J. Stubbe, J. Mock, S. Wischmann, The Acceptance of Service Robots: Tools and Strategies for the Successful Deployment in Companies. Study commissioned by BMWi as part of the PAiCE Technology Programme (iit-Institut für Innovation und Technik in der VDI/VDE Innovation + Technik GmbH, Berlin, 2019)
Google Scholar
D. Brugali (ed.) Software Engineering for Experimental Robotics. Springer Tracts in Advanced Robotics (Springer, Berlin, 2007). ISBN: 3540689494
Google Scholar
M. Hägele, N. Blümlein, O. Kleine, EFFIROB - Wirtschaftlichkeitsanalysen neuartiger Servicerobotik-Anwendungen und ihre Bedeutung für die Robotik-Entwicklung (Eine Analyse der Fraunhofer-Institute IPA und ISI im Auftrag des BMBF, 2011)
Google Scholar
SPARC - The Partnership for Robotics in Europe. Strategic Research Agenda (SRA) for Robotics in Europe 2014–2020. euRobotics aisbl (2013 & 2014)
Google Scholar
D. Mourtzis, Challenges and future perspectives for the life cycle of manufacturing networks in the mass customisation era. Logist. Res. 9, 2 (2016). https://doi.org/10.1007/s12159-015-0129-0
CrossRef
Google Scholar
M. Teulieres, J. Tilley, L. Bolz, P.M. Ludwig-Dehm, S. Wägner, Industrial Robotics – Insights into the Sector’s Future Growth Dynamics (McKinsey & Company, New York, 2019)
Google Scholar
J.F. Moore, Predators and prey: a new ecology of competition. Harv. Bus. Rev. 71(3), 75–83 (1993)
Google Scholar
E. Kelly, Business Ecosystems Come of Age. Part of the Business Trends Series (Deloitte University Press, New York, 2015). DUP_1048-Business-ecosystems-come-of-age_MASTER_FINAL.pdf
Google Scholar
S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, Dynamic software product lines. Computer 41(4), 93–95 (2008)
CrossRef
Google Scholar
J. Bosch, From software product lines to software ecosystems, in Proceedings of the 13th Int. Software Product Line Conference (2009), pp. 111–119. https://doi.org/10.1145/1753235.1753251
W. Mahnke, S.-H. Leitner, M. Damm, OPC Unified Architecture (Springer, New York, 2009). ISBN: 978-3-540-68898-3
CrossRef
Google Scholar
OPC Foundation Companion Specifications. https://opcfoundation.org/about/opc-technologies/opc-ua/ua-companion-specifications/
J. Bosch, P. Bosch-Sijtsema, From integration to composition: on the impact of software product lines, global development and ecosystems. J. Syst. Softw. 83(1), 67–76 (2010). ISSN:0164-1212. https://doi.org/10.1016/j.jss.2009.06.051
CrossRef
Google Scholar
C. Schlegel, A. Lotz, M. Lutz, D. Stampfer, J.F. Inglés-Romero, C. Vicente-Chicote, Model-driven software systems engineering in robotics: covering the complete life-cycle of a robot. Inf. Technol. 57(2), 85–98 (2015). De Gruyter, Oldenbourg
Google Scholar
L. Andrade, J.L. Fiadeiro, J. Gouveia, G. Koutsoukos, Separating computation, coordination and configuration. J. Softw. Mainten. Evol. Res. Pract. 14(5), 353–369 (2002)
CrossRef
Google Scholar
E.A. Lee, S.A. Seshia, Introduction to Embedded Systems: A Cyber-Physical Systems Approach, 2nd edn. (MIT Press, Cambridge, 2017)
MATH
Google Scholar
M. Lutz, D. Stampfer, A. Lotz, C. Schlegel, Service robot control architectures for flexible and robust real-world task execution: Best practices and patterns, in Informatik 2014, Workshop Roboter-Kontrollarchitekturen. LNI der GI (Springer, New York, 2014). ISBN:978-3-88579-626-8
Google Scholar
F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented Software Architecture, Volume 1, A System of Patterns (Wiley Press, Hoboken, 1996). ISBN: 978-0-471-95869-7
Google Scholar
RobMoSys Wiki. Cited 9. Aug 2020. https://robmosys.eu/wiki/
E. Scioni, N. Huebel, S. Blumenthal, A. Shakhimardanov, M. Klotzbücher, H. Garcia, H. Bruyninckx, Hierarchical hypergraphs for knowledge-centric robot systems: a composable structural meta-model and its domain specific language NPC4. JOSER - Spec. Iss. Domain-Spec. Lang. Mod. Robot. Syst. 7(1), 55–74 (2016)
Google Scholar
RobMoSys Wiki Modeling Section. Cited 9. Aug 2020 https://robmosys.eu/wiki/modeling:<title of subordinate document>
G. Engels, A. Schürr, Encapsulated hierarchical graphs, graph types, and meta types. Electron. Notes Theor. Comput. Sci. 2, 101–109 (1995)
CrossRef
Google Scholar
M. Levene, A. Poulovassilis, An object-oriented data model formalised through hypergraphs. Data Knowl. Eng. 6, 205–224 (1991)
CrossRef
Google Scholar
C.A. Szyperski, D. Gruntz, S. Murer, Component Software - Beyond Object-Oriented Programming. Addison-Wesley Component Software Series, 2nd edn. (Addison-Wesley, Boston, 2002)
Google Scholar
I. Crnkovic, S. Sentilles, A. Vulgarakis, M.R.V. Chaudron, A classification framework for software component models. IEEE Trans. Softw. Eng. 37(5), 593–615 (2011). https://doi.org/10.1109/TSE.2010.83
CrossRef
Google Scholar
C. Schlegel, A. Lotz, A. Steck, SmartSoft - The State Management of a Component. Technical Report 2011/01. Hochschule Ulm, Germany (2011) ISSN:1868-3452. http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf
C. Schlegel, Navigation and Execution for Mobile Robots in Dynamic Environments: An Integrated Approach. PhD thesis, Uni Ulm (2004)
Google Scholar
D. Stampfer, A. Lotz, M. Lutz, C. Schlegel, The SmartMDSD toolchain: an integrated MDSD workflow and Integrated Development Environment (IDE) for Robotics Software. JOSER - Spec. Iss. Domain-Spec. Lang. Mod. Robot. Syst. 7(1), 3–19 (2016)
Google Scholar
M. Lutz, Model-Driven Behavior Development for Service Robotic Systems: Bridging the Gap between Software- and Behavior-Models (work in progress)
Google Scholar
A. Lotz, A. Steck, C. Schlegel, Runtime monitoring of robotics software components: increasing robustness of service robotic systems, in International Conference on Advanced Robotics (ICAR ’11), Tallinn, Estonia (2011)
Google Scholar
GitHub Repository with API specifications. Cited 9. Aug 2020. https://github.com/Servicerobotics-Ulm/SmartSoftComponentDeveloperAPIcpp
C. Schlegel, A. Lotz, ACE/SmartSoft - Technical Details and Internals. Technical Report 2010/01, Hochschule Ulm, Germany (2010). ISSN:1868-3452. http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf
A. Lotz, A. Hamann, R. Lange, C. Heinzemann, J. Staschulat, V. Kesel, D. Stampfer, M. Lutz, C. Schlegel, Combining robotics component-based model-driven development with a model-based performance analysis, in Proceedings of the IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR) (2016), pp. 170–176
Google Scholar
The Eclipse-based Open-Source SmartMDSD Toolchain. Cited 9. Aug 2020. https://wiki.servicerobotik-ulm.de/getting-started-guide. https://projects.eclipse.org/projects/modeling.smartmdsd
A. Steck, C. Schlegel, Managing execution variants in task coordination by exploiting design-time models at runtime, in Proceedings of the IEEE/RSJ International Conference on Robotics and Intelligent Systems (IROS), San Francisco, USA, September (2011)
Google Scholar
SmartMDSD Tutorials. Cited 9. Aug 2020 https://wiki.servicerobotik-ulm.de/tutorials:<title of subordinate document>
A. Elkady, T. Sobh, Robotics middleware: A comprehensive literature survey and attribute-based bibliography. J. Robot. (2012). Article ID 959013. https://doi.org/10.1155/2012/959013. https://core.ac.uk/download/pdf/52956509.pdf
A. Ramaswamy, B. Monsuez, A. Tapus, Model-driven software development approaches in robotics research, in Proceedings of the 6th International Workshop on Modeling in Software Engineering (MiSE), June (2014), pp. 43–48. https://doi.org/10.1145/2593770.2593781
D. Akdur, V. Garousi, O. Demirors, A survey on modeling and model-driven engineering practices in the embedded software industry. J. Syst. Arch. (2018). https://doi.org/10.1016/j.sysarc.2018.09.007
E. Abraham, H. Kress-Gazit, L. Natale, A. Tacchella (organizers), Computer-Assisted Engineering for Robotics and Autonomous Systems. Dagstuhl-Seminar 17071, 12. - 17.02.2017. https://www.dagstuhl.de/17071
D. Stampfer, Contributions to System Composition using a System Design Process driven by Service Definitions for Service Robotics. PhD thesis, Technische Uni München (2018)
Google Scholar
A. Lotz, Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a Component-Based Robotic Software System. PhD thesis, Technische Uni München (2018)
Google Scholar
The RobMoSys Discourse Forum. Cited 9. Aug 2020. https://discourse.robmosys.eu/