Skip to main content

Teleportation of the Bell States on IBM Q Computers Under Their Hardware Errors

  • Conference paper
  • First Online:
Distributed Computer and Communication Networks: Control, Computation, Communications (DCCN 2020)

Abstract

We present and analyze our experimental results on teleportation of two-qubit maximally entangled Bell states on the NISQ (Noisy Intermediate-Scale Quantum) five-qubit processors IBM Q Burlington, Essex, London, Ourense, Rome, Santiago, Vigo and Yorktown. The main obstacle in practical implementation of quantum algorithms on the NISQ computers is caused by hardware errors which depend on the depth of the underlying circuit and its gates. We suggest several modifications of the original teleportation protocol to optimize the depths of its circuit and the connectivity of hardware qubits. In addition, we compare the dynamics of the output probabilities on the processor IBM Q Yorktown within one and a half years of our use of this processor. They clearly demonstrate the significant progress made in the hardware of quantum computers.

This work was supported by the Grant from the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-10-2020-117).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. 10th Anniversary Edition. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  2. Peruzzo, A., et al.: A variational eigenvalue solver on a quantum processor. Nat. Commun. 5, 4213 (2014)

    Article  Google Scholar 

  3. McArdle, S., Endo, S.: Quantum computational chemistry. Rev. Mod. Phys. 92, 015003 (2020)

    Article  MathSciNet  Google Scholar 

  4. Kandala, A., et al.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017)

    Article  Google Scholar 

  5. Uvarov, A.V., Kardashin, A.S., Biamonte, J.D.: Mashine learning phase transitions with a quantum processor. Phys. Rev. A. 102, 012415 (2020)

    Article  Google Scholar 

  6. QasmSimulator – Qiskit 0.21.0 documentation, https://qiskit.org/documentation/stubs/qiskit.providers.aer.QasmSimulator.html#qiskit.providers.aer.QasmSimulator. Accessed 15 Sept 2020

  7. Gorbachev, V.N., Trubilko, A.I.: Quantum teleportation of an Einstein-Podolsky-Rosen pair using an entanglement three-particle state. J. Exper. Theor. Phys. 118(5), 1036–1040 (2000)

    Google Scholar 

  8. Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  Google Scholar 

  9. Greenberger, D., Horne, M., Zeilinger, A.: Similarities and differences between two-particle and three-particle interference. Fortschr. Phys. 48(4), 243–252 (2000)

    Article  MathSciNet  Google Scholar 

  10. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314–062325 (2000)

    Google Scholar 

  11. Cao, Z.-L., Song, W.: Teleportation of a two-particle entangled state via W class states. Physica A: Stat. Mechanics Appl. 347, 177–183 (2005)

    Article  Google Scholar 

  12. Joo, J., Park, Y.-J., Oh, S., Kim, J.: Quantum teleportation via a W state. New J. Phys. 5, 136.1–136.9 (2003)

    Google Scholar 

  13. Ghosh, S., Kar, G., Roy, A., Sarkar, D. et al.: Entanglement teleportation through GHZ-class states. New J. Phys. 4, 48.1–48.9. (2002)

    Google Scholar 

  14. Tsai, C., Hwang, T.: Teleportation of a Pure EPR State via GHZ-like State. Int. J. Theor. Phys. 49, 1969–1975 (2010)

    Article  MathSciNet  Google Scholar 

  15. IBM Quantum Experience, https://www.ibm.com/quantum-computing/experience/. Accessed 20 Sept 2020

  16. Rajiuddin, S., Baishya, A., Behera, B.K., Panigrahi, P.K.: Experimental realization of quantum teleportation of an arbitrary two-qubit state using a four-qubit cluster state. Quantum Inf. Process. 19(3), 1–13 (2020). https://doi.org/10.1007/s11128-020-2586-x

    Article  Google Scholar 

  17. Li, D.-C., Cao, Z.-L.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47(3), 464–466 (2007)

    Article  MathSciNet  Google Scholar 

  18. Liu, Z., Zhou, L.: Quantum teleportation of a three-qubit state using a five-qubit cluster state. Int. J. Theor. Phys. 53(12), 4079–4082 (2014). https://doi.org/10.1007/s10773-014-2158-x

    Article  MATH  Google Scholar 

  19. Qiskit, https://qiskit.org/. Accessed 20 Sept 2020

  20. Sutor, R.S.: Dancing with Qubits: How quantum computing works and how it can change the world. Packt (2019)

    Google Scholar 

  21. Kjaergaard, M., et al.: Superconducting qubits: current state of play. Ann. Rev. Condensed Matter Phys. 11, 369–395 (2020)

    Article  Google Scholar 

  22. Cross, A.W., et al.: Validating quantum computers using randomized model circuits. Phys. Rev. A. 100(3), 032328 (2019)

    Article  Google Scholar 

  23. IBM Quantum Experience - Docs and Resources, https://quantum-computing.ibm.com/docs/manage/backends/. Accessed 15 Sept 2020

  24. StatevectorSimulator – Qiskit 0.21.0 documentation, https://qiskit.org/documentation/stubs/qiskit.providers.aer.StatevectorSimulator.html#qiskit.providers.aer.StatevectorSimulator. Accessed 15 Sept 2020

  25. Gerdt, V.P., Kotkova, E.A., Vorob’ev, V.V.: The teleportation of the Bell states has been carried out on the five-qubit quantum IBM computer. Phys. Particles Nuclei Lett. 16(6), 975–984 (2019). https://doi.org/10.1134/S1547477119060153

    Article  Google Scholar 

  26. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  27. Harper, R., Flammia, S.T.: Fault-tolerant logical gates in the IBM quantum experience. Phys. Rev. Lett. 122, 080504 (2019)

    Article  Google Scholar 

  28. Ball, H., Biercuk, M.J., Carvalho, A., et al.: Software tools for quantum control: Improving quantum computer performance through noise and error suppression. arXiv:2001.04060 (2020)

  29. Superconducting qubits: improving the performance of single qubit gates, https://docs.q-ctrl.com/boulder-opal/application-notes/superconducting-qubits-improving-the-performance-of-single-qubit-gates. Accessed 18 Sept 2020

Download references

Acknowledgements

The authors are deeply grateful to Michael Biercuk, Michael Hush and Andre Carvalho for informing us about error suppression research at Q-CTRL (https://docs.q-ctrl.com/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kotkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gerdt, V.P., Kotkova, E.A. (2020). Teleportation of the Bell States on IBM Q Computers Under Their Hardware Errors. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds) Distributed Computer and Communication Networks: Control, Computation, Communications. DCCN 2020. Communications in Computer and Information Science, vol 1337. Springer, Cham. https://doi.org/10.1007/978-3-030-66242-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66242-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66241-7

  • Online ISBN: 978-3-030-66242-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics