Skip to main content

Living Nano-factories: An Eco-friendly Approach Towards Medicine and Environment

  • Chapter
  • First Online:
Bio-manufactured Nanomaterials

Abstract

Progress in the area of nano-biotechnology has been resulted in the synthesis and modulation of nanomaterials, which have been globally used in the fields of agricultural, biomedicine, environment, and optics. However, various physiochemical procedures employed to synthesize metal nanoparticles (MNPs) are costly and bring about biosphere pollution due to the heavy metals. Biogenic synthesis of MNPs hold enormous potential as sustainable, green, cost-effective, and eco-friendly tool that does not require toxins, harsh chemicals, and input of high energy which are essentially required for physiochemical synthesis. Thus living systems can be used as convenient and sustainable nano-factories. Many plants and microorganisms including bacteria, fungi, actinomycetes, yeast, virus, algae, and human cell lines have been explored for their ability to synthesize MNPs. Recently, considerable attention is given to engineered nanomaterials which can be further used for the development of diagnostic modalities and novel therapeutics for mankind. This chapter is based on living organisms and mechanisms involved in biogenic green synthesis of MNPs and their potential implication in the field of biomedicine present scenario and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeer Mohamad, A. B. (2015). Comparison between biological and chemical synthesis of zinc oxide nanoparticles and its influence over some antibiotics. International Journal of Pharma and Bio Science, 6(3), 1357–1364.

    Google Scholar 

  • Abolghasemi, R., Haghighi, M., Solgi, M., & Mobinikhaledi, A. (2019). Rapid synthesis of ZnO nanoparticles by waste thyme (Thymus vulgaris L.). International Journal of Environmental Science and Technology, 16, 6985–6990.

    Article  CAS  Google Scholar 

  • Ahmed, E., Kalathil, S., Shi, L., et al. (2018). Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities. Journal of Saudi Chemical Society, 22(8), 919–929.

    Article  CAS  Google Scholar 

  • Alghuthaymi, M. A., Almoammar, H., Mahindra, R., et al. (2015). Myconanoparticles: Synthesis and their role in phytopathogens management. Biotechnology and Biotechnological Equipment, 29, 221–236.

    Article  CAS  Google Scholar 

  • Amerasan, D., Nataraj, T., Murugan, K., et al. (2016). Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). Journal of Pest Science, 89, 249–256.

    Article  Google Scholar 

  • Anil Kumar, S., Abyaneh, M. K., Gosavi, S. W., et al. (2007). Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnology Letters, 29, 439–445.

    Article  CAS  Google Scholar 

  • Apte, M., Sambre, D., Gaikawad, S., et al. (2013). Psychrotrophic yeast yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express, 3(1), 32.

    Article  CAS  Google Scholar 

  • Arokiyaraj, S., Arsu, M. V., Vincent, S., et al. (2014). Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: An in vitro study. International Journal of Nanomedicine, 9, 379–388.

    Article  Google Scholar 

  • Asghari-Paskiabi, F., Imani, M., Rafii-Tabar, H., et al. (2019). Physicochemical properties, antifungal activity and cytotoxicity of selenium sulfide nanoparticles green synthesized by Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 516(4), 1078–1084.

    Article  CAS  Google Scholar 

  • Ashraf, I., Zubair, M., Rizwan, K., et al. (2018). Chemical composition, antioxidant and antimicrobial potential of essential oils from different parts of Daphne mucronata Royle. Chemistry Central Journal, 12(1), 135.

    Article  CAS  Google Scholar 

  • Aubin-Tam, M.-E., & Hamad-Schifferli, K. (2008). Structure and function of nanoparticle–protein conjugates. Biomedical Materials, 3, 034001.

    Article  CAS  Google Scholar 

  • Aygun, A., Gulbağca, F., Nas, M. S., et al. (2020). Biological synthesis of silver nanoparticles using Rheum ribes and evaluation of their anticarcinogenic and antimicrobial potential: A novel approach in phytonanotechnology. Journal of Pharmaceutical and Biomedical Analysis, 179, 113012.

    Article  CAS  Google Scholar 

  • Azharuddin, M., Zhu, G. H., Das, D., et al. (2019). A repertoire of biomedical applications of noble metal nanoparticles. Chemical Communications, 55, 6964.

    Article  CAS  Google Scholar 

  • Baker, S., Rakshith, D., Kavitha, K. S., et al. (2013). Plants: Emerging as nanofactories towards facile route in synthesis of nanoparticles. BioImpacts: BI, 3(3), 111–117.

    CAS  Google Scholar 

  • Balaji, D. S., Basavaraja, S., Deshpande, R., et al. (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids and Surfaces. B, Biointerfaces, 68(1), 88–92.

    Article  CAS  Google Scholar 

  • Boroumand, M. A., Namvar, F., Moniri, M., et al. (2015). Nanoparticles biosynthesized by fungi and yeast: A review of their preparation, properties, and medical applications. Molecules, 20(9), 16540–16565.

    Article  CAS  Google Scholar 

  • Cappitelli, F., & Sorlini, C. (2008). Microorganisms attack synthetic polymers in items representing our cultural heritage. Applied and Environmental Microbiology, 74(3), 564–569.

    Article  CAS  Google Scholar 

  • Castro, M. E., Cottet, L., & Castillo, A. (2014). Biosynthesis of gold nanoparticles by extracellular molecules produced by the phytopathogenic fungus Botrytis cinerea. Materials Letters, 115, 42–44.

    Article  CAS  Google Scholar 

  • Da Silva Ferreira, V., ConzFerreira, M. E., Lima, L. M., et al. (2017). Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria. Enzyme and Microbial Technology, 97, 114–121.

    Article  CAS  Google Scholar 

  • Das, R. K., Pachapur, V. L., Lonappan, L., et al. (2017). Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects. Nanotechnology and Environmental Engineering, 2, 18.

    Article  CAS  Google Scholar 

  • Deplanche K., Caldelari I., Mikheenko I. P., Sargent F., Macaskie L. E. (2010). Involvement of hydrogenases in the formation of highly catalytic Pd (0) nanoparticles by bioreduction of Pd (II) using Escherichia coli mutant strains. Microbiology, 156(9), 2630–40. https://doi.org/10.1099/mic.0.036681-0.

  • Divya, M., George, S. K., Saqib, H., & Joseph, S. (2019). Biogenic synthesis and effect of silver nanoparticles (AgNPs) to combat catheter-related urinary tract infections. Biocatalysis and Agricultural Biotechnology, 18, 101037.

    Article  Google Scholar 

  • Doria, G., Conde, J., Veigas, B., et al. (2012). Noble metal nanoparticles for biosensing applications. Sensors, 12(2), 1657–1687.

    Google Scholar 

  • Duan, H., Wang, D., & Li, Y. (2015). Green chemistry for nanoparticle synthesis. Chemical Society Reviews, 44, 5778–5792.

    Article  CAS  Google Scholar 

  • Dubey, S. P., Lahtineb, M., & Sillanpaa, M. (2010). Green synthesis and characterization of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids and Surfaces, A: Physiochemical and Engineering Aspects, 364, 34–41.

    Article  CAS  Google Scholar 

  • Dudek, N. K., Sun, C. L., & Burstein, D. (2017). Novel microbial diversity and functional potential in the marinemammal oral microbiome. Current Biology, 27(24), 3752–3762.

    Article  CAS  Google Scholar 

  • Ebrahimzadeh, M. A., Naghizadeh, A., Mohammadi-Aghdam, S., et al. (2020). Enhanced catalytic and antibacterial efficiency of biosynthesized Convolvulus fruticosus extract capped gold nanoparticles (CFE@AuNPs). Journal of Photochemistry and Photobiology B: Biology, 209, 111949.

    Article  CAS  Google Scholar 

  • El Domany, E. B., Essam, T. M., Ahmed, A. E., & Farghali, A. A. (2018). Biosynthesis physico-chemical optimization of gold nanoparticles as anti-cancer and synergetic antimicrobial activity using Pleurotus ostreatus fungus. Journal of Applied Pharmaceutical Science, 8, 119–128.

    Google Scholar 

  • El Sayed Manal, T., & El Sayed Ashraf, S. A. (2020). Biocidal activity of metal nanoparticles synthesized by Fusarium solani against multidrug-resistant bacteria and mycotoxigenic fungi. Journal of Microbiology and Biotechnology, 30(2), 226–236.

    Article  CAS  Google Scholar 

  • El-Kassas, H. Y., & El-Sheekh, M. M. (2014). Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pacific Journal of Cancer Prevention, 15, 4311–4317.

    Article  Google Scholar 

  • Fawcett, D., Verduin, J. J., Shah, M., et al. (2017). A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. Journal of Nanoscience, 2017, 1–15.

    Article  Google Scholar 

  • Gadd, G. M. (2007). Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(1), 3–49.

    Article  CAS  Google Scholar 

  • Gahlawat, G., & Choudhury, A. R. (2019). A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Advances, 9, 12944.

    Article  CAS  Google Scholar 

  • Gemishev, O., Panayotova, M. I., Mintcheva, N., et al. (2019). A green approach for silver nanoparticles preparation by cell-free extract from Trichoderma reesei fungi and their characterization. Materials Research Express, 6(9), 095040.

    Article  CAS  Google Scholar 

  • Ghosh, P., Han, G., De, M., et al. (2008). Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 60, 1307–1315.

    Article  CAS  Google Scholar 

  • Han, M. S., Lytton-Jean, A. K., & Mirkin, C. A. (2006). A gold nanoparticle based approach for screening triplex DNA binders. Journal of the American Chemical Society, 128(15), 4954–4955.

    Article  CAS  Google Scholar 

  • Hu, D., Yu, S., Yu, D., Liu, N., et al. (2019). Biogenic Trichoderma harzianum-derived selenium nanoparticles with control functionalities originating from diverse recognition metabolites against phytopathogens and mycotoxins. Food Control, 106, 106748.

    Article  CAS  Google Scholar 

  • Husseiney, M. I., El-Aziz, M. A., Badr, Y., & Mahmoud, M. A. (2007). Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta A, 67, 1003–1006.

    Article  CAS  Google Scholar 

  • Ijaz, F., Shahid, S., Khan, S. A., et al. (2017). Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: Antimicrobial, antioxidant and photocatalytic dye degradation activities. Tropical Journal of Pharmaceutical Research, 16(4), 743–753.

    Article  CAS  Google Scholar 

  • Iravani, S. (2014). Bacteria in nanoparticle synthesis: Current status and future prospects. International Scholarly Research Notices, 2014, 1–18.

    Article  Google Scholar 

  • Jain, D., Kumar, D. H., Kachhwaha, S., & Kothari, S. L. (2009). Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Digest Nanomaterials and Biostructures, 4(3), 557–563.

    Google Scholar 

  • Jha A. K., & Prasad K. (2011). Green fruit of chili (Capsicum Annum L.) synthesizes nano silver. Digest Journal of Nanomaterials and Biostructures, 6(4), 1717–1723.

    Google Scholar 

  • Jogee, P. S., Ingle, A. P., & Raj, M. (2017). Isolation and identification of toxigenic fungi from infected peanuts and efficacy of silver nanoparticles against them. Food Control, 71, 143.

    Article  CAS  Google Scholar 

  • Kadam, V. V., Ettiyappan, J. P., & Balakrishnan, R. M. (2019). Mechanistic insight into the endophytic fungus mediated synthesis of protein capped ZnO nanoparticles. Materials Science and Engineering B, 243, 214–221.

    Article  CAS  Google Scholar 

  • Kar, P. K., Murmu, S., Saha, S., et al. (2014). Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One, 9(1), 84693.

    Article  CAS  Google Scholar 

  • Karthik, L., Kumar, G., Kirthi, A. V., et al. (2014). Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess and Biosystems Engineering, 37, 261–267.

    Article  CAS  Google Scholar 

  • Khan, S. A., & Lee, C. S. (2020). Green biological synthesis of nanoparticles and their biomedical applications. In A. A. Inamuddin (Ed.), Applications of nanotechnology for green synthesis, nanotechnology in the life sciences. Cham: Springer.

    Google Scholar 

  • Khan, S. A., Noreen, F., Kanwal, S., et al. (2018). Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Material Science and Engineering C, 82, 46–59.

    Article  CAS  Google Scholar 

  • Kim, K. J., Sung, W. S., Suh, B. K., et al. (2009). Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals, 22, 235–242.

    Article  CAS  Google Scholar 

  • Kim, D. Y., Saratale, R. G., Shinde, S., et al. (2018). Green synthesis of silver nanoparticles using Laminaria japonica extract: Characterization and seedling growth assessment. Journal of Cleaner Production, 172, 2910–2918.

    Article  CAS  Google Scholar 

  • Kitching, M., Choudhary, P., Inguva, S., et al. (2016). Fungal surface protein mediated one-pot synthesis of stable and hemocompatible gold nanoparticles. Enzyme and Microbial Technology, 95, 76–84.

    Article  CAS  Google Scholar 

  • Kora, A. J., Beedu, S. R., & Jayaraman, A. (2012). Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Organic and Medicinal Chemistry Letters, 2, 17–85.

    Article  CAS  Google Scholar 

  • Kralj, S., & Makovec, D. (2015). Magnetic assembly of superparamagnetic iron oxide nanoparticle clusters into nanochains and nanobundles. ACS Nano, 9(10), 9700–9707.

    Article  CAS  Google Scholar 

  • Kulkarni, N., & Muddapur, U. (2014). Biosynthesis of metal nanoparticles: A review. Journal of Nanotechnology, 2014, 1–8.

    Article  CAS  Google Scholar 

  • Kumar, Sowmya, B., & Geetha, R. (2019). Preparation of yeast mediated semiconductor nanoparticles by candida albicans and its bactericidal potential against Salmonella typhi and Staphylococcus aureus. International Journal of Pharmaceutical Sciences and Research, 10(2), 861–864.

    Article  CAS  Google Scholar 

  • Lin, J., Zhang, Y., Qian, J., & He, S. (2014). A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced Raman scattering and localized surface plasmon resonance. Laser and Photonics Review, 8, 610–616.

    Article  CAS  Google Scholar 

  • Makarov, V. V., Love, A. J., Sinitsyna, O. V., et al. (2014). Green nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 6, 35–44.

    Article  CAS  Google Scholar 

  • Malam, Y., Lim, E. J., & Seifalian, A. M. (2011). Current trends in the application of nanoparticles in drug delivery. Current Medicinal Chemistry, 18, 1067–1078.

    Article  CAS  Google Scholar 

  • Mann, S. (1993). Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature, 365, 499–505.

    Article  CAS  Google Scholar 

  • Mazloom, M. S., Hemmati-Sarapardeh, A., Husein, M. M., et al. (2020). Application of nanoparticles for asphaltenes adsorption and oxidation: A critical review of challenges and recent progress. Fuel, 279, 117763.

    Article  CAS  Google Scholar 

  • Mitra, S., Patra, P., Pradhan, S., et al. (2015). Detailed antifungal mode of action study: Understanding the insights into oxidative stress. Journal of Colloid and Interface Science, 444, 97.

    Article  CAS  Google Scholar 

  • Mukherjee, S., Chowdhury, D., Kotcherlakota, R., et al. (2014). Potential theranostics application of bio-synthesised silver nanoparticles (4-in-1 system). Theranostics, 4, 316–335.

    Article  Google Scholar 

  • Nasrollahzadeh, M., & Sajadi, M. S. (2015). Green synthesis of copper nano-particles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. Journal of Colloid and Interface Science, 457, 141–147.

    Google Scholar 

  • Noruzi, M. (2015). Biosynthesis of gold nanoparticles using plant extracts. Bioprocess and Biosystems Engineering, 38, 1–14.

    Article  CAS  Google Scholar 

  • Omran, B. A., Nassar, H. N., Younis, S. A., et al. (2019). Physiochemical properties of Trichoderma longibrachiatum DSMZ 16517-synthesized silver nanoparticles for the mitigation of halotolerant sulphate-reducing bacteria. Journal of Applied Microbiology, 126(1), 138–154.

    Article  CAS  Google Scholar 

  • Pal, G., Rai, P., & Pandey, A. (2019). Green synthesis of nanoparticles: A greener approach for a cleaner future. In Green synthesis, characterization and applications of nanoparticles (pp. 1–26). Amsterdam: Elsevier.

    Google Scholar 

  • Patra, S., et al. (2015). Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Materials Science and Engineering C: Materials for Biological Applications, 53, 298–309.

    Google Scholar 

  • Patrick, T. S., Naphtaly, C., Moro Ouma Stephanus, M. O., et al. (2019). Application of nanoparticles in biofuels, An overview. Fuel, 237, 380–397.

    Article  CAS  Google Scholar 

  • Pestovsky, Y. S., & Martínez-Antonio, A. (2017). The use of nanoparticles and Nanoformulations in agriculture. Journal of Nanoscience and Nanotechnology, 17, 8699–8630.

    Article  CAS  Google Scholar 

  • Philip, D., Unni, C., Aromal, A., et al. (2011). Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 78, 899–904.

    Article  CAS  Google Scholar 

  • Poopathi, S., De Britto, L. J., Praba, V. L., et al. (2015). Synthesis of silver nanoparticles from Azadirachta indica—A most effective method for mosquito control. Environmental Science and Pollution Research, 22, 2956–2963.

    Article  CAS  Google Scholar 

  • Pradhan, S., Roy, I., Lodh, G., et al. (2013). Entomotoxicity and biosafety assessment of PEGylated acephate nanoparticles: A biologically safe alternative to neurotoxic pesticides. Journal of Environmental Science and Health, Part B, 48, 559.

    Article  CAS  Google Scholar 

  • Pugazhendhi, A., Prabhu, R., Muruganantham, K., Shanmuganathan, R., & Natarajan, S. (2019). Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. Journal of Photochemistry and Photobiology, 190, 86–97.

    Article  CAS  Google Scholar 

  • Rai, M., Ingle, A. P., Birla, S., et al. (2015). Strategic role of selected noble metal nanoparticles in medicine. Critical Review of Microbiology. Informa Healthcare USA early online, pp. 1–24.

    Google Scholar 

  • Rajeshkumar, S., Ponnanikajamideen, M., Malarkodi, C., et al. (2014). Microbe-mediated synthesis of antimicrobial semiconductor nanoparticles by marine bacteria. Journal of Nanostructure and Chemistry, 4(2), 96.

    Article  Google Scholar 

  • Ramalingmam, P., Muthukrishnan, S., & Thangaraj, P. (2015). Biosynthesis of silver nanoparticles using an endophytic fungus, Curvularialunata and its antimicrobial potential. Journal of Nanoscience and Nanoengineering, 1, 241–247.

    Google Scholar 

  • Rangayasami, S., Kannan, K., Joshi, S., & Subban, M. (2020). Bioengineered silver nanoparticles using Elytraria acaulis (L.f.) Lindau leaf extract and its biological applications. Biocatalysis and Agricultural Biotechnology, 27, 101690.

    Article  Google Scholar 

  • Ravishankar R. V. and Jamuna B. A. (2011). Nanoparticles and their potential application as antimicrobials Science against microbial pathogens, communicating current research and technological advance A, Méndez_Vilas (Ed) 197–209.

    Google Scholar 

  • Razavi, M., Salahinejad, E., Fahmy, M., et al. (2015). Green chemical and biological synthesis of nanoparticles and their biomedical applications. In Green processes for nanotechnology (pp. 207–235). Cham: Springer.

    Chapter  Google Scholar 

  • Reidy, B., Haase, A., Luch, A., et al. (2013). Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials, 6, 2295–2350.

    Article  CAS  Google Scholar 

  • Renuka, R., Renuka, D. K., Sivakami, M., et al. (2020). Biosynthesis of silver nanoparticles using Phyllanthus emblica fruit extract for antimicrobial application. Biocatalysis and Agricultural Biotechnology, 24, 101567.

