Skip to main content

Nanoparticle Biosynthesis and Interaction with the Microbial Cell, Antimicrobial and Antibiofilm Effects, and Environmental Impact

  • Chapter
  • First Online:
Nanomaterial Biointeractions at the Cellular, Organismal and System Levels

Abstract

Nanotechnology is a rapidly emerging field provoking immense research interests due to its wide applications in the areas of technology and science. Nanotechnology has enabled the synthesis and development of various metal nanoparticles (NPs) through physical, chemical, and biological methods. Biosynthesis of metal NPs using microbes has gained wide attention because of its ability to synthesize NPs in a simple, clean, cost-effective, and eco-friendly manner. Several types of metal NPs (such as silver, gold, zinc, titanium, iron) synthesized through extracellular or intracellular mechanisms possess low toxicity and antimicrobial properties, enabling its use in medical imaging, drug delivery, antibacterial and antiviral agents, and water treatments. The interactions of such metal nanoparticles with the extra- and intracellular structures of microbes (gram-positive and gram-negative bacteria) occur through membrane disruption and reorganization. These biosynthesized metal NPs exhibit strong antimicrobial and antibiofilm activity, and other impacts of quorum sensing and chemotaxis in cellular signaling pathways. The environmental impact of these metal NPs, particularly the toxicity of NPs, in marine organisms are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhamid, H. N., & Wu, H.-F. (2015). Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. TrAC Trends in Analytical Chemistry, 65, 30–46.

    Article  CAS  Google Scholar 

  • Abdulsattar, J. (2014). Effect of culture media on biosynthesis of titanium dioxide nanoparticles using lactobacillus crispatus. International Journal, 2(5), 1014–1021.

    Google Scholar 

  • Adams, L. K., Lyon, D. Y., & Alvarez, P. J. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 40(19), 3527–3532.

    Article  CAS  PubMed  Google Scholar 

  • Agarwala, M., Choudhury, B., & Yadav, R. (2014). Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens. Indian Journal of Microbiology, 54(3), 365–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir, 19(8), 3550–3553.

    Article  CAS  Google Scholar 

  • Ahmed, S., Chaudhry, S. A., & Ikram, S. (2017). A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. Journal of Photochemistry and Photobiology B: Biology, 166, 272–284.

    Article  CAS  Google Scholar 

  • Al-Zahrani, H., El-Waseif, A., & El-Ghwas, D. (2018). Biosynthesis and evaluation of TiO2 and ZnO nanoparticles from in vitro stimulation of lactobacillus johnsonii. Journal of Innovations in Pharmaceutical and Biological Sciences, 5, 16–20.

    CAS  Google Scholar 

  • Arakha, M., Saleem, M., Mallick, B. C., & Jha, S. (2015). The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Scientific Reports, 5, 9578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora, S., Jain, J., Rajwade, J., & Paknikar, K. (2009). Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicology and Applied Pharmacology, 236(3), 310–318.

    Article  CAS  PubMed  Google Scholar 

  • Asadishad, B., Chahal, S., Cianciarelli, V., Zhou, K., & Tufenkji, N. (2017). Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: Role of nanoparticle size and surface coating. Environmental Science: Nano, 4(4), 907–918.

    CAS  Google Scholar 

  • AshaRani, P., Low Kah Mun, G., Hande, M. P., & Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3(2), 279–290.

    Article  CAS  PubMed  Google Scholar 

  • Auffan, M., Achouak, W., Rose, J., Roncato, M.-A., Chaneac, C., Waite, D. T., Masion, A., Woicik, J. C., Wiesner, M. R., & Bottero, J.-Y. (2008). Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environmental Science & Technology, 42(17), 6730–6735.

    Article  CAS  Google Scholar 

  • Azam, A., Ahmed, A. S., Oves, M., Khan, M., & Memic, A. (2012). Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and-negative bacterial strains. International Journal of Nanomedicine, 7, 3527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek, Y.-W., & An, Y.-J. (2011). Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Science of the Total Environment, 409(8), 1603–1608.

    Article  CAS  Google Scholar 

  • Bai, H.-J., Yang, B.-S., Chai, C.-J., Yang, G.-E., Jia, W.-L., & Yi, Z.-B. (2011). Green synthesis of silver nanoparticles using Rhodobacter Sphaeroides. World Journal of Microbiology and Biotechnology, 27(11), 2723.

    Article  CAS  Google Scholar 

  • Baker, C., Pradhan, A., Pakstis, L., Pochan, D. J., & Shah, S. I. (2005). Synthesis and antibacterial properties of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 5(2), 244–249.

    Article  CAS  PubMed  Google Scholar 

  • Baker, M. D., Wolanin, P. M., & Stock, J. B. (2006). Signal transduction in bacterial chemotaxis. BioEssays, 28(1), 9–22.

    Article  CAS  PubMed  Google Scholar 

  • Balraj, B., Senthilkumar, N., Siva, C., Krithikadevi, R., Julie, A., Potheher, I. V., & Arulmozhi, M. (2017). Synthesis and characterization of zinc oxide nanoparticles using marine Streptomyces sp. with its investigations on anticancer and antibacterial activity. Research on Chemical Intermediates, 43(4), 2367–2376.

    Article  CAS  Google Scholar 

  • Banu, A. N., Balasubramanian, C., & Moorthi, P. V. (2014). Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitology Research, 113(1), 311–316.

    Article  PubMed  Google Scholar 

  • Batarseh, K. I. (2004). Anomaly and correlation of killing in the therapeutic properties of silver (I) chelation with glutamic and tartaric acids. Journal of Antimicrobial Chemotherapy, 54(2), 546–548.

    Article  CAS  Google Scholar 

  • Bazylinski, D. A., Frankel, R. B., & Konhauser, K. O. (2007). Modes of biomineralization of magnetite by microbes. Geomicrobiology Journal, 24(6), 465–475.

    Article  CAS  Google Scholar 

  • Bazylinski, D. A., & Schübbe, S. (2007). Controlled biomineralization by and applications of magnetotactic bacteria. Advances in Applied Microbiology, 62, 21–62.

    Article  CAS  PubMed  Google Scholar 

  • Bera, R., Mandal, S., & Raj, C. R. (2014). Antimicrobial activity of fluorescent ag nanoparticles. Letters in Applied Microbiology, 58(6), 520–526.

    Article  CAS  PubMed  Google Scholar 

  • Beveridge, T., & Murray, R. (1980). Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of Bacteriology, 141(2), 876–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharde, A., Wani, A., Shouche, Y., Joy, P. A., Prasad, B. L., & Sastry, M. (2005). Bacterial aerobic synthesis of nanocrystalline magnetite. Journal of the American Chemical Society, 127(26), 9326–9327.

    Article  CAS  PubMed  Google Scholar 

  • Blakemore, R. (1975). Magnetotactic bacteria. Science, 190(4212), 377–379.

    Article  CAS  PubMed  Google Scholar 

  • Bogunia-Kubik, K., & Sugisaka, M. (2002). From molecular biology to nanotechnology and nanomedicine. Biosystems, 65(2–3), 123–138.

    Article  CAS  PubMed  Google Scholar 

  • Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M. F., & Fiévet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6(4), 866–870.

    Article  CAS  PubMed  Google Scholar 

  • Bucheli, T. D., & Gustafsson, Ö. (2000). Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations. Environmental Science & Technology, 34(24), 5144–5151.

    Article  CAS  Google Scholar 

  • Cakić, M., Glišić, S., Nikolić, G., Nikolić, G. M., Cakić, K., & Cvetinov, M. (2016). Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles. Journal of Molecular Structure, 1110, 156–161.

    Article  CAS  Google Scholar 

  • Chai, C.-J., & Bai, H.-J. (2010). Biosynthesis of silver nanoparticles using the phototrophic bacteria Rhodopseudomonas palustris and its antimicrobial activity against Escherichia coli and Staphylococcus aureus. Microbiology/Weishengwuxue Tongbao, 37(12), 1798–1804.

    Google Scholar 

  • Chang, Y.-N., Zhang, M., Xia, L., Zhang, J., & Xing, G. (2012). The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials, 5(12), 2850–2871.

    Article  CAS  PubMed Central  Google Scholar 

  • Chapot-Chartier, M.-P., & Kulakauskas, S. (2014). Cell wall structure and function in lactic acid bacteria. In Microbial cell factories (Vol. S1, p. S9). Springer.

    Google Scholar 

  • Chen, Z., Gao, S.-h., Jin, M., Sun, S., Lu, J., Yang, P., Bond, P. L., Yuan, Z., & Guo, J. (2019). Physiological and transcriptomic analyses reveal CuO nanoparticle inhibition of anabolic and catabolic activities of sulfate-reducing bacterium. Environment International, 125, 65–74.

    Article  CAS  PubMed  Google Scholar 

  • Choi, O., Deng, K. K., Kim, N.-J., Ross, L., Jr., Surampalli, R. Y., & Hu, Z. (2008). The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Research, 42(12), 3066–3074.

    Article  CAS  PubMed  Google Scholar 

  • Connor, E. E., Mwamuka, J., Gole, A., Murphy, C. J., & Wyatt, M. D. (2005). Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 1(3), 325–327.

    Article  CAS  PubMed  Google Scholar 

  • Correa-Llantén, D. N., Muñoz-Ibacache, S. A., Castro, M. E., Muñoz, P. A., & Blamey, J. M. (2013). Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microbial Cell Factories, 12(1), 1–6.

    Article  CAS  Google Scholar 

  • Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49(1), 711–745.

    Article  CAS  PubMed  Google Scholar 

  • Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: A common cause of persistent infections. Science, 284(5418), 1318–1322.

    Article  CAS  PubMed  Google Scholar 

  • Cui, Y., Zhao, Y., Tian, Y., Zhang, W., Lü, X., & Jiang, X. (2012). The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials, 33(7), 2327–2333.

    Article  CAS  PubMed  Google Scholar 

  • Daughton, C. G. (2004). Non-regulated water contaminants: Emerging research. Environmental Impact Assessment Review, 24(7–8), 711–732.

    Article  Google Scholar 

  • Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug Discovery, 2(2), 114–122.

    Article  CAS  PubMed  Google Scholar 

  • De Jong, W. H., Hagens, W. I., Krystek, P., Burger, M. C., Sips, A. J., & Geertsma, R. E. (2008). Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 29(12), 1912–1919.

    Article  PubMed  CAS  Google Scholar 

  • Debabov, V., Voeikova, T., Shebanova, A., Shaitan, K., Emel’yanova, L., Novikova, L., & Kirpichnikov, M. (2013). Bacterial synthesis of silver sulfide nanoparticles. Nanotechnologies in Russia, 8(3–4), 269–276.

    Article  Google Scholar 

  • Dedeh, A., Ciutat, A., Treguer-Delapierre, M., & Bourdineaud, J.-P. (2015). Impact of gold nanoparticles on zebrafish exposed to a spiked sediment. Nanotoxicology, 9(1), 71–80.

    Article  CAS  PubMed  Google Scholar 

  • Deepa, S., Kanimozhi, K., & Panneerselvam, A. (2013). Antimicrobial activity of extracellularly synthesized silver nanoparticles from marine derived actinomycetes. International Journal of Current Microbiology and Applied Sciences, 2(2), 223–230.

    Google Scholar 

  • Delgado-Beleño, Y., Martinez-Nuñez, C., Cortez-Valadez, M., Flores-López, N., & Flores-Acosta, M. (2018). Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications. Materials Research Bulletin, 99, 385–392.

    Article  CAS  Google Scholar 

  • DeLong, E. F., Frankel, R. B., & Bazylinski, D. A. (1993). Multiple evolutionary origins of magnetotaxis in bacteria. Science, 259(5096), 803–806.

    Article  CAS  PubMed  Google Scholar 

  • Deplanche, K., & Macaskie, L. (2008). Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnology and Bioengineering, 99(5), 1055–1064.

    Article  CAS  PubMed  Google Scholar 

  • Dhandapani, P., Siddarth, A. S., Kamalasekaran, S., Maruthamuthu, S., & Rajagopal, G. (2014). Bio-approach: Ureolytic bacteria mediated synthesis of ZnO nanocrystals on cotton fabric and evaluation of their antibacterial properties. Carbohydrate Polymers, 103, 448–455.

    Article  CAS  PubMed  Google Scholar 

  • Dhoondia, Z. H., & Chakraborty, H. (2012). Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomaterials and Nanotechnology, 2, 15.

    Article  CAS  Google Scholar 

  • Dibrov, P., Dzioba, J., Gosink, K. K., & Häse, C. C. (2002). Chemiosmotic mechanism of antimicrobial activity of ag+ in Vibrio cholerae. Antimicrobial Agents and Chemotherapy, 46(8), 2668–2670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson, E. (2012). Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends in Food Science & Technology, 24(1), 4–12.

    Article  CAS  Google Scholar 

  • Dickson, J. S., & Koohmaraie, M. (1989). Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Applied and Environmental Microbiology, 55(4), 832–836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H., & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, 44, 278–284.

    Article  CAS  Google Scholar 

  • Dobson, J. (2006). Magnetic nanoparticles for drug delivery. Drug Development Research, 67(1), 55–60.

    Article  CAS  Google Scholar 

  • Donlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du, L., Jiang, H., Liu, X., & Wang, E. (2007). Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochemistry Communications, 9(5), 1165–1170.

    Article  CAS  Google Scholar 

  • Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho-Bragado, A., Gao, X., Lara, H. H., & Yacaman, M. J. (2005). Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology, 3(1), 1–10.

    Article  Google Scholar 

  • Emami-Karvani, Z., & Chehrazi, P. (2011). Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. African Journal of Microbiology Research, 5(12), 1368–1373.

    CAS  Google Scholar 

  • Eustis, S., & El-Sayed, M. A. (2006). Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews, 35(3), 209–217.

    Article  CAS  PubMed  Google Scholar 

  • Fahr, S., Rockstuhl, C., & Lederer, F. (2009). Metallic nanoparticles as intermediate reflectors in tandem solar cells. Applied Physics Letters, 95(12), 121105.

    Article  CAS  Google Scholar 

  • Faivre, D., & Schuler, D. (2008). Magnetotactic bacteria and magnetosomes. Chemical Reviews, 108(11), 4875–4898.

    Article  CAS  PubMed  Google Scholar 

  • Fajardo, C., Saccà, M., Martinez-Gomariz, M., Costa, G., Nande, M., & Martin, M. (2013). Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (nZVI) particles. Chemosphere, 93(6), 1077–1083.

    Article  CAS  PubMed  Google Scholar 

  • Falsetta, M. L., Klein, M. I., Colonne, P. M., Scott-Anne, K., Gregoire, S., Pai, C.-H., Gonzalez-Begne, M., Watson, G., Krysan, D. J., & Bowen, W. H. (2014). Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infection and Immunity, 82(5), 1968–1981.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fayaz, A. M., Girilal, M., Rahman, M., Venkatesan, R., & Kalaichelvan, P. (2011). Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Process Biochemistry, 46(10), 1958–1962.

    Article  CAS  Google Scholar 

  • Flemming, H.-C., Neu, T. R., & Wozniak, D. J. (2007). The EPS matrix: The “house of biofilm cells”. Journal of Bacteriology, 189(22), 7945–7947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulaz, S., Vitale, S., Quinn, L., & Casey, E. (2019). Nanoparticle–biofilm interactions: The role of the EPS matrix. Trends in Microbiology, 27(11), 915–926.

    Article  CAS  PubMed  Google Scholar 

  • Fux, C. A., Costerton, J. W., Stewart, P. S., & Stoodley, P. (2005). Survival strategies of infectious biofilms. Trends in Microbiology, 13(1), 34–40.

    Article  CAS  PubMed  Google Scholar 

  • Gabrielyan, L., Hovhannisyan, A., Gevorgyan, V., Ananyan, M., & Trchounian, A. (2019). Antibacterial effects of iron oxide (Fe3O4) nanoparticles: Distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms. Applied Microbiology and Biotechnology, 103(6), 2773–2782.

    Article  CAS  PubMed  Google Scholar 

  • Gahlawat, G., & Choudhury, A. R. (2019). A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Advances, 9(23), 12944–12967.

    Article  CAS  Google Scholar 

  • Gatoo, M. A., Naseem, S., Arfat, M. Y., Mahmood Dar, A., Qasim, K., & Zubair, S. (2014). Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Research International, 2014, 498420.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gómez, M. I., & Prince, A. (2007). Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis. Current Opinion in Pharmacology, 7(3), 244–251.

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Gómez, B., Arregui, L., Serrano, S., Santos, A., Pérez-Corona, T., & Madrid, Y. (2019). Unravelling mechanisms of bacterial quorum sensing disruption by metal-based nanoparticles. Science of the Total Environment, 696, 133869.

    Article  CAS  Google Scholar 

  • Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S. R. K., Muniyandi, J., Hariharan, N., & Eom, S. H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces, 74(1), 328–335.

    Article  CAS  PubMed  Google Scholar 

  • Haefeli, C., Franklin, C., & Hardy, K. (1984). Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. Journal of Bacteriology, 158(1), 389–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagen, S. J. (2014). The physical basis of bacterial quorum communication. Springer.

    Google Scholar 

  • Haider, A. J., Jameel, Z. N., & Al-Hussaini, I. H. (2019). Review on: Titanium dioxide applications. Energy Procedia, 157, 17–29.

    Article  CAS  Google Scholar 

  • Hall, C. W., & Mah, T.-F. (2017). Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiology Reviews, 41(3), 276–301.

    Article  CAS  PubMed  Google Scholar 

  • Haris, Z., & Ahmad, I. (2017). Impact of metal oxide nanoparticles on beneficial soil microorganisms and their secondary metabolites. International Journal of Life Science Scientific Research, 3(3), 1020–1030.

    Google Scholar 

  • Hasan, S. (2015). A review on nanoparticles: Their synthesis and types. Research Journal of Recent Sciences, 2277, 2502.

    Google Scholar 

  • He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J., & Gu, N. (2007). Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Materials Letters, 61(18), 3984–3987.

    Article  CAS  Google Scholar 

  • Hetrick, E. M., Shin, J. H., Paul, H. S., & Schoenfisch, M. H. (2009). Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials, 30(14), 2782–2789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulkoti, N. I., & Taranath, T. (2014). Biosynthesis of nanoparticles using microbes—A review. Colloids and Surfaces B: Biointerfaces, 121, 474–483.

    Article  CAS  PubMed  Google Scholar 

  • Husseiny, M., Abd El-Aziz, M., Badr, Y., & Mahmoud, M. (2007). Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3–4), 1003–1006.

    Article  CAS  Google Scholar 

  • Ibrahem, K. H., Salman, J. A. S., & Ali, F. A. (2014). Effect of titanium nanoparticles biosynthesis by lactobacillus Crispatus on urease, Hemolysin& Biofilm Forming by some Bacteria causing recurrent UTI in Iraqi women. European Scientific Journal, 10(9).

    Google Scholar 

  • Ingle, A., Gade, A., Pierrat, S., Sonnichsen, C., & Rai, M. (2008). Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Current Nanoscience, 4(2), 141–144.

    Article  CAS  Google Scholar 

  • Iravani, S. (2014). Bacteria in nanoparticle synthesis: current status and future prospects. International scholarly research notices 2014.

    Google Scholar 

  • Iravani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: Chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6), 385.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivask, A., Kurvet, I., Kasemets, K., Blinova, I., Aruoja, V., Suppi, S., Vija, H., Käkinen, A., Titma, T., & Heinlaan, M. (2014). Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One, 9(7), e102108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iyer, R., Moussa, S. H., Durand-Reville, T. F., Tommasi, R., & Miller, A. (2017). Acinetobacter baumannii OmpA is a selective antibiotic permeant porin. ACS Infectious Diseases, 4(3), 373–381.

    Article  PubMed  CAS  Google Scholar 

  • Jain, P. K., Lee, K. S., El-Sayed, I. H., & El-Sayed, M. A. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. The Journal of Physical Chemistry B, 110(14), 7238–7248.

    Article  CAS  PubMed  Google Scholar 

  • Javaid, A., Oloketuyi, S. F., Khan, M. M., & Khan, F. (2018). Diversity of bacterial synthesis of silver nanoparticles. BioNanoScience, 8(1), 43–59.

    Article  Google Scholar 

  • Jayaseelan, C., Rahuman, A. A., Kirthi, A. V., Marimuthu, S., Santhoshkumar, T., Bagavan, A., Gaurav, K., Karthik, L., & Rao, K. B. (2012). Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90, 78–84.

    Article  CAS  Google Scholar 

  • Joerger, R., Klaus, T., & Granqvist, C. G. (2000). Biologically produced silver–carbon composite materials for optically functional thin-film coatings. Advanced Materials, 12(6), 407–409.

    Article  CAS  Google Scholar 

  • Juibari, M. M., Abbasalizadeh, S., Jouzani, G. S., & Noruzi, M. (2011). Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Materials Letters, 65(6), 1014–1017.

    Article  CAS  Google Scholar 

  • Kagawa, Y. (1978). Reconstitution of the energy transformer, gate and channel subunit reassembly, crystalline ATPase and ATP synthesis. Biochimica et Biophysica Acta (BBA)—Reviews on Bioenergetics, 505(1), 45–93.

    Article  CAS  Google Scholar 

  • Kalia, V. C., & Purohit, H. J. (2011). Quenching the quorum sensing system: Potential antibacterial drug targets. Critical Reviews in Microbiology, 37(2), 121–140.

    Article  CAS  PubMed  Google Scholar 

  • Kalimuthu, K., Babu, R. S., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B: Biointerfaces, 65(1), 150–153.

    Article  CAS  PubMed  Google Scholar 

  • Kalishwaralal, K., Deepak, V., Pandian, S. R. K., Kottaisamy, M., BarathManiKanth, S., Kartikeyan, B., & Gurunathan, S. (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and Surfaces B: Biointerfaces, 77(2), 257–262.

    Article  CAS  PubMed  Google Scholar 

  • Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H., & Sangiliyandi, G. (2008). Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Materials Letters, 62(29), 4411–4413.

    Article  CAS  Google Scholar 

  • Kalpana, D., & Lee, Y. S. (2013). Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae. Enzyme and Microbial Technology, 52(3), 151–156.

    Article  CAS  PubMed  Google Scholar 

  • Karthik, C., & Radha, K. (2012). Biosynthesis and characterization of silver nanoparticles using Enterobacter aerogenes: A kinetic approach. Digest Journal of Nanomaterials and Biostructures, 7(3), 1007–1014.

    Google Scholar 

  • Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J., & Srinivasan, K. (2011). Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(3), 594–598.

    Article  CAS  Google Scholar 

  • Khan, R., & Fulekar, M. (2016). Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye reactive red 31. Journal of Colloid and Interface Science, 475, 184–191.

    Article  CAS  PubMed  Google Scholar 

  • Khan, S. T., Ahmad, J., Ahamed, M., & Jousset, A. (2018). Sub-lethal doses of widespread nanoparticles promote antifungal activity in Pseudomonas protegens CHA0. Science of the Total Environment, 627, 658–662.

    Article  CAS  Google Scholar 

  • Kim, K.-J., Sung, W. S., Suh, B. K., Moon, S.-K., Choi, J.-S., Kim, J. G., & Lee, D. G. (2009). Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals, 22(2), 235–242.

    Article  CAS  PubMed  Google Scholar 

  • Kirthi, A. V., Rahuman, A. A., Rajakumar, G., Marimuthu, S., Santhoshkumar, T., Jayaseelan, C., Elango, G., Zahir, A. A., Kamaraj, C., & Bagavan, A. (2011). Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Materials Letters, 65(17–18), 2745–2747.

    Article  CAS  Google Scholar 

  • Klaus, T., Joerger, R., Olsson, E., & Granqvist, C.-G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences, 96(24), 13611–13614.

    Article  CAS  Google Scholar 

  • Klaus-Joerger, T., Joerger, R., Olsson, E., & Granqvist, C.-G. (2001). Bacteria as workers in the living factory: Metal-accumulating bacteria and their potential for materials science. Trends in Biotechnology, 19(1), 15–20.

    Article  CAS  PubMed  Google Scholar 

  • Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P., & Hall-Stoodley, L. (2017). Targeting microbial biofilms: Current and prospective therapeutic strategies. Nature Reviews Microbiology, 15(12), 740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korbekandi, H., Iravani, S., & Abbasi, S. (2012). Optimization of biological synthesis of silver nanoparticles using lactobacillus casei subsp. casei. Journal of Chemical Technology & Biotechnology, 87(7), 932–937.

    Article  CAS  Google Scholar 

  • Krishnaraj, R. N., & Berchmans, S. (2013). In vitro antiplatelet activity of silver nanoparticles synthesized using the microorganism Gluconobacter roseus: An AFM-based study. RSC Advances, 3(23), 8953–8959.

    Article  CAS  Google Scholar 

  • Król, A., Railean-Plugaru, V., Pomastowski, P., Złoch, M., & Buszewski, B. (2018). Mechanism study of intracellular zinc oxide nanocomposites formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 553, 349–358.

    Article  CAS  Google Scholar 

  • Kulkarni, N., & Muddapur, U. (2014). Biosynthesis of metal nanoparticles: A review. Journal of Nanotechnology, 2014, 510246.

    Article  CAS  Google Scholar 

  • Kumar, C. G., & Mamidyala, S. K. (2011). Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces, 84(2), 462–466.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S. A., Abyaneh, M. K., Gosavi, S., Kulkarni, S. K., Pasricha, R., Ahmad, A., & Khan, M. (2007). Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnology Letters, 29(3), 439–445.

    Article  CAS  Google Scholar 

  • Kundu, D., Hazra, C., Chatterjee, A., Chaudhari, A., & Mishra, S. (2014). Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: Multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. Journal of Photochemistry and Photobiology B: Biology, 140, 194–204.

    Article  CAS  Google Scholar 

  • Lang, C., & Schüler, D. (2006). Biogenic nanoparticles: Production, characterization, and application of bacterial magnetosomes. Journal of Physics: Condensed Matter, 18(38), S2815.

    CAS  Google Scholar 

  • Lasa, I. (2006). Towards the identification of the common features of bacterial biofilm development. International Microbiology, 9(1), 21–28.

    Google Scholar 

  • Lateef, A., Adelere, I., Gueguim-Kana, E., Asafa, T., & Beukes, L. (2015). Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. International Nano Letters, 5(1), 29–35.

    Article  CAS  Google Scholar 

  • Lee, C., Kim, J. Y., Lee, W. I., Nelson, K. L., Yoon, J., & Sedlak, D. L. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environmental Science & Technology, 42(13), 4927–4933.

    Article  CAS  Google Scholar 

  • Lee, K. J., Nallathamby, P. D., Browning, L. M., Osgood, C. J., & X-HN, X. (2007). In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano, 1(2), 133–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M. Z., Huang, J. T., Tsai, Y. H., Mao, S. Y., Fu, C. M., & Lien, T. F. (2016). Nanosize of zinc oxide and the effects on zinc digestibility, growth performances, immune response and serum parameters of weanling piglets. Animal Science Journal, 87(11), 1379–1385.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Greden, K., Alvarez, P. J., Gregory, K. B., & Lowry, G. V. (2010). Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environmental Science & Technology, 44(9), 3462–3467.

    Article  CAS  Google Scholar 

  • Liao, Y., Strayer-Scherer, A., White, J., De La Torre-Roche, R., Ritchie, L., Colee, J., Vallad, G., Freeman, J., Jones, J., & Paret, M. (2019). Particle-size dependent bactericidal activity of magnesium oxide against Xanthomonas perforans and bacterial spot of tomato. Scientific Reports, 9(1), 1–10.

    Article  Google Scholar 

  • Link, S., & El-Sayed, M. A. (1999). Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B, 103(21), 4212–4217.

    Article  CAS  Google Scholar 

  • Livingstone, D. (2001). Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin, 42(8), 656–666.

    Article  CAS  PubMed  Google Scholar 

  • Livingstone, D., Martinez, P. G., Michel, X., Narbonne, J., O’hara, S., Ribera, D., & Winston, G. (1990). Oxyradical production as a pollution-mediated mechanism of toxicity in the common mussel, Mytilus edulis L., and other molluscs. Functional Ecology, 4, 415–424.

    Article  Google Scholar 

  • Lok, C.-N., Ho, C.-M., Chen, R., He, Q.-Y., Yu, W.-Y., Sun, H., Tam, P. K.-H., Chiu, J.-F., & Che, C.-M. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research, 5(4), 916–924.

    Article  CAS  PubMed  Google Scholar 

  • Lovley, D. R., Stolz, J. F., Nord, G. L., & Phillips, E. J. (1987). Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 330(6145), 252–254.

    Article  CAS  Google Scholar 

  • Lu, L., Sun, R., Chen, R., Hui, C.-K., Ho, C.-M., Luk, J. M., Lau, G., & Che, C.-M. (2008). Silver nanoparticles inhibit hepatitis B virus replication. Antiviral Therapy, 13(2), 253.

    Article  CAS  PubMed  Google Scholar 

  • Luo, X., Xu, S., Yang, Y., Li, L., Chen, S., Xu, A., & Wu, L. (2016). Insights into the ecotoxicity of silver nanoparticles transferred from Escherichia coli to Caenorhabditis elegans. Scientific Reports, 6, 36465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal, D., Bolander, M. E., Mukhopadhyay, D., Sarkar, G., & Mukherjee, P. (2006). The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology, 69(5), 485–492.

    Article  CAS  PubMed  Google Scholar 

  • Mandal, D., Dash, S. K., Das, B., Chattopadhyay, S., Ghosh, T., Das, D., & Roy, S. (2016). Bio-fabricated silver nanoparticles preferentially targets gram positive depending on cell surface charge. Biomedicine & Pharmacotherapy, 83, 548–558.

    Article  CAS  Google Scholar 

  • Mann, S. (1985). Structure, morphology, and crystal growth of bacterial magnetite. In Magnetite biomineralization and magnetoreception in organisms (pp. 311–332). Springer.

    Google Scholar 

  • Manuela, V., Ingo, K., & Arno, K. (2013). Zinc oxide nanoparticles in bacterial growth medium: Optimized dispersion and growth inhibition of Pseudomonas putida. Advances in Nanoparticles, 2, 287.

    Article  CAS  Google Scholar 

  • Marambio-Jones, C., & Hoek, E. M. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531–1551.

    Article  CAS  Google Scholar 

  • Martínez-Castañon, G.-A., Nino-Martinez, N., Martinez-Gutierrez, F., Martinez-Mendoza, J., & Ruiz, F. (2008). Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research, 10(8), 1343–1348.

    Article  CAS  Google Scholar 

  • Mirzaei, H., & Darroudi, M. (2017). Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceramics International, 43(1), 907–914.

    Article  CAS  Google Scholar 

  • Mishra, M., Paliwal, J. S., Singh, S. K., Selvarajan, E., Subathradevi, C., & Mohanasrinivasan, V. (2013). Studies on the inhibitory activity of biologically synthesized and characterized zinc oxide nanoparticles using lactobacillus sporogens against Staphylococcus aureus. Journal of Pure Applied Microbiology, 7(2), 1–6.

    CAS  Google Scholar 

  • Mohamed, M. M., Fouad, S. A., Elshoky, H. A., Mohammed, G. M., & Salaheldin, T. A. (2017). Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. International Journal of Veterinary Science and Medicine, 5(1), 23–29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore, M. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment International, 32(8), 967–976.

    Article  CAS  PubMed  Google Scholar 

  • Moore, M. N. (1990). Lysosomal cytochemistry in marine environmental monitoring. The Histochemical Journal, 22(4), 187.

    Article  CAS  PubMed  Google Scholar 

  • Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.

    Article  CAS  PubMed  Google Scholar 

  • Moshfegh, M., Forootanfar, H., Zare, B., Shahverdi, A., Zarrini, G., & Faramarzi, M. (2011). Biological synthesis of Au, Ag and Au-Ag bimetallic nanoparticles by α-amylase. Digest Journal of Nanomaterial Biostructures, 6, 1419–1426.

    Google Scholar 

  • Mouxing, F., Qingbiao, L., Daohua, S., Yinghua, L., Ning, H., Xu, D., Huixuan, W., & Huang, J. (2006). Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chinese Journal of Chemical Engineering, 14(1), 114–117.

    Article  Google Scholar 

  • Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Ramani, R., Parischa, R., Ajayakumar, P., & Alam, M. (2001). Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angewandte Chemie International Edition, 40(19), 3585–3588.

    Article  CAS  PubMed  Google Scholar 

  • Nadagouda, M. N., Castle, A. B., Murdock, R. C., Hussain, S. M., & Varma, R. S. (2010). In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chemistry, 12(1), 114–122.

    Article  CAS  Google Scholar 

  • Nair, B., & Pradeep, T. (2002). Coalescence of nanoclusters and formation of submicron crystallites assisted by lactobacillus strains. Crystal Growth & Design, 2(4), 293–298.

    Article  CAS  Google Scholar 

  • Nanda, A., & Saravanan, M. (2009). Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine: Nanotechnology, Biology and Medicine, 5(4), 452–456.

    Article  CAS  Google Scholar 

  • Nangia, Y., Wangoo, N., Goyal, N., Shekhawat, G., & Suri, C. R. (2009). A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microbial Cell Factories, 8(1), 39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156(1–2), 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Narayanan, K. B., & Sakthivel, N. (2013). Biosynthesis of silver nanoparticles by phytopathogen Xanthomonas oryzae pv. Oryzae strain BXO8. Journal of Microbiology and Biotechnology, 23(9), 1287–1292.

    Article  CAS  PubMed  Google Scholar 

  • Nune, S. K., Gunda, P., Thallapally, P. K., Lin, Y.-Y., Laird Forrest, M., & Berkland, C. J. (2009). Nanoparticles for biomedical imaging. Expert Opinion on Drug Delivery, 6(11), 1175–1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberdörster, G. (2000). Toxicology of ultrafine particles: In vivo studies. Phil Trans R Soc Lond A, 358, 2719–2740. Find this article online.

    Article  Google Scholar 

  • Olsen, I. (2015). Biofilm-specific antibiotic tolerance and resistance. European Journal of Clinical Microbiology & Infectious Diseases, 34(5), 877–886.

    Article  CAS  Google Scholar 

  • Otari, S., Patil, R., Nadaf, N., Ghosh, S., & Pawar, S. (2014). Green synthesis of silver nanoparticles by microorganism using organic pollutant: Its antimicrobial and catalytic application. Environmental Science and Pollution Research, 21(2), 1503–1513.

    Article  CAS  PubMed  Google Scholar 

  • Panyam, J., Sahoo, S. K., Prabha, S., Bargar, T., & Labhasetwar, V. (2003). Fluorescence and electron microscopy probes for cellular and tissue uptake of poly (D, L-lactide-co-glycolide) nanoparticles. International Journal of Pharmaceutics, 262(1–2), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Parikh, R. Y., Singh, S., Prasad, B., Patole, M. S., Sastry, M., & Shouche, Y. S. (2008). Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: Towards understanding biochemical synthesis mechanism. Chembiochem, 9(9), 1415–1422.

    Article  CAS  PubMed  Google Scholar 

  • Park, H.-J., Kim, J. Y., Kim, J., Lee, J.-H., Hahn, J.-S., Gu, M. B., & Yoon, J. (2009). Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Research, 43(4), 1027–1032.

    Article  CAS  PubMed  Google Scholar 

  • Patel, A., Prajapati, P., & Boghra, R. (2011). Overview on application of nanoparticles in cosmetics. Asian Journal of Pharmaceutical and Clinical Research, 1, 40–55.

    Google Scholar 

  • Pham, D. T. N., Khan, F., Phan, T. T. V., S-k, P., Manivasagan, P., Oh, J., & Kim, Y.-M. (2019). Biofilm inhibition, modulation of virulence and motility properties by FeOOH nanoparticle in Pseudomonas aeruginosa. Brazilian Journal of Microbiology, 50(3), 791–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phenrat, T., Long, T. C., Lowry, G. V., & Veronesi, B. (2009). Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environmental Science & Technology, 43(1), 195–200.

    Article  CAS  Google Scholar 

  • Pradeep, T. (2009). Noble metal nanoparticles for water purification: A critical review. Thin Solid Films, 517(24), 6441–6478.

    Article  CAS  Google Scholar 

  • Prasad, K., & Jha, A. K. (2009). ZnO nanoparticles: Synthesis and adsorption study. Natural Science, 1(02), 129.

    Article  CAS  Google Scholar 

  • Prasad, K., Jha, A. K., & Kulkarni, A. (2007). Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Research Letters, 2(5), 248–250.

    Article  CAS  PubMed Central  Google Scholar 

  • Priyadarshini, S., Gopinath, V., Priyadharsshini, N. M., MubarakAli, D., & Velusamy, P. (2013). Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids and Surfaces B: Biointerfaces, 102, 232–237.

    Article  CAS  PubMed  Google Scholar 

  • Prozorov, T. (2015). Magnetic microbes: Bacterial magnetite biomineralization. In Seminars in cell & developmental biology (pp. 36–43). Elsevier.

    Google Scholar 

  • Pugazhenthiran, N., Anandan, S., Kathiravan, G., Prakash, N. K. U., Crawford, S., & Ashokkumar, M. (2009). Microbial synthesis of silver nanoparticles by Bacillus sp. Journal of Nanoparticle Research, 11(7), 1811.

    Article  CAS  Google Scholar 

  • Rajabairavi, N., Raju, C. S., Karthikeyan, C., Varutharaju, K., Nethaji, S., Hameed, A. S. H., & Shajahan, A. (2017). Biosynthesis of novel zinc oxide nanoparticles (ZnO NPs) using endophytic bacteria Sphingobacterium thalpophilum. In Recent trends in materials science and applications (pp. 245–254). Springer.

    Google Scholar 

  • Rajasree, S. R., & Suman, T. (2012). Extracellular biosynthesis of gold nanoparticles using a gram negative bacterium Pseudomonas fluorescens. Asian Pacific Journal of Tropical Disease, 2, S796–S799.

    Article  CAS  Google Scholar 

  • Ramalingam, B., Parandhaman, T., & Das, S. K. (2016). Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Applied Materials & Interfaces, 8(7), 4963–4976.

    Article  CAS  Google Scholar 

  • Rauf, M. A., Owais, M., Rajpoot, R., Ahmad, F., Khan, N., & Zubair, S. (2017). Biomimetically synthesized ZnO nanoparticles attain potent antibacterial activity against less susceptible S. aureus skin infection in experimental animals. RSC Advances, 7(58), 36361–36373.

    Article  CAS  Google Scholar 

  • Ravindran, D., Ramanathan, S., Arunachalam, K., Jeyaraj, G., Shunmugiah, K., & Arumugam, V. (2018). Phytosynthesized silver nanoparticles as antiquorum sensing and antibiofilm agent against the nosocomial pathogen Serratia marcescens: An in vitro study. Journal of Applied Microbiology, 124(6), 1425–1440.

    Article  CAS  PubMed  Google Scholar 

  • Raza, M. A., Kanwal, Z., Rauf, A., Sabri, A. N., Riaz, S., & Naseem, S. (2016). Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials, 6(4), 74.

    Article  PubMed Central  CAS  Google Scholar 

  • Reddy, A. S., Chen, C.-Y., Chen, C.-C., Jean, J.-S., Chen, H.-R., Tseng, M.-J., Fan, C.-W., & Wang, J.-C. (2010). Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. Journal of Nanoscience and Nanotechnology, 10(10), 6567–6574.

    Article  CAS  PubMed  Google Scholar 

  • Revati, K., & Pandey, B. (2011). Microbial synthesis of iron-based nanomaterials—A review. Bulletin of Materials Science, 34(2), 191–198.

    Article  Google Scholar 

  • Saccà, M. L., Fajardo, C., Costa, G., Lobo, C., Nande, M., & Martin, M. (2014). Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. Chemosphere, 104, 184–189.

    Article  PubMed  CAS  Google Scholar 

  • Saif, S., Tahir, A., & Chen, Y. (2016). Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials, 6(11), 209.

    Article  PubMed Central  CAS  Google Scholar 

  • Saifuddin, N., Wong, C., & Yasumira, A. (2009). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Journal of Chemistry, 6(1), 61–70.

    CAS  Google Scholar 

  • Saleh, M. M., Refa’t, A. S., Latif, H. K. A., Abbas, H. A., & Askoura, M. (2019). Zinc oxide nanoparticles inhibits quorum sensing and virulence in Pseudomonas aeruginosa. African Health Sciences, 19(2), 2043–2055.

    Article  PubMed  PubMed Central  Google Scholar 

  • Samadi, N., Golkaran, D., Eslamifar, A., Jamalifar, H., Fazeli, M. R., & Mohseni, F. A. (2009). Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of proteus mirabilis isolated fromphotographic waste. Journal of Biomedical Nanotechnology, 5(3), 247–253.

    Article  CAS  PubMed  Google Scholar 

  • Samanta, S., Singh, B. R., & Adholeya, A. (2017). Intracellular synthesis of gold nanoparticles using an ectomycorrhizal strain EM-1083 of Laccaria fraterna and its nanoanti-quorum sensing potential against Pseudomonas aeruginosa. Indian Journal of Microbiology, 57(4), 448–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan, M., Gopinath, V., Chaurasia, M. K., Syed, A., Ameen, F., & Purushothaman, N. (2018). Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microbial Pathogenesis, 115, 57–63.

    Article  CAS  PubMed  Google Scholar 

  • Sawai, J. (2003). Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. Journal of Microbiological Methods, 54(2), 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Schlessinger, D. (1988). Failure of aminoglycoside antibiotics to kill anaerobic, low-pH, and resistant cultures. Clinical Microbiology Reviews, 1(1), 54–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster, M., Lostroh, C. P., Ogi, T., & Greenberg, E. P. (2003). Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: A transcriptome analysis. Journal of Bacteriology, 185(7), 2066–2079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvarajan, E., & Mohanasrinivasan, V. (2013). Biosynthesis and characterization of ZnO nanoparticles using lactobacillus plantarum VITES07. Materials Letters, 112, 180–182.

    Article  CAS  Google Scholar 

  • Seshadri, S., Prakash, A., & Kowshik, M. (2012). Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. PR58-8. Bulletin of Materials Science, 35(7), 1201–1205.

    Article  CAS  Google Scholar 

  • Shah, M. S. A. S., Nag, M., Kalagara, T., Singh, S., & Manorama, S. V. (2008). Silver on PEG-PU-TiO2 polymer nanocomposite films: An excellent system for antibacterial applications. Chemistry of Materials, 20(7), 2455–2460.

    Article  CAS  Google Scholar 

  • Shamaila, S., Zafar, N., Riaz, S., Sharif, R., Nazir, J., & Naseem, S. (2016). Gold nanoparticles: An efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials, 6(4), 71.

    Article  PubMed Central  CAS  Google Scholar 

  • Shanthi, S., Jayaseelan, B. D., Velusamy, P., Vijayakumar, S., Chih, C. T., & Vaseeharan, B. (2016). Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microbial Pathogenesis, 93, 70–77.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, N., Pinnaka, A. K., Raje, M., Ashish, F., Bhattacharyya, M. S., & Choudhury, A. R. (2012). Exploitation of marine bacteria for production of gold nanoparticles. Microbial Cell Factories, 11(1), 86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145(1–2), 83–96.

    Article  CAS  PubMed  Google Scholar 

  • Sheng, Z., & Liu, Y. (2011). Effects of silver nanoparticles on wastewater biofilms. Water Research, 45(18), 6039–6050.

    Article  CAS  PubMed  Google Scholar 

  • Shivaji, S., Madhu, S., & Singh, S. (2011). Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochemistry, 46(9), 1800–1807.

    Article  CAS  Google Scholar 

  • Simon-Deckers, A., Loo, S., Mayne-L’hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., Gouget, B., & Carriere, M. (2009). Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environmental Science & Technology, 43(21), 8423–8429.

    Article  CAS  Google Scholar 

  • Singh, B. N., Rawat, A. K. S., Khan, W., Naqvi, A. H., & Singh, B. R. (2014). Biosynthesis of stable antioxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids. PLoS One, 9(9), e106937.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh, P., Kim, Y.-J., Zhang, D., & Yang, D.-C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34(7), 588–599.

    Article  CAS  PubMed  Google Scholar 

  • Singh, P. K., & Kundu, S. (2014). Biosynthesis of gold nanoparticles using bacteria. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84(2), 331–336.

    Article  CAS  Google Scholar 

  • Singh, P. K., Parsek, M. R., Greenberg, E. P., & Welsh, M. J. (2002). A component of innate immunity prevents bacterial biofilm development. Nature, 417(6888), 552–555.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R., Shedbalkar, U. U., Wadhwani, S. A., & Chopade, B. A. (2015). Bacteriagenic silver nanoparticles: Synthesis, mechanism, and applications. Applied Microbiology and Biotechnology, 99(11), 4579–4593.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R., Wagh, P., Wadhwani, S., Gaidhani, S., Kumbhar, A., Bellare, J., & Chopade, B. A. (2013). Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. International Journal of Nanomedicine, 8, 4277.

    PubMed  PubMed Central  Google Scholar 

  • Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3), 219–242.

    Article  CAS  PubMed  Google Scholar 

  • Slavin, Y. N., Asnis, J., Häfeli, U. O., & Bach, H. (2017). Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology, 15(1), 1–20.

    Article  CAS  Google Scholar 

  • Smani, Y., Fàbrega, A., Roca, I., Sánchez-Encinales, V., Vila, J., & Pachón, J. (2014). Role of OmpA in the multidrug resistance phenotype of Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 58(3), 1806–1808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smedes, F. (1994). Sampling and partition of neutral organic contaminants in surface waters with regard to legislation, environmental quality and flux estimations. International Journal of Environmental Analytical Chemistry, 57(3), 215–229.

    Article  CAS  Google Scholar 

  • Sohm, B., Immel, F., Bauda, P., & Pagnout, C. (2015). Insight into the primary mode of action of TiO2 nanoparticles on Escherichia coli in the dark. Proteomics, 15(1), 98–113.

    Article  CAS  PubMed  Google Scholar 

  • Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Sparks, N., Lloyd, J., & Board, R. (1989). Saltmarsh ponds—A preferred habitat for magnetotactic bacteria? Letters in Applied Microbiology, 8(3), 109–111.

    Article  Google Scholar 

  • Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K., & Upadhyay, S. N. (2016). Green synthesis of silver nanoparticles: A review. Green and Sustainable Chemistry, 6(1), 34–56.

    Article  CAS  Google Scholar 

  • Srivastava, S. K., & Constanti, M. (2012). Room temperature biogenic synthesis of multiple nanoparticles (ag, Pd, Fe, Rh, Ni, Ru, Pt, co, and Li) by Pseudomonas aeruginosa SM1. Journal of Nanoparticle Research, 14(4), 831.

    Article  CAS  Google Scholar 

  • Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. The Lancet, 358(9276), 135–138.

    Article  CAS  Google Scholar 

  • Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18(2), 321–336.

    Article  CAS  PubMed  Google Scholar 

  • Sun, L., Singh, A. K., Vig, K., Pillai, S. R., & Singh, S. R. (2008). Silver nanoparticles inhibit replication of respiratory syncytial virus. Journal of Biomedical Nanotechnology, 4(2), 149–158.

    Article  CAS  Google Scholar 

  • Swain, P. S., Rao, S. B., Rajendran, D., Dominic, G., & Selvaraju, S. (2016). Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Animal Nutrition, 2(3), 134–141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tack, K. J., & Sabath, L. (1985). Increased minimum inhibitory concentrations with anaerobiasis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin. Chemotherapy, 31(3), 204–210.

    Article  CAS  PubMed  Google Scholar 

  • Tamboli, D. P., & Lee, D. S. (2013). Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. Journal of Hazardous Materials, 260, 878–884.

    Article  CAS  PubMed  Google Scholar 

  • Taran, M., Rad, M., & Alavi, M. (2018). Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium. BioImpacts: BI, 8(2), 81.

    Article  CAS  PubMed  Google Scholar 

  • Thanh, N. T., & Green, L. A. (2010). Functionalisation of nanoparticles for biomedical applications. Nano Today, 5(3), 213–230.

    Article  CAS  Google Scholar 

  • Thomas, R., Jasim, B., Mathew, J., & Radhakrishnan, E. (2012). Extracellular synthesis of silver nanoparticles by endophytic Bordetella sp. isolated from Piper nigrum and its antibacterial activity analysis. Nano Biomedicine & Engineering, 4(4).

    Google Scholar 

  • Tripathi, R., Bhadwal, A. S., Gupta, R. K., Singh, P., Shrivastav, A., & Shrivastav, B. (2014). ZnO nanoflowers: Novel biogenic synthesis and enhanced photocatalytic activity. Journal of Photochemistry and Photobiology B: Biology, 141, 288–295.

    Article  CAS  Google Scholar 

  • Tu, Y., Lv, M., Xiu, P., Huynh, T., Zhang, M., Castelli, M., Liu, Z., Huang, Q., Fan, C., & Fang, H. (2013). Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature Nanotechnology, 8(8), 594.

    Article  CAS  PubMed  Google Scholar 

  • Vallee, B. L., & Falchuk, K. H. (1993). The biochemical basis of zinc physiology. Physiological Reviews, 73(1), 79–118.

    Article  CAS  PubMed  Google Scholar 

  • Velusamy, P., Kumar, G. V., Jeyanthi, V., Das, J., & Pachaiappan, R. (2016). Bio-inspired green nanoparticles: Synthesis, mechanism, and antibacterial application. Toxicological Research, 32(2), 95–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vittori Antisari, L., Carbone, S., Gatti, A., Vianello, G., & Nannipieri, P. (2013). Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biology & Biochemistry, 60, 87.

    Article  CAS  Google Scholar 

  • Vollath, D. (2008). Nanomaterials an introduction to synthesis, properties and application. Environmental Engineering and Management Journal, 7(6), 865–870.

    Google Scholar 

  • Wang, C., Kim, Y. J., Singh, P., Mathiyalagan, R., Jin, Y., & Yang, D. C. (2016). Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artificial Cells, Nanomedicine, and Biotechnology, 44(4), 1127–1132.

    CAS  PubMed  Google Scholar 

  • Wang, S., Lawson, R., Ray, P. C., & Yu, H. (2011). Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicology and Industrial Health, 27(6), 547–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, X., Luo, M., Li, W., Yang, L., Liang, X., Xu, L., Kong, P., & Liu, H. (2012). Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresource Technology, 103(1), 273–278.

    Article  CAS  PubMed  Google Scholar 

  • Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C., & Mattick, J. S. (2002). Extracellular DNA required for bacterial biofilm formation. Science, 295(5559), 1487–1487.

    Article  CAS  PubMed  Google Scholar 

  • Wickham, J. R., Halye, J. L., Kashtanov, S., Khandogin, J., & Rice, C. V. (2009). Revisiting magnesium chelation by teichoic acid with phosphorus solid-state NMR and theoretical calculations. The Journal of Physical Chemistry B, 113(7), 2177–2183.

    Article  CAS  PubMed  Google Scholar 

  • Wigginton, N. S., Titta, A., Piccapietra, F., Dobias, J., Nesatyy, V. J., Suter, M. J., & Bernier-Latmani, R. (2010). Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environmental Science & Technology, 44(6), 2163–2168.

    Article  CAS  Google Scholar 

  • Wu, H., Moser, C., Wang, H.-Z., Høiby, N., & Song, Z.-J. (2015). Strategies for combating bacterial biofilm infections. International Journal of Oral Science, 7(1), 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Xie, Y., He, Y., Irwin, P. L., Jin, T., & Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against campylobacter jejuni. Applied and Environmental Microbiology, 77(7), 2325–2331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong, Q., Liu, D., Zhang, H., Dong, X., Zhang, G., Liu, Y., & Zhang, R. (2020). Quorum sensing signal autoinducer-2 promotes root colonization of Bacillus velezensis SQR9 by affecting biofilm formation and motility. Applied Microbiology and Biotechnology, 104(16), 7177–7185.

    Article  CAS  PubMed  Google Scholar 

  • Yah, C. S. (2013). The toxicity of Gold Nanoparticles in relation to their physiochemical properties. Biomedical Research, 24(3), 400–413.

    Google Scholar 

  • Yan, L., Zhang, S., Chen, P., Liu, H., Yin, H., & Li, H. (2012). Magnetotactic bacteria, magnetosomes and their application. Microbiological Research, 167(9), 507–519.

    Article  CAS  PubMed  Google Scholar 

  • Yeary, L. W., Moon, J.-W., Love, L. J., Thompson, J. R., Rawn, C. J., & Phelps, T. J. (2005). Magnetic properties of biosynthesized magnetite nanoparticles. IEEE Transactions on Magnetics, 41(12), 4384–4389.

    Article  CAS  Google Scholar 

  • Yeh, Y.-C., Creran, B., & Rotello, V. M. (2012). Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale, 4(6), 1871–1880.

    Article  CAS  PubMed  Google Scholar 

  • Yeo, M.-K., & Kang, M.-S. (2008). Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bulletin of the Korean Chemical Society, 29(6), 1179–1184.

    Article  CAS  Google Scholar 

  • Zhang, H., Li, Q., Lu, Y., Sun, D., Lin, X., Deng, X., He, N., & Zheng, S. (2005). Biosorption and bioreduction of diamine silver complex by Corynebacterium. Journal of Chemical Technology & Biotechnology, 80(3), 285–290.

    Article  CAS  Google Scholar 

  • Zhang, L., Gu, F., Chan, J., Wang, A., Langer, R., & Farokhzad, O. (2008). Nanoparticles in medicine: Therapeutic applications and developments. Clinical Pharmacology & Therapeutics, 83(5), 761–769.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhusudan Choudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prabhu Balaraman, R., Mendel, J., Flores, L., Choudhary, M. (2021). Nanoparticle Biosynthesis and Interaction with the Microbial Cell, Antimicrobial and Antibiofilm Effects, and Environmental Impact. In: Sharma, N., Sahi, S. (eds) Nanomaterial Biointeractions at the Cellular, Organismal and System Levels. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-65792-5_15

Download citation

Publish with us

Policies and ethics