Skip to main content

GLUECK: Growth Pattern Learning for Unsupervised Extraction of Cancer Kinetics

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12461))

Abstract

Neoplastic processes are described by complex and heterogeneous dynamics. The interaction of neoplastic cells with their environment describes tumor growth and is critical for the initiation of cancer invasion. Despite the large spectrum of tumor growth models, there is no clear guidance on how to choose the most appropriate model for a particular cancer and how this will impact its subsequent use in therapy planning. Such models need parametrization that is dependent on tumor biology and hardly generalize to other tumor types and their variability. Moreover, the datasets are small in size due to the limited or expensive measurement methods. Alleviating the limitations that incomplete biological descriptions, the diversity of tumor types, and the small size of the data bring to mechanistic models, we introduce Growth pattern Learning for Unsupervised Extraction of Cancer Kinetics (GLUECK) a novel, data-driven model based on a neural network capable of unsupervised learning of cancer growth curves. Employing mechanisms of competition, cooperation, and correlation in neural networks, GLUECK learns the temporal evolution of the input data along with the underlying distribution of the input space. We demonstrate the superior accuracy of GLUECK, against four typically used tumor growth models, in extracting growth curves from a four clinical tumor datasets. Our experiments show that, without any modification, GLUECK can learn the underlying growth curves being versatile between and within tumor types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://gitlab.com/akii-microlab/ecml-2020-glueck-codebase.

References

  1. Abler, D., Büchler, P., Rockne, R.C.: Towards model-based characterization of biomechanical tumor growth phenotypes. In: Bebis, G., Benos, T., Chen, K., Jahn, K., Lima, E. (eds.) ISMCO 2019. LNCS, vol. 11826, pp. 75–86. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35210-3_6

    Chapter  Google Scholar 

  2. Agrawal, T., Saleem, M., Sahu, S.: Optimal control of the dynamics of a tumor growth model with hollings’ type-ii functional response. Comput. Appl. Math. 33(3), 591–606 (2014)

    Article  MathSciNet  Google Scholar 

  3. Baldock, A., et al.: From patient-specific mathematical neuro-oncology to precision medicine. Front. Oncol. 3, 62 (2013)

    Article  Google Scholar 

  4. Benaïm, M., Fort, J.C., Pagès, G.: Convergence of the one-dimensional kohonen algorithm. Adv. Appl. Probab. 30(3), 850–869 (1998)

    Article  MathSciNet  Google Scholar 

  5. Benzekry, S., et al.: Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput. Biol. 10(8), e1003800 (2014)

    Article  Google Scholar 

  6. Benzekry, S., Lamont, C., Weremowicz, J., Beheshti, A., Hlatky, L., Hahnfeldt, P.: Tumor growth kinetics of subcutaneously implanted Lewis Lung carcinomacells, December 2019. https://doi.org/10.5281/zenodo.3572401

  7. Bernard, A., Kimko, H., Mital, D., Poggesi, I.: Mathematical modeling of tumor growth and tumor growth inhibition in oncology drug development. Expert Opin. Drug Metab. Toxicol. 8(9), 1057–1069 (2012)

    Article  Google Scholar 

  8. Chen, Z., Haykin, S., Eggermont, J.J., Becker, S.: Correlative learning: abasis for brain and adaptive systems, vol. 49. Wiley (2008)

    Google Scholar 

  9. Christensen, J., Vonwil, D., Shastri, V.P.: Non-invasive in vivo imaging and quantification of tumor growth and metastasis in rats using cells expressing far-red fluorescence protein. PloS one 10(7), e0132725 (2015)

    Google Scholar 

  10. Comen, E., Gilewski, T.A., Norton, L.: Tumor growth kinetics. Holland-Frei Cancer Medicine, pp. 1–11 (2016)

    Google Scholar 

  11. Gaddy, T.D., Wu, Q., Arnheim, A.D., Finley, S.D.: Mechanistic modeling quantifies the influence of tumor growth kinetics on the response to anti-angiogenic treatment. PLoS Comput. Biol. 13(12), e1005874 (2017)

    Google Scholar 

  12. Gerlee, P.: The model muddle: in search of tumor growth laws. Cancer Res. 73(8), 2407–2411 (2013)

    Article  Google Scholar 

  13. Gompertz, B.: On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. in a letter to francis baily, ESQ. FRS & C. Philos. Trans. Royal Soc. London (115), 513–583 (1825)

    Google Scholar 

  14. Katt, M.E., Placone, A.L., Wong, A.D., Xu, Z.S., Searson, P.C.: In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front. Bioeng. Biotechnol. 4, 12 (2016)

    Article  Google Scholar 

  15. Kisfalvi, K., Eibl, G., Sinnett-Smith, J., Rozengurt, E.: Metformin disrupts crosstalk between g protein–coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res. 69(16), 6539–6545 (2009)

    Google Scholar 

  16. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  MathSciNet  Google Scholar 

  17. Kuang, Y., Nagy, J.D., Eikenberry, S.E.: Introduction to Mathematical Oncology, vol. 59. CRC Press, Boca Raton (2016)

    Google Scholar 

  18. Kühleitner, M., Brunner, N., Nowak, W.G., Renner-Martin, K., Scheicher, K.: Best fitting tumor growth models of the von bertalanffy-püttertype. BMC Cancer 19(1), 683 (2019)

    Article  Google Scholar 

  19. Murphy, H., Jaafari, H., Dobrovolny, H.M.: Differences in predictions of ode models of tumor growth: a cautionary example. BMC Cancer 16(1), 163 (2016)

    Article  Google Scholar 

  20. Rodallec, A., Giacometti, S., Ciccolini, J., Fanciullino, R.: Tumor growth kinetics of human MDA-MB-231 cells transfected with dTomato lentivirus, December 2019. https://doi.org/10.5281/zenodo.3593919

  21. Roland, C.L., et al.: Inhibition of vascular endothelial growth factor reduces angiogenesis and modulates immune cell infiltration of orthotopic breast cancer xenografts. Mol. Cancer Ther. 8(7), 1761–1771 (2009).https://doi.org/10.1158/1535-7163.MCT-09-0280, https://mct.aacrjournals.org/content/8/7/1761

  22. Sarapata, E.A., de Pillis, L.: A comparison and catalog of intrinsic tumor growth models. Bull. Math. Biol. 76(8), 2010–2024 (2014)

    Article  MathSciNet  Google Scholar 

  23. Simpson-Herren, L., Lloyd, H.H.: Kinetic parameters and growth curves for experimental tumor systems. Cancer Chemother Rep. 54(3), 143–174 (1970)

    Google Scholar 

  24. Vaghi, C., et al.: Population modeling of tumor growth curves, the reduced gompertz model and prediction of the age of a tumor. In: Bebis, G., Benos, T., Chen, K., Jahn, K., Lima, E. (eds.) ISMCO 2019. LNCS, vol. 11826, pp. 87–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35210-3_7

    Chapter  Google Scholar 

  25. Verhulst, P.F.: Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 10, 113–126 (1838)

    Google Scholar 

  26. Volk, L.D., Flister, M.J., Chihade, D., Desai, N., Trieu, V., Ran, S.: Synergy of nab-paclitaxel and bevacizumab in eradicating large orthotopic breast tumors and preexisting metastases. Neoplasia 13(4), 327-IN14 (2011)

    Google Scholar 

  27. Von Bertalanffy, L.: Quantitative laws in metabolism and growth. Q. Rev. Biol. 32(3), 217–231 (1957)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Axenie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Axenie, C., Kurz, D. (2021). GLUECK: Growth Pattern Learning for Unsupervised Extraction of Cancer Kinetics. In: Dong, Y., Ifrim, G., Mladenić, D., Saunders, C., Van Hoecke, S. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12461. Springer, Cham. https://doi.org/10.1007/978-3-030-67670-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67670-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67669-8

  • Online ISBN: 978-3-030-67670-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics