Skip to main content

A Method for Welding Track Correction Based on Emulational Laser and Trajectory

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12595))

Included in the following conference series:

  • 1469 Accesses

Abstract

In this paper, a method for welding track correction based on emulational laser and trajectory are introduced. The proposed method is divided into two parts: seam tracking and trajectory correction. In the seam tracking method, by using the prior information of emulational laser stripes which are generated by the simulation software and affine transformation of emulational laser stripes, the real seam point can be detected. And then the trajectory correction method mainly consists of three steps: pre-processing, coarse matching and presice matching by using Iterative Closest Point Matching (ICP). For various conditions and workpieces, the corresponding experiments are conducted in this paper. Experimental results demonstrate that the method can meet the requirement of the internal seams tracking of workpiece and accuracy of welding track correction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yanling, X., Huanwei, Yu., Zhong, J., Lin, T., Chen, S.: Real-time seam tracking control technology during welding robot GTAW process based on passive vision sensor. J. Mater. Process. Technol. 212(8), 1654–1662 (2012)

    Google Scholar 

  2. Ma, H., Wei, S., Sheng, Z., Lin, T., Chen, S.: Robot welding seam tracking method based on passive vision for thin plate closed-gap butt welding. Int. J. Adv. Manuf. Technol. 48(9), 945–953 (2010). https://doi.org/10.1007/s00170-009-2349-4

    Article  Google Scholar 

  3. Zhang, Y., Gao, X.: Analysis of characteristics of molten pool using cast shadow during high-power disk laser welding. Int. J. Adv. Manuf. Technol. 70(9), 1979–1988 (2013). https://doi.org/10.1007/s00170-013-5442-7

    Article  Google Scholar 

  4. Xiao, R., Yanling, X., Hou, Z., Chen, C., Chen, S.: An adaptive feature extraction algorithm for multiple typical seam tracking based on vision sensor in robotic arc welding. Sensors Actuat. A Phys. 297, 111533 (2019)

    Google Scholar 

  5. Geng, J.: Structured-light 3D surface imaging: a tutorial. Adv. Optics Photon. 3(2), 128–160 (2011)

    Google Scholar 

  6. Fan, J., Jing, F., Yang, L., Long, T., Tan, M.: A precise seam tracking method for narrow butt seams based on structured light vision sensor. Opt. Laser Technol. 109, 616–626 (2019)

    Google Scholar 

  7. Zeng, J., et al.: A weld position recognition method based on directional and structured light information fusion in multi-layer/multi-pass welding. Sensors 18(1), 129 (2018)

    Google Scholar 

  8. Muhammad, J., Altun, H., Abo-Serie, E.: A robust butt welding seam finding technique for intelligent robotic welding system using active laser vision. Int. J. Adv. Manuf. Technol. 94(1), 13–29 (2016). https://doi.org/10.1007/s00170-016-9481-8

    Article  Google Scholar 

  9. Gu, W.P., Xiong, Z.Y., Wan, W.: Autonomous seam acquisition and tracking system for multi-pass welding based on vision sensor. Int. J. Adv. Manuf. Technol. 69(1), 451–460 (2013). https://doi.org/10.1007/s00170-013-5034-6

    Article  Google Scholar 

  10. Chen, X.Z., Chen, S.B.: The autonomous detection and guiding of start welding position for arc welding robot. Ind. Robot Int. J. 37(1), 70–78 (2010)

    Google Scholar 

  11. Huang, W., Kovacevic, R.: Development of a real-time laser-based machine vision system to monitor and control welding processes. Int. J. Adv. Manuf. Technol. 63(1), 235–248 (2012). https://doi.org/10.1007/s00170-012-3902-0

    Article  Google Scholar 

  12. Yang, S.-M., Cho, M.-H., Lee, H.-Y., Cho, T.-D.: Weld line detection and process control for welding automation. Meas. Sci. Technol. 18(3), 819–826 (2007)

    Google Scholar 

  13. Xu, D., Jiang, Z., Wang, L., Tan, M.: Features extraction for structured light image of welding seam with arc and splash disturbance. In: ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004, vol. 3, pp. 1559–1563 (2004)

    Google Scholar 

  14. Chu, H.-H., Wang, Z.-Y.: A vision-based system for post-welding quality measurement and defect detection. Int. J. Adv. Manuf. Technol. 86(9), 3007–3014 (2016). https://doi.org/10.1007/s00170-015-8334-1

    Article  Google Scholar 

  15. Kiddee, P., Fang, Z., Tan, M.: An automated weld seam tracking system for thick plate using cross mark structured light. Int. J. Adv. Manuf. Technol. 87, 3589–3603 (2016). https://doi.org/10.1007/s00170-016-8729-7

    Article  Google Scholar 

  16. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings 1996 International Conference Knowledge Discovery and Data Mining (KDD 1996), pp. 226–231 (1996)

    Google Scholar 

  17. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. Sensor Fusion IV Control Paradigms Data Struct. 1611, 586–606 (1992)

    Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the reviewers comments. This work is supported by National Natural Science Foundation of China (Grant Nos. U1713207 and 52075180), Science and Technology Program of Guangzhou (Grant Nos. 201904020020), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nianfeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, N., Yang, J., Zhong, K., Zhang, X. (2020). A Method for Welding Track Correction Based on Emulational Laser and Trajectory. In: Chan, C.S., et al. Intelligent Robotics and Applications. ICIRA 2020. Lecture Notes in Computer Science(), vol 12595. Springer, Cham. https://doi.org/10.1007/978-3-030-66645-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66645-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66644-6

  • Online ISBN: 978-3-030-66645-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics