Skip to main content

The Ecology of Pathogens Transmission at the Wildlife-Livestock Interface: Beyond Disease Ecology, Towards Socio-Ecological System Health

  • Chapter
  • First Online:
Diseases at the Wildlife - Livestock Interface

Part of the book series: Wildlife Research Monographs ((WIREMO,volume 3))

Abstract

Disease ecology aims at studying host–pathogen interactions in the context of their environment and evolution. It is concerned with how species interactions and abiotic components of the environment affect the patterns and processes of infectious diseases. As such, this emerging discipline is highly relevant to improve our understanding and management of diverse and complex wildlife–livestock interfaces across the globe. We illustrate with various examples of how the processes of pathogen transmission among interacting wild and domestic host populations may be analyzed using tools and concepts drawn from population, landscape, and evolutionary ecology. In particular, we emphasize the importance of access to resources, interspecific competition, and predation in shaping the frequency and intensity of direct and indirect contacts among potential hosts at the interface. Moreover, we report on the growing importance of anthropogenic factors shaping wildlife–livestock–human interfaces, with recent changes in both livestock husbandry and biodiversity conservation practices having major impacts on pathogen emergence and spread in interface areas. We conclude by laying out the importance of the interdisciplinary integration of ecological, biomedical, and social sciences into a single discipline of “disease socio-ecology,” which remains a major research frontier for improved management of wildlife–livestock interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander KA, McNutt JW (2010) Human behavior influences infectious disease emergence at the human-animal interface. Front Ecol Environ 8:522–526. https://doi.org/10.1890/090057

    Article  Google Scholar 

  • Alraddadi BM et al (2016) Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014. Emerg Infect Dis 22:49–55. https://doi.org/10.3201/eid2201.151340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Tawfiq JA, Memish ZA (2014) Middle East respiratory syndrome coronavirus: transmission and phylogenetic evolution. Trends Microbiol 22:573–579. https://doi.org/10.1016/j.tim.2014.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameni G, Aseffa A, Engers H, Young D, Gordon S, Hewinson G, Vordermeier M (2007) High prevalence and increased severity of pathology of bovine tuberculosis in Holsteins compared to zebu breeds under field cattle husbandry in Central Ethiopia. Clin Vaccine Immunol 14:1356–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson JA, Cumming DHM (2013) Boundary formation and TFCAs in southern Africa. In: Andersson JA, De Garine-Wichatitsky M, Cumming DHM, Dzingirai V, Giller KE (eds) Transfrontier conservation areas: people living on the edge. Earthscan Publications, Londres, pp 25–61

    Google Scholar 

  • Andersson JA, De Garine-Wichatitsky M, Cumming DHM, Dzingirai V, Giller KE (2013) People at wildlife frontiers in southern Africa. In: Andersson JA, De Garine-Wichatitsky M, Dzingirai V, Giller KE (eds) Transfrontier conservation areas: people living on the edge. Earthscan Publications, Londres, pp. 1–11

    Google Scholar 

  • Assiri A et al (2013) Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis 13:752–761. https://doi.org/10.1016/s1473-3099(13)70204-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Barasona JA et al (2014) Spatiotemporal interactions between wild boar and cattle: implications for cross-species disease transmission. Vet Res 45:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Bengis RG, Kriek NP, Keet DF, Raath JP, de Vos V, Huchzermeyer HF (1996) An outbreak of bovine tuberculosis in a free-living African buffalo (Syncerus caffer--sparrman) population in the Kruger National Park: a preliminary report. Onderstepoort J Vet Res 63:15–18

    CAS  PubMed  Google Scholar 

  • Bengis RG, Kock RA, Fischer J (2002) Infectious animal disease: the wildlife livestock interface. OIE Revue Scientifique et Technique 21:53–65

    Article  CAS  Google Scholar 

  • Bhola N, Ogutu JO, Piepho H-P, Said MY, Reid RS, Hobbs NT, Olff H (2012) Comparative changes in density and demography of large herbivores in the Masai Mara reserve and its surrounding human-dominated pastoral ranches in Kenya. Biodivers Conserv 21:1509–1530

    Article  Google Scholar 

  • Binot A et al (2015) A framework to promote collective action within the one health community of practice: using participatory modelling to enable interdisciplinary, cross-sectoral and multi-level integration. One Health 1:44–48

    Article  PubMed  PubMed Central  Google Scholar 

  • Bongaarts J, Sinding S (2011) Population policy in transition in the developing world. Science 333:574–576. https://doi.org/10.1126/science.1207558

    Article  CAS  PubMed  Google Scholar 

  • Borchering RK, Bellan SE, Flynn JM, Pulliam JR, McKinley SA (2017) Resource-driven encounters among consumers and implications for the spread of infectious disease. J R Soc Interface 14:20170555

    Google Scholar 

  • Brahmbhatt DP et al (2012) Contacts between domestic livestock and wildlife at the Kruger National Park Interface of the Republic of South Africa. Prev Vet Med 103:16–21

    Article  PubMed  Google Scholar 

  • Brodie JF, Giordano AJ, Ambu L (2015) Differential responses of large mammals to logging and edge effects. Mamm Biol 80:7–13

    Article  Google Scholar 

  • Burivalova Z, Şekercioğlu Çağan H, Koh Lian P (2014) Thresholds of logging intensity to maintain tropical Forest biodiversity. Curr Biol 24:1893–1898. https://doi.org/10.1016/j.cub.2014.06.065

    Article  CAS  PubMed  Google Scholar 

  • Caron A, de Garine-Wichatitsky M, Morand S (2012) Using the community of pathogens to infer inter-specific host epidemiological interactions at the wildlife/domestic interface. In: Morand S, Beaudeau F, Cabaret J (eds) New Frontiers in molecular epidemiology of infectious diseases. Springer, Heidelberg, pp 311–332

    Chapter  Google Scholar 

  • Caron A et al (2013) Relationship between burden of infection in ungulate populations and wildlife/livestock interfaces. Epidemiol Infect 141:1522–1535. https://doi.org/10.1017/S0950268813000204

    Article  CAS  PubMed  Google Scholar 

  • Caron A, Cappelle J, Cumming GS, de Garine-Wichatitsky M, Gaidet N (2015) Bridge hosts, a missing link for disease ecology in multi-host systems. Vet Res 46:83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caron A, Cornelis D, Foggin C, Hofmeyr M, de Garine-Wichatitsky M (2016) African Buffalo movement and zoonotic disease risk across Transfrontier conservation areas, southern Africa. Emerg Infect Dis 22:277–280. https://doi.org/10.3201/eid2202.140864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasco-Garcia R, Barasona JA, Gortazar C, Montoro V, Sanchez-Vizcaino JM, Vicente J (2016) Wildlife and livestock use of extensive farm resources in south Central Spain: implications for disease transmission. Eur J Wildl Res 62:65–78

    Article  Google Scholar 

  • Chaber A-L (2017) The era of human-induced diseases. EcoHealth 15(1):8–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu DKW et al (2014) MERS coronaviruses in dromedary camels, Egypt. Emerg Infect Dis 20:1049–1053. https://doi.org/10.3201/eid2006.140299

    Article  PubMed  PubMed Central  Google Scholar 

  • Cleaveland S, Laurenson M, Taylor L (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Phil Trans R Soc London B: Biol Sci 356:991–999

    Article  CAS  Google Scholar 

  • Coleman JD, Cooke MM (2001) Mycobacterium bovis infection in wildlife in New Zealand. Tuberculosis 81:191–202

    Article  CAS  PubMed  Google Scholar 

  • Collinge SK, Ray C (eds) (2006) Disease ecology: community structure and pathogen dynamics. Oxford University Press, Oxford, New York

    Google Scholar 

  • Coltart CE, Lindsey B, Ghinai I, Johnson AM, Heymann DL (2017) The Ebola outbreak, 2013–2016: old lessons for new epidemics. Phil Trans R Soc B 372:20160297

    Article  PubMed  PubMed Central  Google Scholar 

  • Crameri G et al (2015) Absence of MERS-CoV antibodies in feral camels in Australia: implications for the pathogen’s origin and spread. One Health 1:76. https://doi.org/10.1016/j.onehlt.2015.10.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Cross PC, Edwards WH, Scurlock BM, Maichak EJ, Rogerson JD (2007) Effects of management and climate on elk brucellosis in the greater Yellowstone ecosystem. Ecol Appl 17:957–964

    Article  PubMed  Google Scholar 

  • Cumming DHM, Dzingirai V, de Garine-Wichatitksy M (2013) Land- and natural resource-based livelihood opportunities in TFCAs. In: Andersson JA, de Garine-Wichatitsky M, Cumming DHM, Dzingirai V, Giller KE (eds) Transfrontier conservation areas: people living on the edge. Earthscan, London, pp. 163–191

    Google Scholar 

  • Cunningham AA, Daszak P, Wood JL (2017) One health, emerging infectious diseases and wildlife: two decades of progress? Phil Trans R Soc B 372:20160167

    Article  PubMed  PubMed Central  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2001) Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop 78:103–116

    Article  CAS  PubMed  Google Scholar 

  • Davidson Z, Valeix M, Van Kesteren F, Loveridge AJ, Hunt JE, Murindagomo F, MacDonald D (2013) Seasonal diet and prey preference of the African lion in a waterhole-driven semi-arid savanna. PLoS One 8(2):e55182. https://doi.org/10.1371/journal.pone.0055182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Garine-Wichatitsky M et al (2010) Bovine tuberculosis in buffaloes, southern Africa. Emerg Infect Dis 16:884–885. https://doi.org/10.3201/eid1605.090710

    Article  PubMed  PubMed Central  Google Scholar 

  • de Garine-Wichatitsky M et al (2013a) Consequences of animals crossing the edges of transfrontier parks. In: Andersson JA, de Garine-Wichatitsky M, Cumming DHM, Dzingirai V, Giller KE (eds) Transfrontier conservation areas. People living on the edge. Earthscan, New York and London, pp 137–162

    Google Scholar 

  • de Garine-Wichatitsky M et al (2013b) Coexisting with wildlife in Transfrontier conservation areas in Zimbabwe: cattle owners’ awareness of disease risks and perception of the role played by wildlife. Comp Immunol Microbiol Infect Dis 36:321–332

    Article  PubMed  Google Scholar 

  • de Garine-Wichatitksy M, Caron A, Kock R, Tschopp R, Munyeme M, Hofmeyr M, Michel A (2013c) A review on bovine tuberculosis at the wildlife/livestock/human interface in sub-Saharan Africa Epidemiol Infect 141:1342–1356

    Google Scholar 

  • de Garine-Wichatitsky M, Binot A, Garine-Wichatitsky E, Perroton A, Bastian SN (2014) Comment la santé de la faune sauvage est-elle perçue? In: Morand S, Moutou F, Richomme C (eds) Faune sauvage, biodiversité et santé, quels défis? Editions Quae, Versailles (FRA), pp 135–143

    Google Scholar 

  • De Vos V, Bengis RG, Kriek NP, Michel A, Keet DF, Raath JP, Huchzermeyer HF (2001) The epidemiology of tuberculosis in free-ranging African buffalo (Syncerus caffer) in the Kruger National Park, South Africa Onderstepoort. J Vet Res 68:119–130

    Google Scholar 

  • Desiere S, Hung Y, Verbeke W, D’Haese M (2018) Assessing current and future meat and fish consumption in Sub-Sahara Africa: Learnings from FAO Food Balance Sheets and LSMS household survey data Global food security

    Google Scholar 

  • Dion E, VanSchalkwyk L, Lambin EF (2011) The landscape epidemiology of foot-and-mouth disease in South Africa: a spatially explicit multi-agent simulation. Ecol Model 222:2059–2072. https://doi.org/10.1016/j.ecolmodel.2011.03.026

    Article  Google Scholar 

  • Dobson A, Holdo R, Holt R (2011) Rinderpest. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, CA, pp 597–604

    Google Scholar 

  • du Toit JT (2011) Coexisting with cattle. Science 33:1710–1711

    Article  Google Scholar 

  • du Toit JT, Cross PC, Valeix M (2017) Managing the livestock–wildlife interface on rangelands. In: Rangeland systems. Springer, New York, pp 395–425

    Chapter  Google Scholar 

  • Dudas G, Carvalho LM, Rambaut A, Bedford T (2018) MERS-CoV spill-over at the camel-human interface. eLife 7:e31257. https://doi.org/10.7554/eLife.31257

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson KJ et al (2013) Evaluating the potential for the environmentally sustainable control of foot and mouth disease in sub-Saharan Africa. EcoHealth 10:314–322

    Article  PubMed  PubMed Central  Google Scholar 

  • Funk AL et al (2016) MERS-CoV at the animal–human Interface: inputs on exposure pathways from an expert-opinion elicitation. Front Vet Sci 3:88. https://doi.org/10.3389/fvets.2016.00088

    Article  PubMed  PubMed Central  Google Scholar 

  • Fynn RWS, Augustine DJ, Peel MJS, de Garine-Wichatitsky M (2016) Strategic management of livestock to improve biodiversity conservation in African savannahs: a conceptual basis for wildlife–livestock coexistence. J Appl Ecol 53:388–397. https://doi.org/10.1111/1365-2664.12591

    Article  Google Scholar 

  • Goldberg TL, Gillepsie TR, Rwego IB (2008) Health and disease in the people, primates, and domestic animals of Kibale National Park: implications for conservation. In: Science and conservation in African forests: how long-term research promotes habitat protection. Cambridge University Press, Cambridge, pp 75–87

    Chapter  Google Scholar 

  • Gortázar C, Acevedo P, Ruiz-Fons F, Vicente J (2006) Disease risks and overabundance of game species. Eur J Wildl Res 52:81–87

    Article  Google Scholar 

  • Gortázar C, Ferroglio E, Lutton CE, Acevedo P (2010) Disease‐related conflicts in mammal conservation. Wild Res 37:668–675

    Article  Google Scholar 

  • Grenfell BT, Dobson AP (1995) Ecology of infectious diseases in natural populations, vol 7. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Grenfell B, Gulland F (1995) Introduction: ecological impact of parasitism on wildlife host populations. Parasitology 111:S3–S14

    Article  PubMed  Google Scholar 

  • Han H-J, H-l W, Zhou C-M, Chen F-F, Luo L-M, J-w L, Yu X-J (2015) Bats as reservoirs of severe emerging infectious diseases. Virus Res 205:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassell JM, Begon M, Ward MJ, Fèvre EM (2017) Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol Evol 32:55–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Haydon DT, Cleaveland S, Taylor LH, Laurenson MK (2002) Identifying reservoirs of infection: a conceptual and practical challenge. Emerg Infect Dis 8:1468–1473

    Article  PubMed  Google Scholar 

  • Herrero M et al (2010) Smart Investments in Sustainable Food Production: revisiting mixed crop-livestock systems. Science 327:822–825. https://doi.org/10.1126/science.1183725

    Article  CAS  PubMed  Google Scholar 

  • Hilgenfeld R, Peiris M (2013) From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antivir Res 100:286–295. https://doi.org/10.1016/j.antivira1.2013.08.015

    Article  CAS  PubMed  Google Scholar 

  • Holdo RM, Sinclair AR, Dobson AP, Metzger KL, Bolker BM, Ritchie ME, Holt RD (2009) A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biol 7:e1000210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones BA et al (2013) Zoonosis emergence linked to agricultural intensification and environmental change. Proc Natl Acad Sci 110:8399–8404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kartzinel TR et al (2015) DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc Natl Acad Sci 112:8019–8024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaszta Ż, Cushman SA, Sillero-Zubiri C, Wolff E, Marino J (2018) Where buffalo and cattle meet: modelling interspecific contact risk using cumulative resistant kernels. Ecography 41(10):1616–1626

    Article  Google Scholar 

  • Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498

    Article  CAS  PubMed  Google Scholar 

  • Kim HK et al (2016) Detection of severe acute respiratory syndrome-like, Middle East respiratory syndrome-like bat coronaviruses and group H rotavirus in Faeces of Korean bats. Transboun Emerg Dis 63(4):365–372. https://doi.org/10.1111/tbed.12515

    Article  CAS  Google Scholar 

  • Kock R, Kock M, de Garine-Wichatitksy M, Chardonnet P, Caron A (2014) Livestock and buffalo (Syncerus caffer) interfaces in Africa: ecology of disease transmission and implications for conservation and development. In: Melletti M, Burton J (eds) Ecology, evolution and behaviour of wild cattle: implications for conservation. Cambridge University Press, Cambridge, pp 431–445

    Chapter  Google Scholar 

  • Kock RA et al (2018) Saigas on the brink: Multidisciplinary analysis of the factors influencing mass mortality events. Sci Adv 4:eaao2314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuiper TR et al (2015) Seasonal herding practices influence predation on domestic stock by African lions along a protected area boundary. Biol Conserv 191:546–554. https://doi.org/10.1016/j.biocon.2015.08.012

    Article  Google Scholar 

  • Lambin EF, Tran A, Vanwambeke SO, Linard C, Soti V (2010) Pathogenic landscapes: interactions between land, people, disease vectors, and their animal hosts. Int J Health Geogr 9:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Lefèvre PC, Blancou J, Chermette R, Uilenberg G (2010) General considerations viral diseases. Infectious and parasitic diseases of livestock vol 1. Edition TEC & DOC. Edition TEC & DOC, Lavoisier, Paris

    Google Scholar 

  • Leroy EM et al (2005) Fruit bats as reservoirs of Ebola virus. Nature 438:575

    Article  CAS  PubMed  Google Scholar 

  • Mangesho PE et al (2017) Exploring local knowledge and perceptions on zoonoses among pastoralists in northern and eastern Tanzania. PLoS Negl Trop Dis 11:e0005345

    Article  PubMed  PubMed Central  Google Scholar 

  • Matthiessen P, Douthwaite B (1985) The impact of tsetse fly control campaigns on African wildlife. Oryx 19:202–209

    Article  Google Scholar 

  • Memish ZA et al (2013) Middle East respiratory syndrome coronavirus in bats. Saudi Arabia Emerging Infectious Diseases 19:1819–1823. https://doi.org/10.3201/eid1911.131172

    Article  CAS  PubMed  Google Scholar 

  • Meunier NV, Sebulime P, White RG, Kock R (2017) Wildlife-livestock interactions and risk areas for cross-species spread of bovine tuberculosis. Onderstepoort J Vet Res 84:1–10

    Article  Google Scholar 

  • Michel AL, Hlokwe TM, Coetzee ML, Mare L, Connoway L, Rutten VP, Kremer K (2008) High Mycobacterium bovis genetic diversity in a low prevalence setting. Vet Microbiol 126:151–159

    Article  CAS  PubMed  Google Scholar 

  • Michel AL et al (2009) Molecular epidemiology of Mycobacterium bovis isolates form free-ranging wildlife in south African game reserves. Vet Microbiol 133:335–343. https://doi.org/10.1016/j.vetmic.2008.07.023

    Article  CAS  PubMed  Google Scholar 

  • Miguel E (2012) Contacts et diffusion de pathogènes des ongulés sauvages aux ongulés domestiques africains (Contacts in the wild and pathogens spill-over). Université de Montpellier II

    Google Scholar 

  • Miguel E et al (2013) Contacts and foot and mouth disease transmission from wild to domestic bovines in Africa. Ecosphere 4:51. https://doi.org/10.1890/ES12-00239.1

    Article  Google Scholar 

  • Miguel E, El Idrissi A, Chevalier V, Caron A, Faye B, Peiris M, Roger F (2016a) Ecological and epidemiological roles of camels: lessons from existing and emerging viral infections Empres 360 – animal health -Food and Agriculture Organization of the United Nations no. 46

    Google Scholar 

  • Miguel E et al (2016b) Absence of Middle East respiratory syndrome coronavirus in camelids, Kazakhstan, 2015. Emerg Infect Dis 22:555–557. https://doi.org/10.3201/eid2203.151284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miguel E et al (2017a) Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015. Eur Secur 22:30498. https://doi.org/10.2807/1560-7917.ES.2017.22.13.30498

    Article  Google Scholar 

  • Miguel E et al (2017b) Drivers of foot-and-mouth disease in cattle at wild/domestic interface: insights from farmers, buffalo and lions. Divers Distrib 23:1018–1030

    Article  PubMed  PubMed Central  Google Scholar 

  • Morand S, Jittapalapong S, Suputtamongkol Y, Abdullah MT, Huan TB (2014a) Infectious diseases and their outbreaks in Asia-Pacific: biodiversity and its regulation loss matter. PLoS One 9:e90032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morand S, McIntyre KM, Baylis M (2014b) Domesticated animals and human infectious diseases of zoonotic origins: domestication time matters. Infect Genet Evol 24:76–81

    Article  PubMed  Google Scholar 

  • Morse SS et al (2012) Prediction and prevention of the next pandemic zoonosis. Lancet 380:1956–1965

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller MA et al (2014) MERS Coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997. Emerg Infect Dis 20:2093–2095. https://doi.org/10.3201/eid2012.141026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murwira A et al (2013) Resource gradients and movements across te edge of transfrontier parks. In: Andersson JA, De Garine-Wichatitsky M, Dzingirai V, GK E (eds) . Earthscan, London, pp 123–136

    Google Scholar 

  • Musoke J, Hlokwe TM, Marcotty T, Du Plessis BJ, Michel AL (2015) Spill-over of Mycobacterium bovis from wildlife to livestock, South Africa

    Google Scholar 

  • Naidoo R, Preez PD, Stuart-Hill G, Chris Weaver L, Jago M, Wegmann M (2012) Factors affecting intraspecific variation in home range size of a large African herbivore. Landsc Ecol 27:1523. https://doi.org/10.1007/s10980-012-9807-3

    Article  Google Scholar 

  • Nugent G (2011) Maintenance, spill-over and spillback transmission of bovine tuberculosis in multi-host wildlife complexes: a New Zealand case study. Vet Microbiol 151:34–42

    Article  PubMed  Google Scholar 

  • Odadi WO, Karachi MK, Abdulrazak SA, Young TP (2011) African wild ungulates compete with or facilitate cattle depending on season. Science 333:1753–1755

    Article  CAS  PubMed  Google Scholar 

  • Ogutu JO et al (2014) Large herbivore responses to surface water and land use in an east African savanna: implications for conservation and human-wildlife conflicts. Biodivers Conserv 23:573–596

    Article  Google Scholar 

  • OIE (2009) Foot and mouth disease: Aetiology Epidemiology Diagnosis Prevention and Control References OIE Technical Disease Cards

    Google Scholar 

  • Osofsky SA (2005) Conservation and development interventions at the wildlife/livestock Interface: implications for wildlife, livestock and human health

    Google Scholar 

  • Ostfeld RS, Keesing F, Eviner VT (2010) Infectious disease ecology: effects of ecosystems on disease and of disease on ecosystems. Princeton University Press, Princeton

    Book  Google Scholar 

  • Palmer MV, Thacker TC, Waters WR, Gortazar C, Corner LA (2012) Mycobacterium bovis: a model pathogen at the Interface of livestock, wildlife, and humans. Vet Med Int 2012:236205. https://doi.org/10.1155/2012/236205

    Article  PubMed  PubMed Central  Google Scholar 

  • Paton DJ, Sumption KJ, Charleston B (2009) Options for control of foot-and-mouth disease: knowledge, capability and policy. Phil Trans R Soc B: Biol Sci 364:2657–2667

    Article  Google Scholar 

  • Payne A et al (2012) Bovine tuberculosis in “Eurasian” badgers (Meles meles) in France. Eur J Wildl Res 59:331–339. https://doi.org/10.1007/s10344-012-0678-3

    Article  Google Scholar 

  • Perera RA et al (2013) Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013. Eur Secur 18:8–14

    Google Scholar 

  • Perrotton A, De Garine-Wichatitsky M, Valls Fox H, Le Page C (2017) My cattle and your park: codesigning a role-playing game with rural communities to promote multistakeholder dialogue at the edge of protected areas. Ecol Soc 22(1):35

    Article  Google Scholar 

  • Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, Lloyd-Smith JO (2017) Pathways to zoonotic spill-over. Nat Rev Microbiol 15:502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourrut X et al (2005) The natural history of Ebola virus in Africa. Microbes Infect 7:1005–1014

    Article  PubMed  Google Scholar 

  • Prins HHT (1996) Ecology and behaviour of the African Buffalo. Chapman & Hall, London

    Book  Google Scholar 

  • Proffitt KM, White PJ, Garrott RA (2010) Spatio-temporal overlap between Yellowstone bison and elk – implications of wolf restoration and other factors for brucellosis transmission risk. J Appl Ecol 47:281–289

    Article  Google Scholar 

  • Riginos C et al (2012) Lessons on the relationship between livestock husbandry and biodiversity from the Kenya long-term Exclosure experiment (KLEE). Pastoralism Res Policy Prac 2:10

    Article  Google Scholar 

  • Roger F et al (2016) One health and EcoHealth: the same wine in different bottles? Infect Ecol Epidemiol 6:30978

    PubMed  Google Scholar 

  • Rwego IB, Gillespie TR, Isabirye-Basuta G, Goldberg TL (2008) High rates of Escherichia coli transmission between livestock and humans in rural Uganda. J Clin Microbiol 46:3187–3191

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiwani HA, Pharithi RB, Khan B, Egom CB-A, Kruzliak P, Maher V, Egom EE-A (2017) An update on the 2014 Ebola outbreak in Western Africa. Asian Pac J Trop Med 10:6–10. https://doi.org/10.1016/j.apjtm.2016.12.008

    Article  PubMed  Google Scholar 

  • Smith NH (2011) The global distribution and phylogeography of Mycobacterium bovis clonal complexes Infection, genetics and evolution. J Mol Epidemiol Evol Genet Infect Dis 12(4):857–865. https://doi.org/10.1016/j.meegid.2011.09.007

    Article  Google Scholar 

  • Smith I, Wang L-F (2013) Bats and their virome: an important source of emerging viruses capable of infecting humans. Curr Opin Virol 3:84–91

    Article  PubMed  Google Scholar 

  • Smith KF, Acevedo-Whitehouse K, Pedersen AB (2009) The role of infectious diseases in biological conservation. Anim Conserv 12:1–12. https://doi.org/10.1111/j.1469-1795.2008.00228.x

    Article  Google Scholar 

  • Sutmoller P, Thomson GR, Hargreaves SK, Foggin C, Anderson E (2000) The foot-and-mouth disease posed by African buffalo within wildlife conservancies to cattle industry of Zimbabwe. Prev Vet Med 44:43–60

    Article  CAS  PubMed  Google Scholar 

  • Taylor RD, Martin RB (1987) Effects of veterinary fences on wildlife conservation in Zimbabwe. Environ Manag 11:327–334

    Article  Google Scholar 

  • Tekleghiorghis T, Moormann RJM, Weerdmeester K, Dekker A (2016) Foot-and-mouth disease transmission in Africa: implications for control, a review. Transbound Emerg Dis 63:136–151. https://doi.org/10.1111/tbed.12248

    Article  CAS  PubMed  Google Scholar 

  • Thomson GR (1995) Overview of foot and mouth disease in southern Africa. OIE Revue Scientifique et Technique 14:503–520

    Article  CAS  Google Scholar 

  • Tompkins DM, Carver S, Jones ME, Krkošek M, Skerratt LF (2015) Emerging infectious diseases of wildlife: a critical perspective. Trends Parasitol 31:149–159

    Article  PubMed  Google Scholar 

  • Tyrrell P, Russell S, Western D (2017) Seasonal movements of wildlife and livestock in a heterogenous pastoral landscape: implications for coexistence and community based conservation. Global Ecol Conserv 12:59–72

    Article  Google Scholar 

  • United Nations (2016) Sustainable development goals report 2016. UN

    Google Scholar 

  • Valeix M, Loveridge AJ, Chamaille-Jammes S, Davidson Z, Murindagomo F, Fritz H, Macdonald DW (2009) Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use. Ecology 90:23–30. https://doi.org/10.1890/08-0606.1

    Article  CAS  PubMed  Google Scholar 

  • Valls-Fox H, De Garine-Wichatitsky M, Fritz H, Chamaillé-Jammes S (2018a) Resource depletion versus landscape complementation: habitat selection by a multiple central place forager. Landsc Ecol 33:127–140

    Article  Google Scholar 

  • Valls-Fox H, Chamaillé-Jammes S, de Garine-Wichatitsky M, Perrotton A, Courbin N, Miguel E, Guerbois C, Caron A, Loveridge A, Stapelkamp B, Muzamba M (2018b) Water and cattle shape habitat selection by wild herbivores at the edge of a protected area. Anim Conserv 21(5):365–75

    Google Scholar 

  • van Schalkwyk OL, Knobel DL, De Clercq EM, De Pus C, Hendrickx G, Van den Bossche P (2016) Description of events where African buffaloes (Syncerus caffer) strayed from the endemic foot-and-mouth disease zone in South Africa, 1998-2008. Transbound Emerg Dis 63:333–347. https://doi.org/10.1111/tbed.12280

    Article  PubMed  Google Scholar 

  • VanderWaal KL, Atwill ER, Isbell L, McCowan B (2014) Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis). J Anim Ecol 83:406–414

    Article  PubMed  Google Scholar 

  • Voyles J et al (2015) Moving beyond too little, too late: managing emerging infectious diseases in wild populations requires international policy and partnerships. EcoHealth 12:404–407

    Article  PubMed  Google Scholar 

  • WHO World Health Organization (2018) Middle East respiratory syndrome coronavirus (MERS-CoV) http://www.who.int/emergencies/mers-cov/en/

  • Wilcox BA, Gubler DJ (2005) Disease ecology and the global emergence of zoonotic pathogens. Environ Health Prev Med 10:263–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittemyer G, Elsen P, Bean WT, Burton ACO, Brashares JS (2008) Accelerated human population growth at protected area edges. Science 321:123

    Article  CAS  PubMed  Google Scholar 

  • Woodroffe R et al (2016) Badgers prefer cattle pasture but avoid cattle: implications for bovine tuberculosis control. Ecol Lett 19:1201–1208

    Article  PubMed  Google Scholar 

  • Woolhouse MEJ, Gowtage-Sequeria S (2005) Host range and emerging and reemerging pathogens. Emerg Infect Dis 11:1842–1847

    Article  PubMed  PubMed Central  Google Scholar 

  • Zengeya F, Murwira A, De Garine-Wichatitsky M (2011) An IKONOS-based comparison of methods to estimate cattle home ranges in a semi-arid landscape of southern Africa. Int J Remote Sens 32:7805–7826

    Article  Google Scholar 

  • Zengeya FM, Murwira A, Caron A, Cornélis D, Gandiwa P, de Garine-Wichatitsky M (2015) Spatial overlap between sympatric wild and domestic herbivores links to resource gradients. Remote Sens Appl: Soc Environ 2:56–65

    Google Scholar 

  • Zinsstag J, Schelling E, Waltner-Toews D, Tanner M (2011) From “one medicine” to “one health” and systemic approaches to health and Well-being. Prev Vet Med 101:148–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zvidzai M, Murwira A, Caron A, de Garine-Wichatitsky M (2013) Waterhole use patterns at the wildlife/livestock interface in a semi-arid savanna of Southern Africa. Int J Dev Sustain 2:455–471

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel De Garine-Wichatitsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Garine-Wichatitsky, M., Miguel, E., Kock, R., Valls-Fox, H., Caron, A. (2021). The Ecology of Pathogens Transmission at the Wildlife-Livestock Interface: Beyond Disease Ecology, Towards Socio-Ecological System Health. In: Vicente, J., Vercauteren, K.C., Gortázar, C. (eds) Diseases at the Wildlife - Livestock Interface. Wildlife Research Monographs, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-65365-1_3

Download citation

Publish with us

Policies and ethics