Skip to main content

Effect of Dissolution of Titanium Ions on Ti Alloys Electrodeposition from EMIC-AlCl3 Ionic Liquid at Low Temperature

  • Conference paper
  • First Online:
Materials Processing Fundamentals 2021

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 753 Accesses

Abstract

In this work, the dissolution of Ti ions from a sacrificial Ti anode during electrolysis on the reduction behavior of Ti–Al alloy electrodeposits from a Lewis acidic eutectic mixture of 1-ethyl-3-methylimidazolium chloride (EMIC) and a 0.667-mol fraction of aluminum chloride (AlCl3) is investigated. The Ti ions are dissolved in EMIC-AlCl3 ionic liquid (IL) by potentiostatic and galvanostatic electrolysis using chronoamperometry (CA) and chronopotentiometry (CP) techniques, respectively. At the same time, the electrodeposition of the Ti–Al alloy is accomplished on the copper cathode electrode at 383 K using the Ti anode. The dissolution, concentration, and deposition of Ti species are controlled by varying the electrolysis current, potential, and the electrolysis duration (1–3 h). The electrochemical reduction behavior of Ti and Al ions is studied on all Pt wire electrodes using cyclic voltammetry (CV). SEM studies revealed homogeneous and crystalline Ti–Al electrodeposits for CP-electrolysis. EDS and XRD revealed 16 at %. Ti with a cubic Ti0.12Al0.88 phase of Ti–Al alloy obtained from 1 h CP-electrolysis. The Ti content in Ti–Al alloy decreased with an increase in electrolysis time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kroll W (1940) The production of ductile titanium. Trans Electrochem Soc 78:35

    Article  Google Scholar 

  2. Crowley G (2003) How to extract low-cost titanium. Adv Mater Processes 161:25–27

    CAS  Google Scholar 

  3. Zhang M, Kamavaram V, Reddy RG (2006) Ionic liquid metallurgy: novel electrolytes for metals extraction and refining technology. Mining Metall Explor 23:177–186

    CAS  Google Scholar 

  4. Fung KW, Mamantov G (1972) Electrochemistry of titanium (II) in AlCl3-NaCl melts. J Electroanal Chem 35:27–34

    Article  CAS  Google Scholar 

  5. Girginov A, Tzvetkoff TZ, Bojinov M (1995) Electrodeposition of refractory-metals (Ti, Zr, Nb, Ta) from molten-salt electrolytes. J Appl Electrochem 25:993–1003

    Article  CAS  Google Scholar 

  6. Rolland W, Sterten A, Thonstad J (1987) Electrodeposition of titanium from chloride melts. ProcElectrochemSoc 7:775–785

    Google Scholar 

  7. Head RB (1961) Electrolytic production of sintered titanium from titanium tetrachloride at a contact cathode. J Electrochem Soc 108:806–809

    Article  CAS  Google Scholar 

  8. Stafford GR (1994) The electrodeposition of Al3Ti from chloroaluminate electrolytes. J Electrochem Soc 141:945–953

    Article  Google Scholar 

  9. Carlin RT, Osteryoung RA, Wilkes JS, Rovang J (1990) Studies of titanium (IV) chloride in a strongly Lewis acidic molten-salt-electrochemistry and titanium NMR and electronic spectroscopy. Inorg Chem 29:3003–3009

    Article  CAS  Google Scholar 

  10. Stafford GR, Moffat TP (1995) Electrochemistry of titanium in molten 2AlCl3-NaCl. J Electrochem Soc 142:3288–3296

    Article  CAS  Google Scholar 

  11. Koronaios P, King D, Osteryoung RA (1998) Acidity of neutral buffered 1-Ethyl-3-methylimidazolium chloride-AlCl3 ambient-temperature molten salts. Inorg Chem 37:2028–2032

    Article  CAS  Google Scholar 

  12. Jiang T, ChollierBrym MJ, Dubé G, Lasia A, Brisard GM (2006) Electrodeposition of aluminium from ionic liquids: part I—Electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surf Coat Technol 201:1–9

    Google Scholar 

  13. Kamavaram V, Mantha D, Reddy RG (2005) Recycling of aluminum metal matrix composite using ionic liquids: effect of process variables on current efficiency and deposit characteristics. Electrochim Acta 50:3286–3295

    Article  CAS  Google Scholar 

  14. Liao Q, Pitner WR, Stewart G, Hussey CL, Stafford GR (1997) Electrodeposition of aluminum from the aluminum chloride-1-methyl-3-ethylimidazolium chloride room temperature molten salt + benzene. J Electrochem Soc 144:936–943

    Article  CAS  Google Scholar 

  15. Zhao Y, VanderNoot T (1997) Electrodeposition of aluminium from room temperature AlCl3-TMPAC molten salts. Electrochim Acta 42:1639–1643

    Article  CAS  Google Scholar 

  16. Karpinski ZJ, Osteryoung RA (1984) Determination of equilibrium-constants for the tetrachloroaluminate ion dissociation in ambient-temperature ionic liquids. Inorg Chem 23:1491–1494

    Article  CAS  Google Scholar 

  17. Pradhan D, Reddy RG (2014) Mechanistic study of Al electrodeposition from EMIC-AlCl3 and BMIC-AlCl3 electrolytes at low temperature. Mater Chem Phys 143:564–569

    Article  CAS  Google Scholar 

  18. Tang J, Azumi K (2011) Optimization of pulsed electrodeposition of aluminum from AlCl3-1-ethyl-3-methylimidazolium chloride ionic liquid. Electrochim Acta. 56:1130–1137

    Article  CAS  Google Scholar 

  19. Wilkes JS, Levisky JA, Wilson RA, Hussey CL (1982) Dialkylimidazolium chloroaluminate melts—a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorg Chem 21:1263–1264

    Article  CAS  Google Scholar 

  20. Pradhan D, Reddy RG (2009) Electrochemical production of Ti-Al alloys using TiCl4-AlCl3-1-Butyl-3-Methyl imidazolium chloride (BmimCl) electrolytes. Electrochim Acta 54:1874–1880

    Article  CAS  Google Scholar 

  21. Song J, Wang Q, Wu J, Jiao S, Zhu H (2016) The influence of fluoride ions on the equilibrium between titanium ions and titanium metal in fused alkali chloride melts. Faraday Discuss 190:421–432

    Article  CAS  Google Scholar 

  22. Song J, Xiao J, Zhu H (2017) Electrochemical behavior of titanium ions in various molten alkali chlorides. J Electrochem Soc 164:E321

    Article  CAS  Google Scholar 

  23. Song Y, Jiao S, Hu L, Guo Z (2016) The cathodic behavior of Ti (III) Ion in a NaCl-2CsCl Melt. Metall Mater Trans B 47:804–810

    Article  CAS  Google Scholar 

  24. Endres F, Zein El Abedin S, Saad AY, Moustafa EM, Borissenko N, Price WE, et al. (2008) On the electrodeposition of titanium in ionic liquids. PhysChemChemPhys 10:2189–2199

    Google Scholar 

  25. Bakkar A, Neubert V (2015) A new method for practical electrodeposition of aluminium from ionic liquids. Electrochem Commun 51:113–116

    Article  CAS  Google Scholar 

  26. Zein El Abedin S, Giridhar P, Schwab P, Endres F (2010) Electrodeposition of nanocrystalline aluminium from a chloroaluminate ionic liquid. ElectrochemCommun 12:1084–1086

    Google Scholar 

  27. Böttcher R, Valitova A, Ispas A, Bund A (2019) Electrodeposition of aluminium from ionic liquids on high strength steel. Trans IMF 97:82–88

    Article  Google Scholar 

  28. Okoturo OO, VanderNoot TJ (2004) Temperature dependence of viscosity for room temperature ionic liquids. J Electroanal Chem 568:167–181

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Science Foundation (NSF) award number 1762522 and ACIPCO for this research project. The authors also thank the Department of Metallurgical and Materials Engineering, The University of Alabama, for providing the experimental and analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramana G. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shinde, P.S., Reddy, R.G. (2021). Effect of Dissolution of Titanium Ions on Ti Alloys Electrodeposition from EMIC-AlCl3 Ionic Liquid at Low Temperature. In: Lee, J., Wagstaff, S., Anderson, A., Tesfaye, F., Lambotte, G., Allanore, A. (eds) Materials Processing Fundamentals 2021. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-65253-1_12

Download citation

Publish with us

Policies and ethics