Skip to main content

Potentiostatic Electrodeposition of Ti–Al Alloy with 40% Titanium from the Lewis Acidic 1-Butyl-3-Methylimidazolium Chloride-Aluminum Chloride Ionic Liquid Electrolyte

  • Conference paper
  • First Online:
TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 3464 Accesses

Abstract

Ti–Al alloys were electrodeposited from the Lewis acidic electrolyte containing 1-butyl-3-methylimidazolium chloride (BMIC) ionic liquid (IL) and aluminum chloride (AlCl3). Constant potential electrodeposition was performed in a two-electrode configuration on copper cathode for 4 h at 383 K from BMIC-AlCl3 electrolyte with a fixed AlCl3 mole fraction and deposition potential. Titanium was served as an anode and also the source of Ti ions. Ti–Al alloys deposited on Cu substrate at different synthesis conditions were analyzed using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques. A Ti0.4Al0.6 phase with 40-atom % Ti was obtained in the final deposit at optimized process parameters and was confirmed by repeating electrodeposition experiments with identical synthesis conditions. After each electrolysis experiment, the Cu cathode weight gain and Ti anode weight loss were measured to determine the Faradaic current efficiency of the Ti–Al electrodeposition process. The current efficiency and energy consumption values were 49.93 ± 0.95 and 23.77 ± 0.89 kWh kg−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroll W (1940) The production of ductile titanium. Trans Electrochem Soc 78:35

    Article  Google Scholar 

  2. Crowley G (2003) How to extract low-cost titanium. Adv Mater Processes 161:25–27

    CAS  Google Scholar 

  3. Inagaki I, Takechi T, Shirai Y, Ariyasu N (2014) Application and features of titanium for the aerospace industry. Nippon Steel Sumitomo Metal Tech Rep 106:22–27

    Google Scholar 

  4. Peters M, Kumpfert J, Ward CH, Leyens C (2003) Titanium alloys for aerospace applications. Adv Eng Mater 5:419–427

    Article  CAS  Google Scholar 

  5. Elias C, Lima J, Valiev R, Meyers M (2008) Biomedical applications of titanium and its alloys. Jom 60:46–49

    Article  CAS  Google Scholar 

  6. Niinomi M, Nakai M, Hieda J, Cho K, Akahori T, Hattori T et al (2013) Research and development of low-cost titanium alloys for biomedical applications. Key Engineering Materials: Trans Tech Publ, pp 133–139

    Google Scholar 

  7. Zhang M, Kamavaram V, Reddy RG (2006) Ionic liquid metallurgy: novel electrolytes for metals extraction and refining technology. Mining Metall Explor 23:177–186

    CAS  Google Scholar 

  8. Fung KW, Mamantov G (1972) Electrochemistry of titanium (II) in AlCl3-NaCl melts. J Electroanal Chem 35:27–34

    Article  CAS  Google Scholar 

  9. Girginov A, Tzvetkoff TZ, Bojinov M (1995) Electrodeposition of refractory-metals (Ti, Zr, Nb, Ta) from molten-salt electrolytes. J Appl Electrochem 25:993–1003

    Article  CAS  Google Scholar 

  10. Rolland W, Sterten A, Thonstad J (1987) Electrodeposition of titanium from chloride melts. Proc—Electrochem Soc 1987–7:775–785

    Google Scholar 

  11. Head RB (1961) Electrolytic production of sintered titanium from titanium tetrachloride at a contact cathode. J Electrochem Soc 108:806–809

    Article  CAS  Google Scholar 

  12. Stafford GR (1994) The electrodeposition of Al3Ti from chloroaluminate electrolytes. J Electrochem Soc 141:945–953

    Article  Google Scholar 

  13. Shinde P, Peng Y, Reddy RG (2020) Electroanalytical study of active species to deposit ti alloy from 1-butyl-3-methylimidazolium chloride-aluminum chloride ionic liquid. ECS Trans 98:231–243

    Article  CAS  Google Scholar 

  14. Shinde PS, Peng Y, Reddy RG (2020) Electrodeposition of titanium aluminide (TiAl) alloy from AlCl3-BMIC ionic liquid at low temperature. Springer International Publishing, Cham, pp 1659–1667

    Google Scholar 

  15. Bogala MR (2015) Electrodeposition of titanium aluminides from aluminum chloride: 1-butyl-3-methyl imidazolium chloride ionic liquid. University of Alabama Libraries

    Google Scholar 

  16. Reddy RG, Shinde PS, Liu A (2021) The emerging technologies for producing low-cost titanium. J Electrochem Soc

    Google Scholar 

  17. Shinde PS, Reddy RG (2021) Effect of dissolution of titanium ions on Ti alloys electrodeposition from EMIC-AlCl3 ionic liquid at low temperature. Springer International Publishing, Cham, pp 141–153

    Google Scholar 

  18. Stafford GR, Moffat TP (1995) Electrochemistry of titanium in molten 2AlCl3-NaCl. J Electrochem Soc 142:3288–3296

    Article  CAS  Google Scholar 

  19. Pradhan D, Reddy R, Lahiri A (2009) Low-temperature production of Ti-Al alloys using ionic liquid electrolytes: effect of process variables on current density, current efficiency, and deposit morphology. Metall Mater Trans B 40:114–122

    Article  Google Scholar 

  20. Tsuda T, Hussey CL, Stafford GR, Bonevich JE (2003) Electrochemistry of titanium and the electrodeposition of Al-Ti alloys in the lewis acidic aluminum chloride-1-Ethyl-3-methylimidazolium chloride melt. J Electrochem Soc 150:C234–C243

    Article  CAS  Google Scholar 

  21. Endres F, Zein El Abedin S, Saad AY, Moustafa EM, Borissenko N, Price WE et al (2008) On the electrodeposition of titanium in ionic liquids. Phys Chem Chem Phys 10:2189–2199

    Google Scholar 

  22. Cvetković VS, Vukićević NM, Milićević-Neumann K, Stopić S, Friedrich B, Jovićević JN (2020) Electrochemical deposition of Al-Ti alloys from equimolar AlCl3 + NaCl containing electrochemically dissolved titanium. Metals 10:88

    Article  Google Scholar 

  23. Uchida J-I, Seto H, Shibuya A (1995) Electrodeposition of Al-Ti alloy from chloroaluminate bath. J Surface Finish Soc Jpn 46:1167–1172

    Google Scholar 

  24. Awayssa O, Saevarsdottir G, Meirbekova R, Haarberg GM (2021) Electrodeposition of aluminium-titanium alloys from molten fluoride-oxide electrolytes. Electrochem Commun 123:106919

    Google Scholar 

  25. Janowski G, Stafford GR (1992) The microstructure of electrodeposited titanium-aluminum alloys. Metall Trans A 23:2715–2723

    Article  Google Scholar 

  26. Stafford GR, Tsuda T, Hussey C (2003) Order/disorder in electrodeposited aluminum-titanium alloys. J Min MetallSect B 39:23–42

    Article  CAS  Google Scholar 

  27. Xu C, Hua Y, Zhang Q, Li J, Lei Z, Lu D (2017) Electrodeposition of Al-Ti alloy on mild steel from AlCl3-BMIC ionic liquid. J Solid State Electrochem 21:1349–1356

    Article  CAS  Google Scholar 

  28. Pradhan D, Reddy RG, Electrodeposition of titanium using BmimCl ionic liquid at higher cathode current densities. Unpublished work: Unpublished work, p 1

    Google Scholar 

  29. Pradhan D, Reddy RG (2009) Electrochemical production of Ti-Al alloys using TiCl4-AlCl3-1-butyl-3-methyl imidazolium chloride (BmimCl) electrolytes. Electrochim Acta 54:1874–1880

    Article  CAS  Google Scholar 

  30. Pradhan D, Reddy RG (2014) Mechanistic study of Al electrodeposition from EMIC-AlCl3 and BMIC-AlCl3 electrolytes at low temperature. Mater Chem Phys 143:564–569

    Article  CAS  Google Scholar 

  31. Jiang T, Chollier Brym MJ, Dubé G, Lasia A, Brisard GM (2006) Electrodeposition of aluminium from ionic liquids: Part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surf Coat Technol 201:1–9

    Article  CAS  Google Scholar 

  32. Tang J, Azumi K (2011) Optimization of pulsed electrodeposition of aluminum from AlCl3-1-ethyl-3-methylimidazolium chloride ionic liquid. Electrochim Acta 56:1130–1137

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Science Foundation (NSF) award number 1762522 and ACIPCO for this research project. The authors also thank the Department of Metallurgical and Materials Engineering, The University of Alabama, for providing the experimental and analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramana G. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shinde, P.S., Peng, Y., Reddy, R.G. (2022). Potentiostatic Electrodeposition of Ti–Al Alloy with 40% Titanium from the Lewis Acidic 1-Butyl-3-Methylimidazolium Chloride-Aluminum Chloride Ionic Liquid Electrolyte. In: TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92381-5_8

Download citation

Publish with us

Policies and ethics