    Article  Google Scholar 

  • Riddin, T. L., Gericke, M., & Whiteley, C. G. (2006). Analysis of the inter-and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology, 17(14), 3482.

    Article  CAS  Google Scholar 

  • Ruffini Castiglione, M., Giorgetti, L., Cremonini, R., et al. (2014). Impact of TiO2 nanoparticles on Vicia narbonensis L.: Potential toxicity effects. Protoplasma, 251, 1471–1479.

    Article  CAS  Google Scholar 

  • Saravanakumar, K., Shanmugam, S., Varukattu, N. B., et al. (2019). Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. Journal of Photochemistry and Photobiology. B, 190, 103–109.

    Article  CAS  Google Scholar 

  • Selvakumar, R., Seethalakshmi, N., Thavamani, P., et al. (2014). Recent advances in the synthesis of inorganic nano/microstructures using microbial biotemplates and their applications. RSC Advances, 4(94), 52156–52169.

    Article  CAS  Google Scholar 

  • Sengani, M., Grumezescu, A. M., & Rajeswari, V. D. (2017). Recent trends and methodologies in gold nanoparticle synthesis–a prospective review on drug delivery aspect. Open Nano, 2, 37–46.

    Google Scholar 

  • Shaik, M. R., Khan, M., Kuniyil, M., et al. (2018). Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L, extract and their microbicidal activities. Sustainability, 10, 913.

    Article  CAS  Google Scholar 

  • Singh, R., & Nalwa, H. S. (2011). Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer Nanodrugs. Journal of Biomedical Nanotechnology, 7(4), 489–503.

    Article  CAS  Google Scholar 

  • Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34(7), 588–599.

    Article  CAS  Google Scholar 

  • Solgi, M. (2012). Application of nanotechnology and “Smart Packaging” in marketing and postharvest of cut flowers. In First Nanotechnology and Its Application in Agriculture and Natural Resources Conference, May 15–16, Karaj, Iran.

    Google Scholar 

  • Solgi, M. (2014). Evaluation of plant-mediated silver nanoparticles synthesis and its application in postharvest physiology of cut flowers. Physiology and Molecular Biology of Plants, 20, 279–285.

    Article  CAS  Google Scholar 

  • Soni, N., & Prakash, S. (2015). Antimicrobial and mosquitocidal activity of microbial synthesized silver nanoparticles. Journal of Parasitology Research, 114(3), 1023–1030.

    Article  Google Scholar 

  • Suryavanshi, P., Pandit, R., Gade, A., et al. (2017). Colletotrichum sp.-mediated synthesis of sulphur and aluminium oxide nanoparticles and its in vitro activity against selected food-borne pathogens. LWT - Food Science and Technology, 81, 188–194.

    Article  CAS  Google Scholar 

  • Xiao, H., Xu, L., Xiao, Z., et al. (2019). Biological metabolism synthesis of metal oxides nanorods from bacteria as a biofactory toward high-performance lithium-ion battery anodes. Small, 15(38), e1902032.

    Article  CAS  Google Scholar 

  • Zhang, Y. J., Huang, R., Zhu, X. F., et al. (2012). Synthesis, properties, and optical applications of noble metal nanoparticle-biomolecule conjugates. Materials Science, 57, 238–246.

    Google Scholar 

  • Zinjarde, S., Apte, M., Mohite, P., & Kumar, A. R. (2014). Yarrowia lipolytica and pollutants: Interactions and applications. Biotechnology Advances, 32(5), 920–933.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Shyama Roy (Principal, J.D.W.C. Patna) for her immense support throughout.

Conflicts of Interest

The authors declare that there is no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenu Gupta .

Editor information

Editors and Affiliations

Ethics declarations

This chapter does not carry any studies with human participants or animals performed by any of the authors. All the articles reviewed for this manuscript have been properly cited.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, M., Seema, K. (2021). Living Nano-factories: An Eco-friendly Approach Towards Medicine and Environment. In: Pal, K. (eds) Bio-manufactured Nanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-030-67223-2_6

Download citation

Publish with us

Policies and ethics