Skip to main content

Enhancing Practical Learning in Undergraduate Chemical Engineering Courses via Integration of Commercial Process Modelling Software

  • Conference paper
  • First Online:
Visions and Concepts for Education 4.0 (ICBL 2020)

Abstract

Integrating commercial software packages into undergraduate engineering courses is seen as a beneficial pedagogical approach for students in two ways. First, it facilitates an active learning environment; second, it gives students access to modern technical tools. Here, we present the key outcomes from the incorporation of software packages in two chemical engineering courses: a commercial hydraulic modelling software (PIPE-FLO; Engineered Software) was used in a Fluid Mechanics course, and a freely-available water treatment design software (WAVE; DuPont) was used in a Separations course. For each software package, a set of self-guided tutorials were created with step-by-step instructions (including screenshots/diagrams) and both closed- and open-ended practice problems that were designed to improve the learning outcomes. Also, a set of supplementary workshops were given to demonstrate the practicality of the software. This approach was expected to promote a greater understanding of course material by creating a low-risk environment where the students can explore and expand their knowledge. Over the past five years of integrating PIPE-FLO into the Fluid Mechanics course, the responses from the students have been overwhelmingly positive. Our approach has led to the successful internalization of course content, as evidenced by accreditation metrics. We anticipate that continually refining these course materials—especially with regards to the WAVE software—will see students develop a greater understanding of the course content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Metrics are not available for the Separations course because it is an elective course and thus is not evaluated by the CEAB.

References

  1. Keith, J., Silverstein, D., Visco, D.: Ideas to consider for chemical engineering educators teaching a new ‘old’ course: freshman and sophomore level courses. In: Proceedings of the 2008 American Society for Engineering Education Annual Conference & Exposition, vol. 1147 (2008)

    Google Scholar 

  2. Georgiev, H., Ivanov, A.: Active learning in mechanical engineering education using innovative software tool integrated in solidworks. In: 18th International Conference on Information Technology Based Higher Education and Training (ITHET), Germany, pp. 1–5. IEEE (2019)

    Google Scholar 

  3. Akkoyun, O.: New simulation tool for teaching–learning processes in engineering education. Comput. Appl. Eng. Educ. 25(3), 404–410 (2017)

    Article  Google Scholar 

  4. Shaikh, F.U.A.: Role of commercial software in teaching finite element analysis at undergraduate level: a case study. Eng. Educ. 7(2), 2–6 (2012)

    Article  Google Scholar 

  5. Campbell, S., Latulippe, D.R.: Towards improved learning of fluid mechanics via integration of a commercial software package into an undergraduate course. In: Proceedings of the Canadian Engineering Education Association (CEEA) (2015)

    Google Scholar 

  6. Towler, G., Sinnott, R.: Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, 1st edn. Elsevier, New York (2008)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Engineered Software Inc. for generously providing the PIPE-FLO licenses and DuPont for their technical support in this initiative. For their funding support, we thank the North American Membrane Society (in the form of an Education Innovation Fellowship) and the MacPherson Institute at McMaster University (in the form of a Teaching and Learning Grant). Also from McMaster University, we thank Mike Clarke and the University Technology Services team for their help in maintaining the software in the campus computer labs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan J. LaRue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

LaRue, R.J., Monaco, I., Latulippe, D.R. (2021). Enhancing Practical Learning in Undergraduate Chemical Engineering Courses via Integration of Commercial Process Modelling Software. In: Auer, M.E., Centea, D. (eds) Visions and Concepts for Education 4.0. ICBL 2020. Advances in Intelligent Systems and Computing, vol 1314. Springer, Cham. https://doi.org/10.1007/978-3-030-67209-6_14

Download citation

Publish with us

Policies and ethics