Skip to main content

Low Cost and User Friendly IoT Laboratory: Design and Implementation

  • Conference paper
  • First Online:
Visions and Concepts for Education 4.0 (ICBL 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1314))

Abstract

The Internet of things (IoT) is the main technology enabling the fourth industrial revolution. Huge demand for engineers with strong IoT skills and competencies is expected in the near future. There is an urgent need to teach the foundation of IoT technologies in the undergraduate engineering curriculum using experiential and project-based learning methods with significant use of hardware, software, and cloud platforms. This paper proposes a low cost and easy to use IoT laboratory that introduces the challenging and multidisciplinary subject of Cloud Computing and IoT to engineering students with minimal pre-requisites. Widely available software and cloud platforms are exploited to enhance teaching an introductory IoT course. Furthermore, a blended teaching approach that includes lectures, instructor-led labs, and project-based learning is described. The labs were used to teach third-year students of the Automation Engineering Technology program at McMaster University. Relevant student course evaluation results are provided to show student response to the learning experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Veneri, G., Capasso, A.: Hands-On Industrial Internet of Things: Create a Powerful Industrial IoT Infrastructure Using Industry 4.0. Packt Publishing, United Kingdom (2018)

    Google Scholar 

  2. Puri, I.: Tomorrow’s engineers need to learn IoT (2017). https://www.design-engineering.com/features/tomorrows-engineers-iot/

  3. Jeong, G.M., Truong, P.H., Lee, T.Y., Choi, J.W., Lee, M.: Course design for Internet of Things using lab of things of microsoft research. In: Proceedings-Frontiers in Education Conference, FIE (2016)

    Google Scholar 

  4. Kucuk, K., Bayilmi, C., Msongaleli, D.L.: Designing real-time IoT system course: prototyping with cloud platforms, laboratory experiments and term project. Int. J. Electr. Eng. Educ. (2019)

    Google Scholar 

  5. Poongothai, M., Subramanian, P.M., Rajeswari, A.: Design and implementation of IoT based smart laboratory. In: 2018 5th International Conference on Industrial Engineering and Applications (ICIEA), pp. 169–173 (2018)

    Google Scholar 

  6. Rout, K.K., Mishra, S., Routray, A.: Development of an Internet of Things (IoT) based introductory laboratory for under graduate engineering students. In: Proceedings-2017 International Conference on Information Technology, ICIT 2017, pp. 113–118, Bhubaneswar, Odisha, India (2017)

    Google Scholar 

  7. Guerra, J.G., Perez, A.F.: Implementation of a robotics and IoT laboratory for undergraduate research in computer science courses. In: Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE, p. 369, Arequipa, Peru (2016)

    Google Scholar 

  8. Bhadoriya, R., Chattopadhyay, M.K., Dandekar, P.W.: Low cost IoT for laboratory environment. In: 2016 Symposium on Colossal Data Analysis and Networking, CDAN 2016, Indore, Madhya Pradesh, India (2016)

    Google Scholar 

  9. Centea, D., Singh, I., Elbestawi, M.: Framework for the Development of a Cyber-Physical Systems Learning Centre BT-Online Engineering & Internet of Things. Presented at the (2018)

    Google Scholar 

  10. Elbestawi, M., Centea, D., Singh, I., Wanyama, T.: SEPT learning factory for industry 4.0 education and applied research. Procedia Manuf. 23, 249–254 (2018). https://doi.org/10.1016/j.promfg.2018.04.025

    Article  Google Scholar 

  11. Wave, F.: The forrester wave industrial IoT software platforms, Q3 2018 (2018)

    Google Scholar 

  12. HiveMQ Homepage. https://www.hivemq.com/public-mqtt-broker/

  13. Nelson, N.: Achieving graduate attributes through project-based learning. Proc. Can. Eng. Educ. Assoc. 1–7 (2015). https://doi.org/10.24908/pceea.v0i0.5923

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa M. Soliman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soliman, M.M., Singh, I. (2021). Low Cost and User Friendly IoT Laboratory: Design and Implementation. In: Auer, M.E., Centea, D. (eds) Visions and Concepts for Education 4.0. ICBL 2020. Advances in Intelligent Systems and Computing, vol 1314. Springer, Cham. https://doi.org/10.1007/978-3-030-67209-6_2

Download citation

Publish with us

Policies and ethics