Skip to main content

Atomic Layer Deposition and Atomic Layer Etching—An Overview of Selective Processes

  • Conference paper
  • First Online:
TMS 2021 150th Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 2291 Accesses

Abstract

The continued evolution in nanoelectronics and nanophotonics has been made possible by the recent developments in Atomic Layer Deposition and Atomic Layer Etching. While uniform deposition of conformal films with controllable thickness is a key feature of Atomic Layer Deposition, Atomic Layer Etching offers the advantages of controlled removal of chemically modified areas. Various case studies of the applications of these technologies in dielectrics, metals and diffusion barriers will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khan R et al (2018) Area-selective atomic layer deposition using Si precursors as inhibitors. Chem Mater 30(21):7603–7610

    CAS  Google Scholar 

  2. Fang M, Ho JC (2015) Area-selective atomic layer deposition: conformal coating, subnanometer thickness control, and smart positioning. ACS Nano 9:8651–8654. https://doi.org/10.1021/acsnano.5b05249

    Article  CAS  Google Scholar 

  3. Kim H, Lee H-B-R, Maeng W-J (2009) Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 517:2563–2580. https://doi.org/10.1016/j.tsf.2008.09.007

    Article  CAS  Google Scholar 

  4. Mackus AJM, Bol AA, Kessels WMM (2014) The use of atomic layer deposition in advanced nanopatterning. Nanoscale 6:10941–10946. https://doi.org/10.1039/C4NR01954G

    Article  CAS  Google Scholar 

  5. Singh JA, Yang N, Bent SF (2017) Nanoengineering heterogeneous catalysts by atomic layer deposition. Annu Rev Chem Biomol Eng 8:41–62. https://doi.org/10.1146/annurev-chembioeng-060816-101547

    Article  Google Scholar 

  6. Lin K-Y et al (2020) Selective atomic layer etching of HfO2 over silicon by precursor and substrate-dependent selective deposition. J Vac Sci Technol, A 38(3):032601

    CAS  Google Scholar 

  7. Haider A et al (2016) Area-selective atomic layer deposition using an inductively coupled plasma polymerized fluorocarbon layer: a case study for metal oxides. J Phys Chem C 120(46):26393–26401

    CAS  Google Scholar 

  8. Lemaire PC et al (2016) Understanding inherent substrate selectivity during atomic layer deposition: effect of surface preparation, hydroxyl density, and metal oxide composition on nucleation mechanisms during tungsten ALD. J Chem Phys 146(5):052811

    Google Scholar 

  9. Mameli A et al (2017) Area-selective atomic layer deposition of SiO2 using acetylacetone as a chemoselective inhibitor in an ABC-type cycle. ACS Nano 11(9):9303–9311

    CAS  Google Scholar 

  10. Stevens E et al (2018) Area-selective atomic layer deposition of TiN, TiO2, and HfO2 on silicon nitride with inhibition on amorphous carbon. Chem Mater 30(10):3223–3232

    CAS  Google Scholar 

  11. Leskelä M, Ritala M (2003) Atomic layer deposition chemistry: recent developments and future challenges. Angew Chem Int Ed 42(45):5548–5554

    Google Scholar 

  12. Chen R et al (2005) Achieving area-selective atomic layer deposition on patterned substrates by selective surface modification. Appl Phys Lett 86(19):191910

    Google Scholar 

  13. Färm E et al (2006) Self-assembled octadecyltrimethoxysilane monolayers enabling selective-area atomic layer deposition of iridium. Chem Vap Deposition 12(7):415–417

    Google Scholar 

  14. Ras RHA et al (2008) Blocking the lateral film growth at the nanoscale in area-selective atomic layer deposition. J Am Chem Soc 130(34):11252–11253

    CAS  Google Scholar 

  15. Minaye Hashemi FS et al (2015) Self-correcting process for high quality patterning by atomic layer deposition. ACS Nano 9(9):8710–8717

    CAS  Google Scholar 

  16. Minaye Hashemi FS et al (2016) Selective deposition of dielectrics: limits and advantages of alkanethiol blocking agents on metal-dielectric patterns. ACS Appl Mater Interfaces 8(48):33264–33272

    CAS  Google Scholar 

  17. Hashemi FSM, Bent SF (2016) Sequential regeneration of self-assembled monolayers for highly selective atomic layer deposition. Adv Mater Interfaces 3(21):1600464

    Google Scholar 

  18. Closser RG et al (2017) Correcting defects in area selective molecular layer deposition. J Vac Sci Technol, A 35(3):031509

    Google Scholar 

  19. Heyne MH et al (2016) Two-dimensional WS2nanoribbon deposition by conversion of pre-patterned amorphous silicon. Nanotechnology 28(4):04LT01

    Google Scholar 

  20. Delabie A et al (2015) Low temperature deposition of 2D WS2 layers from WF6 and H2S precursors: impact of reducing agents. Chem Commun 51(86):15692–15695

    CAS  Google Scholar 

  21. Mackus AJM (2018) Approaches and opportunities for area-selective atomic layer deposition. 2018 Int Symp VLSI Technol Syst Appl (VLSI-TSA)

    Google Scholar 

  22. Mameli A et al (2017) (Invited) Area-selective atomic layer deposition: role of surface chemistry. ECS Trans 80(3):39–48

    CAS  Google Scholar 

  23. Vos MFJ et al (2019) Area-selective deposition of ruthenium by combining atomic layer deposition and selective etching. Chem Mater 31(11):3878–3882

    CAS  Google Scholar 

  24. Vallat R et al (2019) Area selective deposition of TiO2 by intercalation of plasma etching cycles in PEALD process: a bottom up approach for the simplification of 3D integration scheme. J Vac Sci Technol, A 37(2):020918

    Google Scholar 

  25. Song SK et al (2019) Integrated isothermal atomic layer deposition/atomic layer etching supercycles for area-selective deposition of TiO2. Chem Mater 31(13):4793–4804

    CAS  Google Scholar 

  26. Huard CM et al (2018) Transient behavior in quasi-atomic layer etching of silicon dioxide and silicon nitride in fluorocarbon plasmas. J Vac Sci Technol, A 36(6):06B101

    Google Scholar 

  27. Martin RM, Chang JP (2009) Plasma etching of Hf-based high-k thin films. Part I. Effect of complex ions and radicals on the surface reactions. J Vac Sci Technol, A 27(2):209–216

    CAS  Google Scholar 

  28. Martin RM et al (2009) Plasma etching of Hf-based high-k thin films. Part II. Ion-enhanced surface reaction mechanisms. J Vac Sci Technol, A 27(2):217–223

    CAS  Google Scholar 

  29. Marchack N, Chang JP (2012) Chemical processing of materials on silicon: more functionality, smaller features, and larger wafers. Ann Rev Chemical Biomol Eng 3(1):235–262

    CAS  Google Scholar 

  30. Hélot M et al (2005) Plasma etching of HfO2 at elevated temperatures in chlorine-based chemistry. J Vac Sci Technol, A 24(1):30–40

    Google Scholar 

  31. Bodart P et al (2012) SiCl4/Cl2 plasmas: a new chemistry to etch high-k materials selectively to Si-based materials. J Vac Sci Technol, A 30(2):020602

    Google Scholar 

  32. Mackus AJM et al (2019) From the bottom-up: toward area-selective atomic layer deposition with high selectivity. Chem Mater 31(1):2–12

    CAS  Google Scholar 

  33. King MJ et al (2018) Ab initio analysis of nucleation reactions during tungsten atomic layer deposition on Si(100) and W(110) substrates. J Vac Sci Technol, A 36(6):061507

    Google Scholar 

  34. Bobb-Semple D et al (2019) Area-selective atomic layer deposition assisted by self-assembled monolayers: a comparison of Cu Co, W, and Ru. Chem Mater 31(5):1635–1645

    CAS  Google Scholar 

  35. Dobkin D (2020) Tungsten and tungsten silicide chemical vapor deposition from https://www.enigmatic-consulting.com/semiconductor_processing/CVD_Fundamentals/films/W_WSi.html#:~:text=Tungsten%20is%20used%20because%20of,W%20to%20the%20silicon%20dioxide

  36. Yang M et al (2018) Low-resistivity α-phase tungsten films grown by hot-wire assisted atomic layer deposition in high-aspect-ratio structures. Thin Solid Films 646:199–208

    CAS  Google Scholar 

  37. Kalanyan B et al (2016) Using hydrogen to expand the inherent substrate selectivity window during tungsten atomic layer deposition. Chem Mater 28(1):117–126

    CAS  Google Scholar 

  38. Tőkei Z et al (2016) On-chip interconnect trends, challenges and solutions: how to keep RC and reliability under control. In: 2016 IEEE Symposium VLSI Technology

    Google Scholar 

  39. Yoon J et al (2011) Atomic layer deposition of Co using N2∕H2 plasma as a reactant. J Electrochem Soc 158(11):H1179

    CAS  Google Scholar 

  40. Lee H-B-R, Kim H (2006) High-quality cobalt thin films by plasma-enhanced atomic layer deposition. Electrochem Solid-State Lett 9(11):G323

    CAS  Google Scholar 

  41. Kerrigan MM et al (2017) Low temperature, selective atomic layer deposition of cobalt metal films using Bis(1,4-di-tert-butyl-1,3-diazadienyl)cobalt and alkylamine precursors. Chem Mater 29(17):7458–7466

    CAS  Google Scholar 

  42. Bernal-Ramos K et al (2015) Atomic layer deposition of cobalt silicide thin films studied by in situ infrared spectroscopy. Chem Mater 27(14):4943–4949

    CAS  Google Scholar 

  43. Lee H et al (2009) Cobalt and nickel atomic layer depositions for contact applications. In: 2009 IEEE international interconnect technology conference

    Google Scholar 

  44. Colgan EG et al (1996) Formation and stability of silicides on polycrystalline silicon. Mater Sci Eng: R: Rep 16(2):43–96

    Google Scholar 

  45. Telford SG et al (1993) Chemically vapor deposited tungsten silicide films using dichlorosilane in a single-wafer reactor: growth, properties, and thermal stability. J Electrochem Soc 140(12):3689–3701

    CAS  Google Scholar 

  46. Saito T et al (2007) Kinetic modeling of tungsten silicide chemical vapor deposition from WF6 and Si2H6: determination of the reaction scheme and the gas-phase reaction rates. Chem Eng Sci 62(22):6403–6411

    CAS  Google Scholar 

  47. Widmer AE, Fehlmann R (1986) The growth and physical properties of low pressure chemically vapour-deposited films of tantalum silicide on n+-type polycrystalline silicon. Thin Solid Films 138(1):131–140

    CAS  Google Scholar 

  48. Chang KY, Pancholy RK (1981) Tantalum silicide interconnect characterization by surface analytical techniques. Appl Surface Sci 9(1):377–387

    CAS  Google Scholar 

  49. Inoue S et al (1983) Properties of molybdenum silicide film deposited by chemical vapor deposition. J Electrochem Soc 130(7):1603–1607

    CAS  Google Scholar 

  50. Yao Z et al (1999) Molybdenum silicide based materials and their properties. J Mater Eng Perform 8(3):291–304

    CAS  Google Scholar 

  51. Bocelli S et al (1995) Experimental identification of the optical phonon of CoSi2 in the infrared. Appl Surf Sci 91(1):30–33

    CAS  Google Scholar 

  52. Hsia SL et al (1992) Resistance and structural stabilities of epitaxial CoSi2 films on (001) Si substrates. J Appl Phys 72(5):1864–1873

    CAS  Google Scholar 

  53. Takahashi F et al (2001) Growth and characterization of CoSi2 films on Si (100) substrates. Appl Surf Sci 169–170:315–319

    Google Scholar 

  54. Wölfel M et al (1990) Optical constants of thin CoSi2 films on silicon. Appl Phys A 50(2):177–181

    Google Scholar 

  55. Starke U et al (1998) Structure of epitaxial CoSi2 films on Si(111) studied with low-energy electron diffraction (LEED). Surf Rev Lett 05(01):139–144

    CAS  Google Scholar 

  56. Bernasconi R, Magagnin L (2018) Review—ruthenium as diffusion barrier layer in electronic interconnects: current literature with a focus on electrochemical deposition methods. J Electrochem Soc 166(1):D3219–D3225

    Google Scholar 

  57. Arunagiri TN et al (2005) 5nm ruthenium thin film as a directly plateable copper diffusion barrier. Appl Phys Lett 86(8):083104

    Google Scholar 

  58. Damayanti M et al (2006) Effects of dissolved nitrogen in improving barrier properties of ruthenium. Appl Phys Lett 88(4):044101

    Google Scholar 

  59. Choi BH et al (2010) Preparation of Ru thin film layer on Si and TaN/Si as diffusion barrier by plasma enhanced atomic layer deposition. Microelectron Eng 87(5):1391–1395

    CAS  Google Scholar 

  60. Xie Q et al (2009) Ru thin film grown on TaN by plasma enhanced atomic layer deposition. Thin Solid Films 517(16):4689–4693

    CAS  Google Scholar 

  61. Ovanesyan RA et al (2019) Atomic layer deposition of silicon-based dielectrics for semiconductor manufacturing: current status and future outlook. J Vac Sci Technol, A 37(6):060904

    Google Scholar 

  62. Park J-M et al (2016) Plasma-enhanced atomic layer deposition of silicon nitride using a novel silylamine precursor. ACS Appl Mater Interfaces 8(32):20865–20871

    CAS  Google Scholar 

  63. Shin D et al (2018) Plasma-enhanced atomic layer deposition of low temperature silicon dioxide films using di-isopropylaminosilane as a precursor. Thin Solid Films 660:572–577

    CAS  Google Scholar 

  64. Lee Y-S et al (2017) Low temperature atomic layer deposition of SiO2 thin films using di-isopropylaminosilane and ozone. Ceram Int 43(2):2095–2099

    CAS  Google Scholar 

  65. Cui J et al (2017) Highly effective electronic passivation of silicon surfaces by atomic layer deposited hafnium oxide. Appl Phys Lett 110(2):021602

    Google Scholar 

  66. Bills B et al (2011) Effects of atomic layer deposited HfO2 compact layer on the performance of dye-sensitized solar cells. Thin Solid Films 519(22):7803–7808

    CAS  Google Scholar 

  67. Oudot E et al (2017) Hydrogen passivation of silicon/silicon oxide interface by atomic layer deposited hafnium oxide and impact of silicon oxide underlayer. J Vac Sci Technol, A 36(1):01A116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oktay H. Gokce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hossain, S., Gokce, O.H., Ravindra, N.M. (2021). Atomic Layer Deposition and Atomic Layer Etching—An Overview of Selective Processes. In: TMS 2021 150th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-65261-6_20

Download citation

Publish with us

Policies and ethics