectometry. Atmosphere-Ocean 22 261–263

    Google Scholar 

  • Spaans EJA, Baker JM (1993) Simple baluns in parallel probes for time domain reflectometry. Soil Sci Soc Am J 57:668–673

    Google Scholar 

  • Sposito G (1984) The surface chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Sposito G, Prost R (1982) Structure of water adsorbed on smectites. Chem Rev 82:553–572

    Article  Google Scholar 

  • Stephens DB (1995) Vadose zone hydrology. CRC Press, Boca Raton, 347 pp

    Google Scholar 

  • Stogryn A (1971) Equations for calculating the dielectric constant of saline water. IEEE Trans Microwave Theory Tech 19:733–736

    Article  Google Scholar 

  • Sweeney DJ (1982) Some insitu soil suction measurements in Hong Kong’s residual soil slopes. Proc 7th Southeast Asian Geotechnical Conf 1:91–106

    Google Scholar 

  • Topp GC, Davis JL (1985a) Measurement of soil water content using time-domain reflectometry (TDR): a field evaluation. Soil Sci Soc Am J 49:19–24

    Google Scholar 

  • Topp GC, Davis JL (1985b) Time domain refelctometry and its application to irrigation scheduling. Advances in irrigation, vol 3, Academic Press, pp 107–127

    Google Scholar 

  • Topp GC, Reynolds WD (1998) Time domain reflectometry: a seminal technique for measuring mass and energy in soils. Soil Tillage Res 47:125–132

    Article  Google Scholar 

  • Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16:574–582

    Article  Google Scholar 

  • Topp GC, Davis JL, Annan AP (1982) Electromagnetic determination of soil water content using TDR: II. Evaluation of installation and configuration of parallel transmission lines. Soil Sci Soc Am J 46:678–684

    Google Scholar 

  • Topp GC, Davis JL, Bailey WG, Zebchuk WD (1984) The measurement of soil water content using a portable TDR hand probe. Can J Soil Sci 64:313–321

    Article  Google Scholar 

  • Topp GC, Yanuka M, Zebchuk WD, Zegelin S (1988) Determination of electrical conductivity using TDR: soil and water esperiments in coaxial lines. Water Resour Res 24(7):945–952

    Article  Google Scholar 

  • Topp GC, Zegelin S, White I (2000) Impacts of the real and Imaginary components of relative permittivity on TDR measurements in soils. Soil Sci Soc Am J 64:1244–1252

    Google Scholar 

  • Vaunat J, Romero E, Jommi C (2000) An elastoplastic hydro-mechanical model for unsaturated soils. In: Proceedings of international workshop on unsaturated soils: experimental evidence and theoretical approaches, Trento, Italy, pp 121–138

    Google Scholar 

  • Wang Z, Lao YD (2002) Measurement of matric suction of Loess in Shanxi Province. In: Jucá, JFT, de Campos, TMP, Marinho FAM (eds) Unsaturated soils. Proceedings of 3rd internaitonal conference on unsaturated soils, vol 1. Recife, Lisse, Balkema, pp 347–350

    Google Scholar 

  • Waweru K (1990) Measurement of soil suction under road pavements in tropical soils, MSc Dissertation, School of Engineering, University of Durham

    Google Scholar 

  • Wescor (2005) Wescor Inc.—Enviromental Products Division, http://www.wescor.com/environmental/

  • Whalley WR (1993) Considerations on the use of time-domain reflectometry for measuring soil water content. J Soil Sci 44:1–9

    Article  Google Scholar 

  • Wraith JM, Or D (1999) Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: experimental evidence and hypothesis development. Water Resour Res 35:361–369

    Article  Google Scholar 

  • Wyseure GCL, Mojid MA, Malik MA (1997) Measurement of volumetric water content by TDR in saline soils.European. J Soil Sci 48:347–354

    Article  Google Scholar 

  • Yanuka M, Topp GC, Zegelin S, Zebchuk WD (1988) Multiple reflection and attenuation of time domain reflectometry pulse: theoretical considerations for application to soil and water. Water Resour Res 24:939–944

    Article  Google Scholar 

  • Yu C, Warrick AW, Conklin MH, Young MH, Zreda M (1997) Two- and three-parameter calibrations of time domain reflectometry for soil moisture measurement. Water Resour Res 33:2417–2421

    Article  Google Scholar 

  • Zakri T, Laurent J-P, Vauclin M (1998) Theoretical evidence for ‘Lichtenecker’s mixture formulae’ based on the effective medium theory. J Phys D: Appl Phys 31:1589–1594

    Article  Google Scholar 

  • Zegelin SJ, White I, Russel GF (1989) Improved field probes for soil water content and electrical conductivity measurement using time domain reflectometry. Water Resour Res 25(11):2367–2376

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Tarantino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tarantino, A., Ridley, A.M., Toll, D.G. (2008). Field Measurement of Suction, Water Content, and Water Permeability. In: Tarantino, A., Romero, E., Cui, YJ. (eds) Laboratory and Field Testing of Unsaturated Soils. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8819-3_10

Download citation

Publish with us

Policies and ethics