Skip to main content

Measuring Students’ Metacognitive Knowledge of Mathematical Modelling

  • Chapter
Mathematical Modelling Education in East and West

Abstract

The support of modelling in school is a common issue in investigations and in the relevant literature on modelling competence. In this chapter, research is presented on constructing a test instrument for assessing metacognitive knowledge of modelling. Based on a theoretical definition of the term “metacognitive knowledge” and its domain-specific connection to mathematical modelling, a large number of items were developed. The scalability and possible reduction of items are analysed in this chapter. The process of item construction and evaluation is described in detail. With the help of a one-parameter Rasch analysis, it can be deduced that a selection of items is suitable for measuring at least some aspects of metacognitive knowledge of mathematical modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen, E. B. (1973). Conditional inference for multiple-choice questionnaires. The British Journal of Mathematical and Statistical Psychology, 26, 31–44.

    Article  Google Scholar 

  • Blum, W., & Leiss, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 222–231). Chichester, UK: Horwood.

    Google Scholar 

  • Bolisani, E., & Bratianu, C. (2018). The elusive definition of knowledge. In Emergent knowledge strategies (Vol. 4, pp. 1–22). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-60657-6_1.

  • Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Boone, W. J. (2016). Rasch Analysis for instrument development: Why, when, and how? CBE—Life Sciences Education, 15(4), rm4. https://doi.org/10.1187/cbe.16-04-0148.

  • Cohors-Fresenborg, E., Kramer, S., Pundsack, F., Sjuts, J., & Sommer, N. (2010). The role of metacognitive monitoring in explaining differences in mathematics achievement. ZDM—Mathematics Education, 42, 231–244. https://doi.org/10.1007/s11858-010-0237-x.

    Article  Google Scholar 

  • English, L. D., Ärlebäck, J. B., & Mousoulides, N. (2016). Reflections on progress in mathematical modelling research. In Á. Gutiérrez, G. C. Leder, & P. Boero (Eds.), The second handbook of research on the psychology of mathematics education: The journey continues (pp. 383–413). Rotterdam: Sense Publishers.

    Chapter  Google Scholar 

  • Flavell, J. H. (1979). Metacognition and cognitive monitoring A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906–911.

    Article  Google Scholar 

  • Flavell, J. H. (1981). Cognitive monitoring. In W. P. Dickson (Ed.), Children’s oral communication skills (pp. 35–60). New York: Academic Press.

    Google Scholar 

  • Hankeln, C., Adamek, C., & Greefrath, G. (2019). Assessing sub-competencies of mathematical modelling - Development of a new test instrument. In G. A. Stillman & J. P. Brown (Eds.), Lines of inquiry in mathematical modelling research in education (pp. 143–160). Cham: Springer International. https://doi.org/10.1007/978-3-030-14931-4.

  • Kaiser, G. (2007). Modelling and modelling competencies in school. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 110–119). Chichester, UK: Horwood Publishing.

    Chapter  Google Scholar 

  • Klock, H., & Wess, R. (2018). Lehrerkompetenzen zum mathematischen Modellieren. Test zur Erfassung von Aspekten professioneller Kompetenz zum Lehren mathematischen Modellierens. WWU-Publikationsserver MIAMI. https://nbn-resolving.org/urn:nbn:de:hbz:6-35169679459. Accessed 20 March 2019

  • Maaß, K. (2007). Modelling in class: What do we want the students to learn? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 63–78). Chichester, UK: Horwood Publishing.

    Chapter  Google Scholar 

  • Mislevy, R. J. (2017). On measurement in educational assessment. In C. Secolsky & D. B. Denision (Eds.), Handbook on measurment, assessment, and evaluation in higer education (2nd ed., pp. 11–32). London: Routledge.

    Chapter  Google Scholar 

  • Molina-Toro, J., Rendón-Mesa, P., & Villa-Ochoa, J. (2019). Research trends in digital technologies and modeling in mathematics education. Eurasia Journal of Mathematics, Science and Technology Education, 15(8). https://doi.org/10.29333/ejmste/108438.

  • Nelson, T. O., & Narens, L. (1990). Metamemory: A theoretical framework and new findings. In G.H. Bower (Ed.), Psychology of learning and motivation (Vol. 26, pp. 125–173). New York: Academic Press. https://doi.org/10.1016/S0079-7421(08)60053-5.

  • OECD. (2012). PISA 2009 technical report. Paris: OECD.

    Book  Google Scholar 

  • Pintrich, P. R., Smith, D. A. F., Garcia, T., & Mckeachie, W. J. (1993). Reliability and predictive validity of the motivated strategies for learning questionnaire (MSLQ). Educational and Psychological Measurement, 53, 801–813.

    Article  Google Scholar 

  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Nielsen and Lydiche.

    Google Scholar 

  • Schoenfeld, A. H. (1987). What’s all the fuss about metacognition? In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 189–215). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Schukajlow, S., Kolter, J., & Blum, W. (2015). Scaffolding mathematical modelling with a solution plan. ZDM—Mathematics Education, 47(7), 1241–1254. https://doi.org/10.1007/s11858-015-0707-2.

    Article  Google Scholar 

  • Scott, B. M., & Levy, M. (2013). Metacognition: examining the components of a fuzzy concept. Educational Research Journal, 2(2), 120–131. https://doi.org/10.5838/erej.2013.22.04.

    Article  Google Scholar 

  • Stillman, G. (2004). Strategies employed by upper secondary students for overcoming or exploiting conditions affecting accessibility of applications tasks. Mathematics Education Research Journal, 16(1), 41–71. https://doi.org/10.1007/BF03217390.

    Article  Google Scholar 

  • Stillman, G. A., & Galbraith, P. L. (1998). Applying mathematics with real world connections: Metacognitive characteristics of secondary students. Educational Studies in Mathematics, 36, 157–189.

    Article  Google Scholar 

  • Tanner, H., & Jones, S. (1995). Developing metacognitive skills in mathematical modelling: A Socio-constructivist interpretation. In C. Sloyer, W. Blum, & I. Huntley (Eds.), Advances and perspectives in the teaching of mathematical modelling and applications (pp. 61–70). Yorklyn: Water Street Mathematics.

    Google Scholar 

  • Veenman, M. V. J. (2007). The assessment and instruction of self-regulation in computer-based environments: A discussion. Metacognition and Learning, 2(2–3), 177–183. https://doi.org/10.1007/s11409-007-9017-6.

    Article  Google Scholar 

  • Vorhölter, K. (2018). Conceptualization and measuring of metacognitive modelling competencies: Empirical verification of theoretical assumptions. ZDM—Mathematics Education, 50(1-2), 343–354. https://doi.org/10.1007/s11858-017-0909-x.

    Article  Google Scholar 

  • Vorhölter, K., Krüger, A., & Wendt, L. (2019). Metacognition in mathematical modeling—An overview. In S. A. Chamberlin & B. Sriraman (Eds.), Affect in mathematical modeling (pp. 29-51). Cham: Springer International. https://doi.org/10.1007/978-3-030-04432-9.

  • Wu, M. L., Adams, R. J., Wilson, M. R., & Haldane, S. A. (2007). ACER ConQuest version 2.0: Generalised item response modelling software. ACER Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Frenken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Frenken, L. (2021). Measuring Students’ Metacognitive Knowledge of Mathematical Modelling. In: Leung, F.K.S., Stillman, G.A., Kaiser, G., Wong, K.L. (eds) Mathematical Modelling Education in East and West. International Perspectives on the Teaching and Learning of Mathematical Modelling. Springer, Cham. https://doi.org/10.1007/978-3-030-66996-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66996-6_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66995-9

  • Online ISBN: 978-3-030-66996-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics