Skip to main content

Fundamentals of Image Processing in Nuclear Medicine

  • Chapter
  • First Online:
Basic Sciences of Nuclear Medicine

Abstract

Since most Nuclear Medicine procedures are, by their very nature, image-oriented, a knowledge of the fundamentals of image processing is beneficial. In general, image processing allows a user to extract useful physiological and functional parameters from Nuclear Medicine procedures; parameters that would otherwise be difficult, if not impossible to measure. In this chapter, we explore such topics as: image creation and presentation, image interpolation, image filtering, region of interest analysis, image segmentation, three-dimensional displays, principles of image registration, and finally image normalization. We also give examples of the applications of these principles to typical nuclear medicine images and the parameters that can be derived from such applications. In the end, we hope to help the reader understand how difficult it would be to work with any kind of imaging modality without computational aids and the concepts of image processing discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cassen B, Curtis L, Reed C. A sensitive directional gamma ray detector. UCLA report 49. Los Angeles: University of California; 1949.

    Google Scholar 

  2. Anger HO. A new instrument for mapping gamma-ray emitters, Biol Med Quart Rep UCRL-3653:38:1957

    Google Scholar 

  3. Kuhl DE, Edwards RQ. Image separation radioisotope scanning. Radiology. 1963;80(4):653–62, (in English).

    Article  Google Scholar 

  4. Jaszczak RJ. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences. Phys Med Biol. 2006;51(13):R99–115.

    Article  PubMed  Google Scholar 

  5. Anger HO. Scintillation camera with multichannel collimators. J Nucl Med. 1964;5:515–31.

    CAS  PubMed  Google Scholar 

  6. Gotway MB, et al. Hyperfunctioning parathyroid tissue: spectrum of appearances on noninvasive imaging. AJR Am J Roentgenol. 2002;179(2):495–502.

    Article  PubMed  Google Scholar 

  7. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr. 1979;3(3):299–308.

    Article  CAS  PubMed  Google Scholar 

  8. Demirkaya O, Al Mazrou R. Performance test data analysis of scintillation cameras. IEEE Trans Nucl Sci. 2007;54(5):1506–15, (in English).

    Article  Google Scholar 

  9. Anderson S. Collins English dictionary. 7th ed. Glasgow: HarperCollins; 2005. p. xiii, 1872 p.

    Google Scholar 

  10. Galt JR, Garcia EV, Nowak DJ. Filtering in frequency space. J Nucl Med Technol. 1986;14(3):152–60.

    Google Scholar 

  11. Hansen CL. Digital image processing for clinicians, part I: basics of image formation. J Nucl Cardiol. 2002;9(3):343–9.

    Article  PubMed  Google Scholar 

  12. Hansen CL. Digital image processing for clinicians, part II: filtering. J Nucl Cardiol. 2002;9(4):429–37.

    Article  PubMed  Google Scholar 

  13. Hansen CL. Digital image processing for clinicians, part III: SPECT reconstruction. J Nucl Cardiol. 2002;9(5):542–9.

    Article  PubMed  Google Scholar 

  14. Zubal IG, Wisniewski G. Understanding Fourier space and filter selection. J Nucl Cardiol. 1997;4(3):234–43.

    Article  CAS  PubMed  Google Scholar 

  15. Cooke CD, Garcia EV, Cullom SJ, Faber TL, Pettigrew RI. Determining the accuracy of calculating systolic wall thickening using a fast Fourier transform approximation: a simulation study based on canine and patient data. J Nucl Med. 1994;35(7):1185–92.

    CAS  PubMed  Google Scholar 

  16. Chen J, Faber TL, Cooke CD, Garcia EV. Temporal resolution of multiharmonic phase analysis of ECG-gated myocardial perfusion SPECT studies. J Nucl Cardiol. 2008;15(3):383–91.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Galt JR, Garcia EV, Robbins WL. Effects of myocardial wall thickness on spect quantification. IEEE Trans Med Imaging. 1990;9(2):144–50, (in English).

    Article  CAS  PubMed  Google Scholar 

  18. Faber TL, et al. Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. J Nucl Med. 1999;40(4):650–9.

    CAS  PubMed  Google Scholar 

  19. Pflugfelder PW, Sechtem UP, White RD, Higgins CB. Quantification of regional myocardial function by rapid cine MR imaging. Am J Roentgenol. 1988;150(3):523–9.

    Article  CAS  Google Scholar 

  20. DePuey EG, Rozanski A. Using gated technetium-99m-sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med. 1995;36(6):952–5, (in English).

    CAS  PubMed  Google Scholar 

  21. Chen J, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol. 2005;12(6):687–95, (in English).

    Article  PubMed  Google Scholar 

  22. Chen J, et al. Assessment of left ventricular mechanical dyssynchrony by phase analysis of ECG-gated SPECT myocardial perfusion imaging. J Nucl Cardiol. 2008;15(1):127–36, (in English).

    Article  PubMed  Google Scholar 

  23. Henneman MM, et al. Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT? J Nucl Med. 2007;48(7):1104–11, (in English).

    Article  PubMed  Google Scholar 

  24. Marsan NA, et al. Left ventricular dyssynchrony assessed by two three-dimensional imaging modalities: phase analysis of gated myocardial perfusion SPECT and tri-plane tissue Doppler imaging. Eur J Nucl Med Mol Imaging. 2008;35(1):166–73, (in English).

    Article  PubMed  Google Scholar 

  25. Henneman MM, et al. Phase analysis of gated myocardial perfusion single-photon emission computed tomography compared with tissue Doppler imaging for the assessment of left ventricular dyssynchrony. J Am Coll Cardiol. 2007;49(16):1708–14, (in English).

    Article  PubMed  Google Scholar 

  26. Trimble MA, et al. Evaluation of mechanical dyssynchrony and myocardial perfusion using phase analysis of gated SPECT imaging in patients with left ventricular dysfunction. J Nucl Cardiol. 2008;15(5):663–70, (in English).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Peix A, et al., Value of intraventricular dyssynchrony assessment by gated-SPECT myocardial perfusion imaging in the management of heart failure patients undergoing cardiac resynchronization therapy (VISION-CRT). J Nucl Cardiol; 2019. https://doi.org/10.1007/s12350-018-01589-5.

  28. Zhou W, Garcia EV. Nuclear image-guided approaches for cardiac resynchronization therapy (CRT). Curr Cardiol Rep. 2016;18(1):7.

    Article  PubMed  Google Scholar 

  29. Taylor A, Schuster DM, Alazraki NP. A clinician’s guide to nuclear medicine. 2nd ed. Reston: Society of Nuclear Medicine; 2006.

    Book  Google Scholar 

  30. Taylor A Jr, et al. Measuring technetium-99m-MAG3 clearance with an improved camera-based method. J Nucl Med. 1995;36(9):1689–95, (in English).

    CAS  PubMed  Google Scholar 

  31. Taylor AT Jr, et al. Procedure guideline for diagnosis of renovascular hypertension. Society of Nuclear Medicine. J Nucl Med. 1998;39(7):1297–302, (in English).

    PubMed  Google Scholar 

  32. Corbett JR, et al. Equilibrium radionuclide. J Nucl Cardiol. 2006;13(6):e56–79, (in English).

    Article  PubMed  Google Scholar 

  33. Murthy VL, et al. Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI Cardiovascular Council and the ASNC. J Nucl Cardiol. 2018;25(1):269–97.

    Article  PubMed  Google Scholar 

  34. Erdi YE, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer. 1997;80(12 Suppl):2505–9.

    Article  CAS  PubMed  Google Scholar 

  35. Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A. Segmentation of PET volumes by iterative image thresholding. J Nucl Med. 2007;48(1):108–14.

    CAS  PubMed  Google Scholar 

  36. Brambilla M, Matheoud R, Secco C, Loi G, Krengli M, Inglese E. Threshold segmentation for PET target volume delineation in radiation treatment planning: the role of target-to-background ratio and target size. Med Phys. 2008;35(4):1207–13.

    Article  CAS  PubMed  Google Scholar 

  37. Mortensen E, Morse B, Barrett W, Udupa J. Adaptive boundary detection using live-wire 2-dimensional dynamic-programming. In: Computers in cardiology 1992: Proceedings, 1992. p. 635–8., (in English).

    Google Scholar 

  38. Declerck J, Feldmar J, Goris ML, Betting F. Automatic registration and alignment on a template of cardiac stress and rest reoriented SPECT images. IEEE Trans Med Imaging. 1997;16(6):727–37.

    Article  CAS  PubMed  Google Scholar 

  39. Slomka PJ, Hurwitz GA, Stephenson J, Cradduck T. Automated alignment and sizing of myocardial stress and rest scans to three-dimensional normal templates using an image registration algorithm [see comment]. J Nucl Med. 1995;36(6):1115–22.

    CAS  PubMed  Google Scholar 

  40. Mykkanen J, Tohka J, Luoma J, Ruotsalainen U. Automatic extraction of brain surface and mid-sagittal plane from PET images applying deformable models. Comput Methods Prog Biomed. 2005;79(1):1–17.

    Article  Google Scholar 

  41. Minoshima S, Koeppe RA, Frey KA, Kuhl DE. Anatomic standardization: linear scaling and nonlinear warping of functional brain images. J Nucl Med. 1994;35(9):1528–37.

    CAS  PubMed  Google Scholar 

  42. Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med. 1995;36(7):1238–48.

    CAS  PubMed  Google Scholar 

  43. Garcia EV, et al. Technical aspects of myocardial SPECT imaging with technetium-99m sestamibi. Am J Cardiol. 1990;66(13):23E–31E.

    Article  CAS  PubMed  Google Scholar 

  44. Germano G, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. I: technical principles and reproducibility [see comment]. J Nucl Med. 2000;41(4):712–9.

    CAS  PubMed  Google Scholar 

  45. Garcia E, Folks R, Pak S, Taylor A. Automatic definition of renal regions-of-interests (ROIs) from MAG3 renograms in patients with suspected renal obstruction. J Nucl Med (Meeting Abstracts). 2008;49:386P.

    Google Scholar 

  46. Delaunay B. Sur la sphere vide. A memoire de Georges Voronoi. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskih i Estestvennyh Nauk. 1934;7:793–800.

    Google Scholar 

  47. Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput Graph. 1987;21(4):163–9.

    Article  Google Scholar 

  48. Foley JD, Phillips RL, Hughes JF, van Dam A, Feiner SK. Introduction to computer graphics. Boston: Addison-Wesley Longman Publishing; 1994. p. 557.

    Google Scholar 

  49. Cooke CD, Vansant JP, Krawczynska EG, Faber TL, Garcia EV. Clinical validation of three-dimensional color-modulated displays of myocardial perfusion. J Nucl Cardiol. 1997;4(2):108–16.

    Article  CAS  PubMed  Google Scholar 

  50. Santana CA, et al. Three-dimensional color-modulated display of myocardial SPECT perfusion distributions accurately assesses coronary artery disease. J Nucl Med. 2000;41(12):1941–6.

    CAS  PubMed  Google Scholar 

  51. Wallis JW, Miller TR. Volume rendering in three-dimensional display of SPECT images [see comments]. J Nucl Med. 1990;31(8):1421–8.

    CAS  PubMed  Google Scholar 

  52. Miller TR, Wallis JW, Sampathkumaran KS. Three-dimensional display of gated cardiac blood-pool studies [see comments]. J Nucl Med. 1989;30(12):2036–41.

    CAS  PubMed  Google Scholar 

  53. Wallis JW, Miller TR. Display of cold lesions in volume rendering of SPECT studies. J Nucl Med. 1991;32(5):985.

    Google Scholar 

  54. Drebin RA, Carpenter L, Hanrahan P. “Volume rendering,” presented at the Proceedings of the 15th annual conference on computer graphics and interactive techniques, 1988.

    Google Scholar 

  55. Hoehne KH, Delapaz RL, Bernstein R, Taylor RC. Combined surface display and reformatting for the three-dimensional analysis of tomographic data. Invest Radiol. 1987;22(8):658–64, (in English).

    Article  CAS  PubMed  Google Scholar 

  56. Viola P, Wells WM. Alignment by maximization of mutual information. In: Fifth international conference on computer vision, proceedings, 1995. p. 16–23. , (in English).

    Google Scholar 

  57. Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G. Automated multi-modality image registration based on information theory. Inf Process Med Imaging. 1995;3:263–74, (in English).

    Google Scholar 

  58. Bajcsy R, Kovacic S. Multiresolution elastic matching. Comput Vision Graphics Image Process. 1989;46(1):1–21, (in English).

    Article  Google Scholar 

  59. Haber E, Modersitzki J. Numerical methods for volume preserving image registration. Inverse Problems. 2004;20(5):1621–38, (in English).

    Article  Google Scholar 

  60. Bookstein FL. Principal warps—thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Analysis Mach Intell. 1989;11(6):567–85, (in English).

    Article  Google Scholar 

  61. Kuhle WG, et al. Quantification of regional myocardial blood flow using 13N-ammonia and reoriented dynamic positron emission tomographic imaging. Circulation. 1992;86(3):1004–17.

    Article  CAS  PubMed  Google Scholar 

  62. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol. 1990;15(5):1032–42.

    Article  CAS  PubMed  Google Scholar 

  63. Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: technical aspects and clinical applications [erratum appears in J Nucl Med. 2005 Feb;46(2):291]. J Nucl Med. 2005;46(1):75–88.

    PubMed  Google Scholar 

  64. Van Train KF, et al. Quantitative same-day rest-stress technetium-99m-sestamibi SPECT: definition and validation of stress normal limits and criteria for abnormality. J Nucl Med. 1993;34(9):1494–502.

    PubMed  Google Scholar 

  65. Van Train KF, et al. Multicenter trial validation for quantitative analysis of same-day rest- stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med. 1994;35(4):609–18.

    PubMed  Google Scholar 

  66. Santana CA, et al. Quantitative (82)Rb PET/CT: development and validation of myocardial perfusion database. J Nucl Med. 2007;48(7):1122–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

David Cooke and James Galt would like to acknowledge the significant contributions of their friend, colleague, and co-author; Tracy L. Faber, PhD (1960–2012); to this chapter, the field of image processing in nuclear medicine, and particularly to their own knowledge of nuclear medicine and image processing. Dr. Faber is deeply missed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. David Cooke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cooke, C.D., Faber, T.L., Galt, J.R. (2021). Fundamentals of Image Processing in Nuclear Medicine. In: Khalil, M.M. (eds) Basic Sciences of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-65245-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65245-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65244-9

  • Online ISBN: 978-3-030-65245-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics