Skip to main content

Microbial Metabolites as Pesticides

  • Chapter
  • First Online:
Microbes for Sustainable lnsect Pest Management

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP,volume 17))

Abstract

Beneficial microbes used for the control of crop pests have one or more modes of action against their target arthropods, nematodes, pathogens, or weeds. Metabolites, enzymes, volatile compounds, and other bioactive materials help them to antagonize and suppress target pests. The pesticidal activity of several microbial metabolites has been extensively studied, but only a few have commercial potential. While microbes themselves, rather than their metabolites, are primarily used for plant disease control, metabolites such as anisomycin, avermectins, bialophos, and spinosad are some examples of successful commercialization for insect, mite, nematode, and weed control. Biopesticides based on fermentation solids and solubles, without live microbes, are also available in the market. Pesticides based on Burkholderia rinojensis and Chromobacterium subtsugae for insect and mite control and Myrothecium verrucaria for nematode control are some of such examples that do not have viable microbes. Microbial biopesticides play a critical role in integrated pest management and maintaining crop productivity. This chapter focuses on microbial metabolites and metabolite-producing microbes that are commercialized and briefly discusses the potential of others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeysinghe, S. (2009). Effect of combined use of Bacillus subtilis CA32 and Trichoderma harzianum RU01 on biological control of Rhizoctonia solani on Solanum melongena and Capsicum annuum. Plant Pathology Journal, 8, 9–16.

    Article  Google Scholar 

  • Ackert, L. T., Jr. (2006). The role of microbes in agriculture: Sergei Vinogradskii’s discovery and investigation of chemosynthesis, 1880–1910. Journal of the History of Biology, 29, 273–406.

    Google Scholar 

  • Anderson, A. J., & Kim, Y. C. (2018). Biopesticides produced by plant-probiotic Pseudomonas chlororaphis isolates. Crop Protection, 105, 62–69.

    Article  Google Scholar 

  • Asaka, O., & Shoda, M. (1996). Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Applied Environmental Microbiology, 62, 4081–4085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batish, D. R., Singh, H. P., Kohli, R. K., & Dawra, G. P. (2006). Potential of allelopathy and allelochemicals for weed management. In H. P. Singh, D. R. Batish, & R. K. Kohli (Eds.), Handbook of sustainable weed management (pp. 209–256). Binghamton: Food Products Press.

    Google Scholar 

  • Benbow, J. M., & Sugar, D. (1999). Fruit surface colonization and biological control of postharvest diseases of pear by preharvest yeast applications. Plant Disease, 83, 839–844.

    Article  PubMed  Google Scholar 

  • Berdy, J. (2005). Bioactive microbial metabolites. The Journal of Antibiotics, 58, 1–26.

    Article  CAS  PubMed  Google Scholar 

  • Blackburn, M., Golubeva, E., Bowen, D., & Ffrench-Constant, R. H. (1998). A novel insecticidal toxin from Photorhabdusluminescens, toxin complex a (Tca), and its histopathological effects on the midgut of Manduca sexta. Applied and Environmental Microbiology, 64, 3036–3041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borah, B., Ahmed, R., Hussain, M., Phukon, P., Wann, S. B., Sarmah, D. K., & Bhau, B. S. (2018). Suppression of root-knot disease in Pogostemoncablin caused by Meloidogyne incognita in a rhizobacteria mediated activation of phenylpropanoid pathway. Biological Control, 119, 43–50.

    Article  CAS  Google Scholar 

  • Bowen, D. J., & Ensign, J. C. (1998). Purification and characterization of a high-molecular-weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Applied and Environmental Microbiology, 64, 3029–3035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowen, D., Rocheleau, T. A., Blackburn, M., Andreev, O., Golubeva, E., et al. (1998). Insecticidal toxins from the bacterium Photorhabdus luminescens. Science, 280, 2129–2132.

    Article  CAS  PubMed  Google Scholar 

  • Braun, H., Woitsch, L., Hetzer, B., Geisen, R., Zange, B., & Schmidt-Heydt, M. (2018). Trichoderma harzianum: Inhibition of mycotoxin producing fungi and toxin biosynthesis. International Journal of Food Microbiology, 280, 10–16.

    Article  CAS  PubMed  Google Scholar 

  • Burg, R. W., Miller, B. M., Baker, E. E., Birnbaum, J., Currie, S. A., et al. (1979). Avermectins, new family of potent anthelmintic agents: Producing organisms and fermentation. Antimicrobial Agents and Chemotherapy, 15, 361–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt, T. M., Jackson, C., & Magan, N. (Eds.). (2001a). Fungi as biocontrol agents: Progress, problems and potential. Wallingford: CABI Publishing.

    Google Scholar 

  • Butt, T. M., Jackson, C., & Magan, N. (2001b). Introduction – Fungal biological control agents: Progress, problems and potential. In T. M. Butt, C. Jackson, & N. Magan (Eds.), Fungi as biocontrol agents: Progress, problems, and potential (pp. 1–8). Wallingford: CABI Publishing.

    Chapter  Google Scholar 

  • Campbell, W. C. (2012). History of avermectin and ivermectin, with notes on the history of other macrocyclic lactone antiparasitic agents. Current Pharmaceutical Biotechnology, 13, 853–865.

    Article  CAS  PubMed  Google Scholar 

  • Castoria, R., De Curtis, F., Lima, G., Caputo, L., Pacifico, S., & De Cicco, V. (2001). Aureobasidium pullulans (LS-30) an antagonist of postharvest pathogens of fruits: Study on its modes of action. Postharvest Biology and Technology, 22, 7–17.

    Article  Google Scholar 

  • Chattopadhyay, A., Bhatnagar, N. B., & Bhatnagar, R. (2004). Bacterial insecticidal toxins. Critical Reviews in Microbiology, 30, 33–54.

    Article  CAS  PubMed  Google Scholar 

  • Chi, Z., Wang, F., Chi, Z., Yue, L., Liu, G., & Zhang, T. (2009). Bioproducs from Aureobasidium pullulans, a biotechnologically important yeast. Applied Microbiology and Biotechnology, 82, 793–804.

    Article  CAS  PubMed  Google Scholar 

  • Cordova-Kreylos, A. L., Fernandez, L. E., Koivunen, M., Yang, A., Flor-Weiler, L., & Marrone, P. G. (2013). Isolation and characterization of Burkholderia rinojensis sp. nov., a non-Burkholderia cepaciacomplex soil bacterium with insecticidal and miticidal activities. Applied and Environmental Microbiology, 79, 7669–7678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dara, S. K. (2019). The new integrated Pest management paradigm for the modern age. Journal of Integrated Pest Management, 10, 12.

    Article  Google Scholar 

  • Datnoff, L. E., Nemec, S., & Pernezny, K. (1995). Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biological Control, 5, 427–431.

    Article  Google Scholar 

  • Di Francesco, A., Milella, F., Mari, M., & Roberti, R. (2017). A preliminary investigation into Aureobasidium pullulans as a potential biocontrol agent against Phytophthora infestansof tomato. Biological Control, 114, 144–149.

    Article  CAS  Google Scholar 

  • Dikbaş, N., & Cinisli, K. T. (2019). Microbial metabolites powered by nanoparticles could be used as pesticides in future? (NanoBioPesticides). Biotechnology Journal International, 23, 1–4.

    Google Scholar 

  • Dong, L. Q., & Zhang, K. Q. (2006). Microbial control of plant-parasitic nematodes: A five-party interaction. Plant and Soil, 288, 31–45. https://doi.org/10.1007/s11104-006-9009-3.

    Article  CAS  Google Scholar 

  • Dong, J., Zhu, Y., Song, H., Li, R., He, H., et al. (2007). Nematicidal resorcylides from the aquatic fungus Caryospora callicarpa YMF1.01026. Journal of Chemical Ecology, 33, 1115–1126.

    Article  CAS  PubMed  Google Scholar 

  • Dowling, D. N., & O’Gara, F. (1994). Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends in Biotechnology, 12, 133–141.

    Article  CAS  Google Scholar 

  • Duke, S. O. (1986). Microbially produced toxins as hebicides – A perspective. In A. R. Putnam & S. C. Tang (Eds.), Advances in allelopathy (pp. 287–304). New York: Wiley-Interscience.

    Google Scholar 

  • Duke, S. O., & Dayan, F. E. (2012). Modes of action of microbially-produced phytotoxins. Toxins, 4, 955.

    Article  PubMed Central  Google Scholar 

  • Duke, S. O., & Lydon, J. (1987). Herbicides from natural compounds. Weed Technology, 1, 122–128.

    Article  CAS  Google Scholar 

  • Edwards, S. G., Young, J. P. W., & Fitter, A. H. (1998). Interactions between Pseudomonas fluorescens biocontrol agents and Glomus mosseae, an arbuscular mycorrhizal fungus, within the rhizosphere. FEMS Microbiology Letter, 166, 297–303.

    Article  CAS  Google Scholar 

  • El-hamshary, O. I. M., & Khattab, A. A. (2008). Evaluation of antimicrobial activity of Bacillus subtilis and Bacillus cereus and their fusants against Fusarium solani. Research Journal of Cell and Molecular Biology, 2, 24–29.

    CAS  Google Scholar 

  • Elkahoui, S., Djébali, N., Karkouch, I., Hadj, I. A., Kalai, L., et al. (2014). Mass spectrometry identification of antifungal lipopeptides from Bacillus sp. BCLRB2 against Rhizoctonia solani and Sclerotinia sclerotiorum. Applied Biochemistry and Microbiology, 50, 161–165.

    Article  CAS  Google Scholar 

  • Galm, U., & Sparks, T. C. (2016). Natural product derived insecticides: Discovery and development of spinetoram. Journal of Industrial Microbiology and Biotechnology, 43, 185–193.

    Article  CAS  PubMed  Google Scholar 

  • Garfield, R. A., & Reedy, L. M. (1992). The use of oral milbemycin oxime (interceptor®) in the treatment of chronic generalized canine demodicosis. Veterinary Dermatology, 3, 231–235.

    Article  Google Scholar 

  • Gintis, B., Morgan-Jones, G., & Rodriguez-Kabana, R. (1983). Fungi associated with several developmental stages of Heterodera glycinesfrom an Alabama field soil. Nematropica, 13, 181–200.

    Google Scholar 

  • González-Jaramillo, L. M., Aranda, F. J., Teruel, J. A., Villegas-Escobar, V., & Ortiz, A. (2017). Antimycotic activity of fengycin C biosurfactant and its interaction with phosphtidylcholine model membranes. Colloids and Surfaces B: Biointerfaces, 156, 114–122.

    Article  PubMed  CAS  Google Scholar 

  • Govindsamy, V., Gunaratna, K. R., & Balasubramanian, R. (1998). Properties of extracellular chitinase from Myrothecium verrucaria, an antagonist to the groundnut rust Puccinia arachidis. Canadian Journal of Plant Pathology, 20, 62–68.

    Article  CAS  Google Scholar 

  • Gramisci, B. R., Lutz, M. C., Lopes, C. A., & Sangorrín, M. P. (2018). Enhancing the efficacy of yeast biocontrol agents against postharvest pathogens through nutrient profiling and the use of other additives. Biological Control, 121, 151–158.

    Article  Google Scholar 

  • Green, H., Larsen, J., Olsson, P. A., Jensen, D. F., & Jakobsen, I. (1999). Suppression of the biocontrol agent Trichoderma harzianum by mycelium of the arbuscular mycorrhizal fungus Glomus intraradicesin root-free soil. Applied and Environmental Microbiology, 65, 1428–1434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grieve, R. B., Frank, G. R., Stewart, V. A., Parsons, J. C., Belasco, D. L., & Hepler, D. I. (1991). Chemoprophylactic effects of milbemycin oxime against larvae of Dirofilaria immitis during prepatent development. American Journal of Veterinary Research, 52, 2040–2042.

    CAS  PubMed  Google Scholar 

  • Hernandez-Montiél, L. G., Gutierrez-Perez, E. D., Murillo-Amador, B., Vero, S., Chiquito-Contreras, R. G., & Rincon-Enrique, G. (2018). Mechanisms employed by Debaryomyces hansenii in biological control of anthracnose disease on papaya fruit. Postharvest Biology and Technology, 139, 31–37.

    Article  Google Scholar 

  • Höfte, H., & Whiteley, H. R. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbial Reviews, 53, 242–255.

    Article  Google Scholar 

  • Horikoshi, R., Goto, K., Mitomi, M., Oyama, K., Sunazuka, T., & Ōmura, S. (2017). Identification of pyripyropene A as a promising insecticidal compound in a microbial metabolite screening. The Journal of Antibiotics, 70, 272–276.

    Article  CAS  PubMed  Google Scholar 

  • Huesing, J., & English, L. (2004). The impact of Bt crops on the developing world. AgBioforum, 7, 84–95.

    Google Scholar 

  • Idriss, E. E., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., et al. (2002). Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology, 148, 2097–2109.

    Article  CAS  PubMed  Google Scholar 

  • Ippolito, A., El Ghaouth, A., Wilson, C. L., & Wisniewski, M. (2000). Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biology and Technology, 19, 265–272.

    Article  CAS  Google Scholar 

  • Johnson, J. R., Bruce, W. F., & Dutcher, J. D. (1943). Gliotoxin, the antibiotic principle of Gliocladium fimbriatum. I. Production, physical and biological properties. Journal of the American Chemical Society, 65, 2005–2009.

    Article  CAS  Google Scholar 

  • Kalita, P., Bora, L. C., & Bhagabati, K. N. (1996). Phylloplane microflora of citrus and their role in management of citrus canker. Indian Phytopathology, 49, 234–237.

    Google Scholar 

  • Kirst, H. A. (2010). The spinosyn family of insecticides: Realizing the potential of natural products research. The Journal of Antibiotics, 63, 101–111.

    Article  CAS  PubMed  Google Scholar 

  • Koivunen, M., Chanbusaraku, L., Fernández, L., Asolkar, R., Tan, E., et al. (2009). Development of a new microbial insecticide based on Chromobacterium subtsugae. In Insect pathogens and insect parasitic nematodes (IOBC/WPRS Bulletin 45) (pp. 183–186).

    Google Scholar 

  • Lacey, L. A. (Ed.). (2016). Microbial control of insect and mite pests: From theory to practice. Academic Press.

    Google Scholar 

  • Lamberth, C. (2016). Naturally occurring amino acid derivatives with herbicidal, fungicidal or insecticidal activity. Amino Acids, 48, 929–940.

    Article  CAS  PubMed  Google Scholar 

  • Leclère, V., Béchet, M., Adam, A., Guez, J. S., Wathelet, B., et al. (2005). Mycosubtilin overproduction of Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71, 4577–4584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, Y. J., Zhai, C. Y., Liu, Y., & Zhang, K. Q. (2009). Nematicidal activity of Paecilomyces spp. and isolation of a novel active compound. Journal of Microbiology, 47, 248–252.

    Article  CAS  PubMed  Google Scholar 

  • Manso, T., & Nunes, C. (2011). Metschnikowia andauensis as a new biocontrol agent of fruit postharvest diseases. Postharvest Biology and Technology, 61, 64–71.

    Article  Google Scholar 

  • Martin, P. A. W., Shropshire, A. D. S., Gundersen-Rindal, D. E., & Blackburn, M. B. (2007). Chromobacterium subtsugae sp. nov. for control of insect pests. U.S. Patent 7,244,607.

    Google Scholar 

  • Mayer, A., Kilian, M., Hoster, B., Sterner, O., & Anke, H. (1999). In vitro and in vivo nematicidal activites of cyclic dodecapeptide omphalotin A. Pesticide Science, 55, 27–30.

    Article  CAS  Google Scholar 

  • Mertz, F. P., & Yao, R. C. (1990). Saccharopolyspora spinosa sp. nov. isolated from soil collected in a sugar mill rum still. International Journal of Systemic Bacteriology, 40, 34–39.

    Article  Google Scholar 

  • Mishima, H., Ide, J., Muramatsu, S., & Ono, M. (1983). Milbemycins, a new family of macrolide antibiotics. Structure determination of milbemycins D, E, F, G, H, J and K. The Journal of Antibiotics, 36, 980–990.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, S. K., Keller, J. E., Miller, J. R., Heisey, R. M., Nair, M. G., & Putnam, A. R. (1987). Insecticidal and nematicidal properties of microbial metabolites. Journal of Industrial Microbiology, 2, 267–276.

    Article  Google Scholar 

  • Naher, L., Yusuf, U. K., Ismail, A., & Hossain, K. (2014). Trichoderma spp.: A biocontrol agent for sustainable management of plant diseases. Pakistan Journal of Botany, 46, 1489–1493.

    Google Scholar 

  • Nally, M. C., Pesce, V. M., Maturano, Y. P., Assaf, L. A. R., Toro, M. E., et al. (2015). Antifungal modes of action of Saccharomyces and other biocontrol yeasts against fungi isolated from sour and grey rots. International Journal of Food Microbiology, 204, 91–100.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, L. T. T., Jang, J. Y., Kim, T. Y., Yu, N. H., Park, A. R., et al. (2018). Nematicidal activity of verrucarin A and roridin A isolated from Myrothecium verrucaria against Meloidogyne incognita. Pesticide Biochemistry and Physiology, 148, 133–143.

    Article  CAS  PubMed  Google Scholar 

  • Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Owens, L. D. (1973). Herbicidal potential of rhizobitoxine. Weed Science, 21, 63–66.

    Article  CAS  Google Scholar 

  • Pavithra, G., Bindal, S., Rana, M., & Srivastava, S. (2020). Role of endophytic microbes against plant pathogens: A review. Asian Journal of Plant Sciences, 19, 54–62.

    Google Scholar 

  • Pitterna, T., Cassayre, J., Hüter, O. F., Jung, P. M. J., Maienfisch, P., et al. (2009). New ventures in the chemistry of avermectins. Chemistry, 17, 4085–4095.

    CAS  Google Scholar 

  • Pretorius, D., van Rooyen, J., & Clarke, K. G. (2015). Enhanced production of antifungal lipopeptides by Bacillus amyloliquefaciens for biocontrol of postharvest disease. New Biotechnology, 32, 243–252.

    Article  CAS  PubMed  Google Scholar 

  • Punja, Z. K., & Utkhede, R. S. (2003). Using fungi and yeasts to manage vegetable crop diseases. Trends in Biotechnology, 21, 400–407.

    Article  CAS  PubMed  Google Scholar 

  • Rath, M., Mitchell, T. R., & Gold, S. E. (2018). Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent. Microbiological Research, 208, 76–84.

    Article  CAS  PubMed  Google Scholar 

  • Ravnskov, S., Jensen, B., Knudsen, I. M. B., Bødker, L., Jensen, D. F., et al. (2006). Soil inoculation with the biocontrol agent Clonostachys rosea and the mycorrhizal fungus Glomus intraradices results in mutual inhibition, plant growth promotion and alteration of soil microbial communities. Soil Biology and Biochemistry, 38, 3453–3462.

    Article  CAS  Google Scholar 

  • Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., et al. (2007). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions, 20, 430–440.

    Article  CAS  PubMed  Google Scholar 

  • Sanchis, V. (2011). From microbial sprays to insect-resistant transgenic plants: History of the biopecticide Bacillus thuringiensis. A review. Agronomy for Sustainable Development, 31, 217–231.

    Google Scholar 

  • Saxena, S. (2013). Microbial metabolites for development of ecofriendly agrochemicals. Allelopathy Journal, 33, 1–24.

    Google Scholar 

  • Schena, L., Nigro, F., Pentimone, I., Ligorio, A., & Ippolito, A. (2003). Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biology and Technology, 30, 209–220.

    Article  Google Scholar 

  • Shan, H., Zhao, M., Chen, D., Cheng, J., Li, J., et al. (2013). Biocontrol of rice blast by the phenaminomethylacetic acid producer of Bacillus methylotrophicus strain BC79. Crop Proection, 44, 29–37.

    Article  CAS  Google Scholar 

  • Sheets, J. J., Hey, T. D., Fencil, K. J., Burton, S. L., Ni, W., et al. (2011). Insecticidal toxin complex proteins from Xenorhabdus nematophilus structure and pore formation. The Journal of Biological Chemistry, 286, 22742–22749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and platn responses to fungal biocontrol agents. Annual Review of Phytophathology, 48, 21–43.

    Article  CAS  Google Scholar 

  • Singh, H. P., Batish, D. R., & Kohli, R. K. (2003). Allelopathic interactions and allelochemicals: New possibilities for sustainable weed management. Critical Reviews in Plant Sciences, 22, 239–311.

    Article  CAS  Google Scholar 

  • Singh, R., Soni, S. K., & Kalra, A. (2012). Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohliiBriq. under organic field conditions. Mycorrhiza, 23, 35–44.

    Article  PubMed  Google Scholar 

  • Song, H. C., Shen, W. Y., & Dong, J. Y. (2016). Nematicidal metabolites from Gliocladium roseum YMF1.00133. Applied Biochemistry and Microbiology, 52, 324–330.

    Article  CAS  Google Scholar 

  • Sparks, T. C., Thompson, G. D., Kirst, H. A., Hertlein, M. B., Mynderse, J. S., et al. (1999). Fermentation-derived insect control agents. In F. R. Hall & J. J. Menn (Eds.), Biopesticides: Use and delivery. Methods in biotechnology (Vol. 5, pp. 171–188). Totowa: Humana Press.

    Chapter  Google Scholar 

  • Strobel, G. A., Dirkse, E., Sears, J., & Markworth, C. (2001). Volatile antimicrobials from Muscodoralbus, a novel endophytic fungus. Microbiology, 147, 2943–2950.

    Article  CAS  PubMed  Google Scholar 

  • Sturz, A. V., & Christie, B. R. (2003). Beneficial microbial allelopathies in the root zone: The management of soil quality and plant disease with rhizobacteria. Soil and Tillage Research, 72, 107–123.

    Article  Google Scholar 

  • Subbanna, A. R. N. S., Stanley, J., Rajasekhara, H., Mishra, K. K., Pattanayak, A., & Bhowmick, R. (2019). Perspectives of microbial metabolites as pesticides in agricultural pest management. In J. M. Merrillon & K. Ramawat (Eds.), Co-evolution of secondary metabolites (Reference series in phytochemistry) (pp. 1–28). Cham: Springer.

    Google Scholar 

  • Suman, A., Yadav, A. N., & Verma, P. (2016). Endophytic microbes in crops: Diversity and beneficial impact for sustainable agriculture. In D. Singh, H. Singh, & R. Prabha (Eds.), Microbial inoculants in sustainable agricultural productivity (pp. 117–143). New Delhi: Springer.

    Chapter  Google Scholar 

  • Tanaka, Y., & Ōmura, S. (1993). Agroactive compounds of microbial origin. Annual Review of Microbiology, 47, 57–87.

    Article  CAS  PubMed  Google Scholar 

  • Thomashow, L. S., & Weller, D. M. (1996). Current concepts in the use of introduced bacteria for biological disease control: Mechanisms and antifungal metabolites. In G. Stacey & N. T. Keen (Eds.), Plant-microbe interactions (Vol. 1, pp. 187–235). Boston: Springer.

    Chapter  Google Scholar 

  • Thompson, G. D., Michel, K. H., Yao, R. C., Mynderse, J. S., Mosburg, C. T., et al. (1997). The discovery of Saccharopolyspora spinosa and a new class of insect control products. Down Earth, 52, 1–5.

    Google Scholar 

  • Tomilova, O. G., Kryukov, V. Y., Duisembekov, B. A., Yaroslavtseva, O. N., Tyurin, M. V., et al. (2016). Immune-physiological aspects of synergy between avermectins and the entomopathogenic fungus Metarhizium robertsii in Colorado potato beetle larvae. Journal of Invertebrate Pathology, 140, 8–15.

    Article  CAS  PubMed  Google Scholar 

  • Tomoda, H., Kim, Y. K., Nishida, H., Masuma, R., & Ōmura, S. (1994). Pyripyropenes, novel inhibitors of acyl-CoA: Cholesterol acyltransferase produced by Aspergillus fumigatus. I. Production, isolation, and biological properties. The Journal of Antibiotics (Tokyo), 47, 148–153.

    Article  CAS  Google Scholar 

  • Toure, Y., Ongena, M., Jacques, P., Guiro, A., & Thonart, P. (2004). Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinereaon apple. Journal of Applied Microbiology, 96, 1151–1160.

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto, Y., Sato, K., Mio, S., Sugai, S., Yanai, T., et al. (1991). Synthesis of 5-keto-5-oxime derivatives of milbemycins and their activities against microfilariae. Agricultural and Biological Chemistry, 55, 2615–2621.

    CAS  PubMed  Google Scholar 

  • Urquhart, E. J., & Punja, Z. K. (2002). Hydrolytic enzymes and antifungal compounds produced by Tilletiopsisspecies, phyllosphere yeasts that are antagonists of powdery mildew fungi. Canadian Journal of Microbilogy, 48, 219–229.

    Article  CAS  Google Scholar 

  • Vey, A., Hoagland, R., & Butt, T. M. (2001). Toxic metabolites of fungal biocontrol agents. In T. M. Butt, C. Jackson, & N. Magan (Eds.), Fungi as biocontrol agents: Progress, problems, and potential (pp. 311–346). Wallingford: CABI Publishing.

    Chapter  Google Scholar 

  • Vyas, P., & Deshpande, M. V. (1989). Chitinase production by Myrothecium verrucaria and its significance for fungal mycelia degradation. The Journal of General and Applied Microbiology, 35, 343–350.

    Article  CAS  Google Scholar 

  • Wang, Y., Li, Y., Xu, W., Zheng, X., Zhang, X., et al. (2018). Exploring the effect of β-glucan on the biocontrol activity of Crypotococcus podzolicus against postharvest decay of apples and the possible mechanisms involved. Biological Control, 121, 14–22.

    Article  CAS  Google Scholar 

  • Warrior, P., Rehberger, L. A., Beach, M., Grau, P. A., Kirfman, G. W., & Conley, J. M. (1999). Commercial development and introduction of DiTera™, a new nematicide. Pesticide Science, 55, 343–389.

    Article  Google Scholar 

  • Yamada, O., Kaise, Y., Futatsuya, F., Ishida, S., Ito, K., Yamamoto, H., & Munakata, K. (1972). Studies on plant growth regulating activities of anisomycin and toyocamycin. Agricultural Biology and Chemistry, 36, 2013–2015.

    Article  CAS  Google Scholar 

  • Yamada, O., Ishida, S., Futatsuya, F., Ito, K., Yamamoto, H., & Munakata, K. (1974). Plant growth regulating activities of 4-methoxydiphenylmethams and their related compounds. Agricultural Biology and Chemistry, 38, 1235–1237.

    Article  CAS  Google Scholar 

  • Yu, X., Ai, C., Xin, L., & Zhou, G. (2011). The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 47, 138–145.

    Article  Google Scholar 

  • Zhai, M. M., Qi, F. M., Li, J., Jiang, C. X., Hou, Y., et al. (2016). Isolation of secondary metabolites from the soil-derived fungus Clonostachysrosea YRS-06, a biological control agent, and evaluation of antibacterial activity. Journal of Agricultural and Food Chemistry, 64, 2298–2306.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2010). Efficacy of the antagonist Aureobasidium pullulans PL5 against postharvest pathogens of peach, apple and plum and its modes of action. Biological Control, 54, 172–180.

    Article  Google Scholar 

  • Zhang, H., Mahunu, G. K., Castoria, R., Yang, Q., & Apaliya, M. T. (2018). Recent developments in the enhancement of some postharvest biocontrol agents with unconventional chemicals compounds. Trends in Food Science and Technology, 78, 180–187.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra K. Dara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dara, S.K. (2021). Microbial Metabolites as Pesticides. In: Khan, M.A., Ahmad, W. (eds) Microbes for Sustainable lnsect Pest Management. Sustainability in Plant and Crop Protection, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-67231-7_4

Download citation

Publish with us

Policies and ethics