Skip to main content

Recurrent Fully Convolutional Neural Networks for Multi-slice MRI Cardiac Segmentation

  • Conference paper
  • First Online:
Reconstruction, Segmentation, and Analysis of Medical Images (RAMBO 2016, HVSMR 2016)

Abstract

In cardiac magnetic resonance imaging, fully-automatic segmentation of the heart enables precise structural and functional measurements to be taken, e.g. from short-axis MR images of the left-ventricle. In this work we propose a recurrent fully-convolutional network (RFCN) that learns image representations from the full stack of 2D slices and has the ability to leverage inter-slice spatial dependences through internal memory units. RFCN combines anatomical detection and segmentation into a single architecture that is trained end-to-end thus significantly reducing computational time, simplifying the segmentation pipeline, and potentially enabling real-time applications. We report on an investigation of RFCN using two datasets, including the publicly available MICCAI 2009 Challenge dataset. Comparisons have been carried out between fully convolutional networks and deep restricted Boltzmann machines, including a recurrent version that leverages inter-slice spatial correlation. Our studies suggest that RFCN produces state-of-the-art results and can substantially improve the delineation of contours near the apex of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avendi, M.R., Kheradvar, A., Jafarkhani, H.: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119 (2016)

    Article  Google Scholar 

  2. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv:1406.1078 (2014)

  3. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv:1412.3555 (2014)

  4. Georgescu, B., Zhou, X.S., Comaniciu, D., Gupta, A.: Database-guided segmentation of anatomical structures with complex appearance. In: CVPR, vol. 2, pp. 429–436 (2005)

    Google Scholar 

  5. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580 [cs] (2012)

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  8. Hu, H., Liu, H., Gao, Z., Huang, L.: Hybrid segmentation of left ventricle in cardiac MRI using Gaussian-mixture model and region restricted dynamic programming. Magn. Reson. Imaging 31(4), 575–584 (2013)

    Article  Google Scholar 

  9. Huang, R., Pavlovic, V., Metaxas, D.N.: A graphical model framework for coupling MRFs and deformable models, vol. 2, pp. 739–746 (2004)

    Google Scholar 

  10. Huang, S., Liu, J., Lee, L.C., Venkatesh, S.K., Teo, L.L.S., Au, C., Nowinski, W.L.: An image-based comprehensive approach for automatic segmentation of left ventricle from cardiac short axis cine MR images. J. Digit. Imaging 24(4), 598–608 (2011)

    Article  Google Scholar 

  11. Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167 [cs], February 2015

  12. Jolly, M.: Fully automatic left ventricle segmentation in cardiac cine MR images using registration and minimum surfaces. MIDAS J. 49 (2009)

    Google Scholar 

  13. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  14. Lewandowski, A.J., Augustine, D., Lamata, P., Davis, E.F., Lazdam, M., Francis, J., McCormick, K., Wilkinson, A.R., Singhal, A., Lucas, A., Smith, N.P., Neubauer, S., Leeson, P.: Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation 127(2), 197–206 (2013)

    Article  Google Scholar 

  15. Li, C., Xu, C., Gui, C., Fox, M.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)

    Article  MathSciNet  Google Scholar 

  16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  17. Ngo, T.A., Carneiro, G.: Fully automated non-rigid segmentation with distance regularized level set evolution initialized and constrained by deep-structured inference. In: CVPR, pp. 3118–3125 (2014)

    Google Scholar 

  18. Ngo, T.A., Carneiro, G.: Left ventricle segmentation from cardiac MRI combining level set methods with deep belief networks. In: ICIP, pp. 695–699 (2013)

    Google Scholar 

  19. Ngo, T.A., Lu, Z., Carneiro, G.: Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med. Image Anal. 35, 159–171 (2017)

    Article  Google Scholar 

  20. Petitjean, C., Dacher, J.N.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011)

    Article  Google Scholar 

  21. Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A.J., Wright, G.A.: Evaluation framework for algorithms segmenting short axis cardiac MRI. MIDAS J. Card. MR Left Ventricle Segmentation Challenge (2009)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: MICCAI (2015)

    Google Scholar 

  23. Sutskever, I., Hinton, G.E., Taylor, G.W.: The recurrent temporal restricted Boltzmann machine. In: NIPS, pp. 1601–1608 (2009)

    Google Scholar 

  24. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. In: COURSERA: Neural Networks for Machine Learning, vol. 4 (2012)

    Google Scholar 

  25. Valipour, S., Siam, M., Jagersand, M., Ray, N.: Recurrent Fully Convolutional Networks for Video Segmentation. arXiv:1606.00487 [cs] (2016)

Download references

Acknowledgements

The authors would like to thank Paul Leeson and Adam Lewandowski from Oxford University for their assistance with the PRETERM dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Montana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Poudel, R.P.K., Lamata, P., Montana, G. (2017). Recurrent Fully Convolutional Neural Networks for Multi-slice MRI Cardiac Segmentation. In: Zuluaga, M., Bhatia, K., Kainz, B., Moghari, M., Pace, D. (eds) Reconstruction, Segmentation, and Analysis of Medical Images. RAMBO HVSMR 2016 2016. Lecture Notes in Computer Science(), vol 10129. Springer, Cham. https://doi.org/10.1007/978-3-319-52280-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52280-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52279-1

  • Online ISBN: 978-3-319-52280-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics