Skip to main content

Accurate Myocardial Pathology Segmentation with Residual U-Net

  • Conference paper
  • First Online:
Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images (MyoPS 2020)

Abstract

Accurate assessment of myocardial viability in multi-sequence cardiac magnetic resonance (CMR) images is desired to automate disease diagnosis. To classify myocardial pathology automatic segmentation methods are necessary. In this paper we propose to use an automatic segmentation for each slice in the short-axis view with convolutional neural network architecture based on U-Net. We compare performances of two different networks to segment myocardial pathologies. The best performance is obtained by using the U-net convolutional neural network architecture built from residual units trained by augmentation operations, showing that it is a practical approach for segmentation. The network performances are assessed on MyoPS 2020 challenge dataset consists of three-sequence CMR images from 45 patients. A five-fold cross-validation strategy is utilized to assess performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World health organization (2017). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

  2. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  3. Chen, S., Ma, K., Zheng, Y.: Med3D: transfer learning for 3D medical image analysis. arXiv preprint arXiv:1904.00625 (2019)

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Jang, Y., Hong, Y., Ha, S., Kim, S., Chang, H.-J.: Automatic segmentation of LV and RV in cardiac MRI. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 161–169. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_17

    Chapter  Google Scholar 

  6. Karim, R., et al.: Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late gadolinium enhancement MR images. Med. Image Anal. 30, 95–107 (2016)

    Article  Google Scholar 

  7. Kerfoot, E., Clough, J., Oksuz, I., Lee, J., King, A.P., Schnabel, J.A.: Left-ventricle quantification using residual U-Net. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 371–380. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_40

    Chapter  Google Scholar 

  8. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  9. Milletari, F., Navab, N., Ahmadi, S., V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016)

    Google Scholar 

  10. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  11. Petitjean, C., Dacher, J.N.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011)

    Article  Google Scholar 

  12. Poudel, R.P.K., Lamata, P., Montana, G.: Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 83–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52280-7_8

    Chapter  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Sander, J., de Vos, B.D., Wolterink, J.M., IÅ¡gum, I.: Towards increased trustworthiness of deep learning segmentation methods on cardiac MRI. In: Medical Imaging 2019: Image Processing, vol. 10949, p. 1094919. International Society for Optics and Photonics (2019)

    Google Scholar 

  15. Tran, P.V.: A fully convolutional neural network for cardiac segmentation in short-axis MRI. arXiv preprint arXiv:1604.00494 (2016)

  16. Ukwatta, E., et al.: Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology. Med. Phys. 42(8), 4579–4590 (2015)

    Article  Google Scholar 

  17. Vadakkumpadan, F., Gurev, V., Constantino, J., Arevalo, H., Trayanova, N.: Modeling of whole-heart electrophysiology and mechanics: toward patient-specific simulations. In: Kerckhoffs, R. (ed.) Patient-Specific Modeling of the Cardiovascular System, pp. 145–165. Springer, New York (2010)

    Chapter  Google Scholar 

  18. Yang, X., Bian, C., Yu, L., Ni, D., Heng, P.-A.: Class-balanced deep neural network for automatic ventricular structure segmentation. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 152–160. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_16

    Chapter  Google Scholar 

  19. Zabihollahy, F., White, J.A., Ukwatta, E.: Myocardial scar segmentation from magnetic resonance images using convolutional neural network. In: Medical Imaging 2018: Computer-Aided Diagnosis, vol. 10575, p. 105752Z. International Society for Optics and Photonics (2018)

    Google Scholar 

  20. Zhuang, X.: Multivariate mixture model for cardiac segmentation from multi-sequence MRI. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 581–588. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_67

    Chapter  Google Scholar 

  21. Zhuang, X.: Multivariate mixture model for myocardial segmentation combining multi-source images. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2933–2946 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This research was funded by 2232 International Fellowship for Outstanding Researchers Program of the Scientific and Technological Research Council of Turkey (TÃœBÄ°TAK) grant number 118C353.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Altunok Elif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elif, A., Ilkay, O. (2020). Accurate Myocardial Pathology Segmentation with Residual U-Net. In: Zhuang, X., Li, L. (eds) Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images. MyoPS 2020. Lecture Notes in Computer Science(), vol 12554. Springer, Cham. https://doi.org/10.1007/978-3-030-65651-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65651-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65650-8

  • Online ISBN: 978-3-030-65651-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics