Skip to main content
  • 569 Accesses

Abstract

The term ocular rigidity is widely used in clinical ophthalmology. Generally it is assumed as a resistance of the whole eyeball to mechanical deformation and relates to biomechanical properties of the eye and its tissues. Basic principles and formulas for clinical tonometry, tonography and pulsatile ocular blood flow measurements are based on the concept of ocular rigidity. There is evidence for altered ocular rigidity in aging, in several eye diseases and after eye surgery. Unfortunately, there is no consensual view on ocular rigidity: it used to make a quite different sense for different people but still the same name. Foremost there is no clear consent between biomechanical engineers and ophthalmologists on the concept. Moreover ocular rigidity is occasionally characterized using various parameters with their different physical dimensions. In contrast to engineering approach, clinical approach to ocular rigidity claims to characterize the total mechanical response of the eyeball to its deformation without any detailed considerations on eye morphology or material properties of its tissues. Further to the previous chapter this section aims to describe clinical approach to ocular rigidity from the perspective of an engineer in an attempt to straighten out this concept, to show its advantages, disadvantages and various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Friedenwald explained that: “within the pressure range that is of clinical interest the fit is sufficiently good for practical purposes”. Thus the solution of Friedenwald’s equation should theoretically work for every initial condition IOP(V0) = IOP0 since the volume of the eye before distension V0 is consistent and the corresponding IOP is not extremely low. Obviously for hypotonic eyes that do not maintain its shape this simplified theoretical model does not work at all. An already pre-distended eyeball should theoretically fit to its corresponding pressure-volume relation curve with the initial condition being shifted to the right along the volume curve (Fig. 2.3). But how small can be V0 to fit Friedenwald’s equation? At what pressure the eyeball is not hypotonic anymore but still is not yet distended? From biomechanical point of view “the eye just before distension” or stress free configuration of the eye represents an important idealized concept, which is considered in detail elsewhere, e.g. [57].

References

  1. Kotliar KE, Koshitz IN. Ocular rigidity: biomechanical and clinical aspects. Proceedings of international scientific-practical conference “eye biomechanics”; November 26,Moscow R&D Helmholtz Institute for Eye Diseases. 2009;121–126.

    Google Scholar 

  2. White OW. Ocular elasticity? Ophthalmology. 1990 Sep;97(9):1092–4.

    Article  CAS  PubMed  Google Scholar 

  3. Purslow PP, Karwatowski WS. Ocular elasticity. Is engineering stiffness a more useful characterization parameter than ocular rigidity? Ophthalmology. 1996 Oct;103(10):1686–92.

    Article  CAS  PubMed  Google Scholar 

  4. Friedenwald J. Contribution to the theory and praxis of the tonometry. Am J Ophthalmol. 1937;20:985–1024.

    Article  Google Scholar 

  5. van der Werff TJ. A new single-parameter ocular rigidity function. Am J Ophthalmol. 1981 Sep;92(3):391–5.

    Article  PubMed  Google Scholar 

  6. Moses RA. Intraocular pressure. In: Hart WM, editor. Adler’s physiology of the eye. Washington, Toronto: Mosby; 1987. p. 223–45.

    Google Scholar 

  7. Strakhov VV. Essential ocular hypertension and primary glaucoma. Doctoral Thesis: Dr.Sc. (in Russian). Yaroslavl Yaroslavl State Medical Institute; 1997.

    Google Scholar 

  8. Beaton L, Mazzaferri J, Lalonde F, Hidalgo-Aguirre M, Descovich D, Lesk MR, et al. Non-invasive measurement of choroidal volume change and ocular rigidity through automated segmentation of high-speed OCT imaging. Biomed Opt Express. 2015 May 1;6(5):1694–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bunin АY. Hemodynamics of the eye and methods of its investigation. (in Russian). Moscow: Medicina; 1971.

    Google Scholar 

  10. Grieshaber MC, Katamay R, Gugleta K, Kochkorov A, Flammer J, Orgul S. Relationship between ocular pulse amplitude and systemic blood pressure measurements. Acta Ophthalmol. 2009 May;87(3):329–34.

    Article  PubMed  Google Scholar 

  11. Hommer A, Fuchsjager-Mayrl G, Resch H, Vass C, Garhofer G, Schmetterer L. Estimation of ocular rigidity based on measurement of pulse amplitude using pneumotonometry and fundus pulse using laser interferometry in glaucoma. Invest Ophthalmol Vis Sci. 2008 Sep;49(9):4046–50.

    Article  PubMed  Google Scholar 

  12. Ravalico G, Toffoli G, Pastori G, Croce M, Calderini S. Age-related ocular blood flow changes. Invest Ophthalmol Vis Sci. 1996 Dec;37(13):2645–50.

    CAS  PubMed  Google Scholar 

  13. Dastiridou AI, Ginis HS, De Brouwere D, Tsilimbaris MK, Pallikaris IG. Ocular rigidity, ocular pulse amplitude, and pulsatile ocular blood flow: the effect of intraocular pressure. Invest Ophthalmol Vis Sci. 2009 Dec;50(12):5718–22.

    Article  PubMed  Google Scholar 

  14. Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci. 2007 Jul;48(7):3026–31.

    Article  PubMed  Google Scholar 

  15. Herber R, Terai N, Pillunat KR, Raiskup F, Pillunat LE, Sporl E. Dynamic Scheimpflug analyzer (Corvis ST) for measurement of corneal biomechanical parameters: a praxis-related overview. Ophthalmologe. 2018 May 16.

    Google Scholar 

  16. Akpatrov AI. Experimental interrelation between the coefficient of rigidity, eye volume and scleral modulus of elasticity. (in Russian). Vestnik oftalmologii. 1981 July–Aug;4:5–7.

    Google Scholar 

  17. Edmund C. Corneal elasticity and ocular rigidity in normal and keratoconic eyes. Acta Ophthalmol. 1988 Apr;66(2):134–40.

    Article  CAS  Google Scholar 

  18. Duke-Elder S. The physiology of the eye and vision. St. Louis: C.V. Mosby; 1968.

    Google Scholar 

  19. Nesterov AP, Bunin АY, Katsnelson LA. Intraocular pressure. (in Russian). Moscow: Nauka; 1974.

    Google Scholar 

  20. Pinter L. Active and passive components of the eye rigidity. (in Russian). Vestnik oftalmologii. 1978 May–June;3:9–10.

    Google Scholar 

  21. Iomdina EN. Biomechanics of scleral eye shell in myopia: diagnostic of disturbances and its experimental correction. Doctoral Thesis: Dr.Sc. (in Russian). Moscow: Moscow Helmholtz R&D Institute for Eye Diseases; 2000.

    Google Scholar 

  22. Iomdina EN, Bauer SM, Kotliar KE. Eye biomechanics: theoretical aspects and clinical applications. (in Russian). Moscow: Real Time; 2015.

    Google Scholar 

  23. Friberg TR, Lace JW. A comparison of the elastic properties of human choroid and sclera. Exp Eye Res. 1988 Sep;47(3):429–36.

    Article  CAS  PubMed  Google Scholar 

  24. Pallikaris IG, Kymionis GD, Ginis HS, Kounis GA, Tsilimbaris MK. Ocular rigidity in living human eyes. Invest Ophthalmol Vis Sci. 2005 Feb;46(2):409–14.

    Article  PubMed  Google Scholar 

  25. Pallikaris IG, Kymionis GD, Ginis HS, Kounis GA, Christodoulakis E, Tsilimbaris MK. Ocular rigidity in patients with age-related macular degeneration. Am J Ophthalmol. 2006 Apr;141(4):611–5.

    Article  PubMed  Google Scholar 

  26. Ethier CR. Scleral biomechanics and glaucoma: a connection? Can J Ophthalmol. 2006 Feb;41(1):9–12.

    Article  PubMed  Google Scholar 

  27. Koshitz IN, Svetlova OV, Ryabtseva AA, Makarov FN, Zaseeva MV, Mustyatsa VF. Role of rigidity of the corneo-scleral shell and scleral fluctuations in the early diagnostics of open-angle glaucoma. (in Russian). Ophthalmol J. 2010;(6).

    Google Scholar 

  28. Leydhecker G, Leydhecker W. Measurement of scleral rigidity and the 1954 Schiotz tonometric curve. Klin Monbl Augenheilkd Augenarztl Fortbild. 1956;129(1):61–7.

    CAS  PubMed  Google Scholar 

  29. Shih YF, Horng IH, Yang CH, Lin LL, Peng Y, Hung PT. Ocular pulse amplitude in myopia. J Ocular Pharmacol. 1991;7(1):83–7.

    Article  CAS  Google Scholar 

  30. Drance SM. The coefficient of scleral rigidity in normal and glaucomatous eyes. Arch Ophthalmol. 1960 Apr;63:668–74.

    Article  CAS  PubMed  Google Scholar 

  31. Liu J, He X. Corneal stiffness affects IOP elevation during rapid volume change in the eye. Invest Ophthalmol Vis Sci. 2009 May;50(5):2224–9.

    Article  PubMed  Google Scholar 

  32. Clark J. A method for measuring elasticity in-vivo and results obtained on the eyeball at different intraocular pressures. Am J Physiol. 1932;101(3):474–81.

    Article  Google Scholar 

  33. McBain E. Tonometer calibration. II. Ocular rigidity. AMA. 1958 Dec;60(6):1080–91.

    CAS  Google Scholar 

  34. Holland MG, Madison J, Bean W. The ocular rigidity function. Am J Ophthalmol. 1960;50:958–74.

    Article  CAS  PubMed  Google Scholar 

  35. McEwen WK, St Helen R. Rheology of the human sclera. Unifying formulation of ocular rigidity. Int J Ophthalmol. 1965;150(5):321–46.

    CAS  Google Scholar 

  36. Hibbard RR, Lyon CS, Shepherd MD, McBain EH, McEwen WK. Immediate rigidity of an eye. I. Whole, segments and strips. Exp Eye Res. 1970 Jan;9(1):137–43.

    Article  CAS  PubMed  Google Scholar 

  37. Woo SL, Kobayashi AS, Schlegel WA, Lawrence C. Nonlinear material properties of intact cornea and sclera. Exp Eye Res. 1972 Jul;14(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  38. Silver DM, Geyer O. Pressure-volume relation for the living human eye. Curr Eye Res. 2000 Feb;20(2):115–20.

    Article  CAS  PubMed  Google Scholar 

  39. Simanovskiy AI. Fundamentals of the theory of applanation tonometry and improvement of interpretation of the results of elastotonometry and tonography. (in Russian). Glaukoma. 2007;(3):42–8.

    Google Scholar 

  40. Pallikaris IG, Dastiridou AI, Tsilimbaris MK, Karyotakis N, Ginis HS. Ocular rigidity. Expert Rev Ophthalmol. 2010 Apr;3(5):343–51.

    Article  Google Scholar 

  41. Ethier CR, Johnson M, Ruberti J. Ocular biomechanics and biotransport. Annu Rev Biomed Eng. 2004;6:249–73.

    Article  CAS  PubMed  Google Scholar 

  42. Greene PR. Mechanical considerations in myopia: relative effects of accommodation, convergence, intraocular pressure, and the extraocular muscles. Am J Optometry Physiol Optics. 1980 Dec;57(12):902–14.

    Article  CAS  Google Scholar 

  43. Greene PR, McMahon TA. Scleral creep vs. temperature and pressure in vitro. Exp Eye Res. 1979 Nov;29(5):527–37.

    Article  CAS  PubMed  Google Scholar 

  44. Iomdina ЕN, Petrov SY, Аntonov АА, Novikov IА, Pahomova IA. The Corneoscleral shell of the eye: an age-related analysis of structural biomechanical properties. Literature review (in Russian). Ophthalmol Russia. 2016;13(1):10–9.

    Google Scholar 

  45. Whitford C, Joda A, Jones S, Bao F, Rama P, Elsheikh A. Ex vivo testing of intact eye globes under inflation conditions to determine regional variation of mechanical stiffness. Eye Vision (London, England). 2016;3:21.

    Google Scholar 

  46. Svetlova OV, Balashevitsch LI, Zaseeva MV, Drozdova GA, Makarov FN, Koshitz IN. Physiological role of the scleral rigidity in the formation of the intraocular pressure in normal and glaucomatous eyes. (in Russian). Glaukoma. 2009;4:46–54.

    Google Scholar 

  47. Wang J, Freeman EE, Descovich D, Harasymowycz PJ, Kamdeu Fansi A, Li G, et al. Estimation of ocular rigidity in glaucoma using ocular pulse amplitude and pulsatile choroidal blood flow. Invest Ophthalmol Vis Sci. 2013 Mar;54(3):1706–11.

    Article  PubMed  Google Scholar 

  48. Kotliar K, Maier M, Bauer S, Feucht N, Lohmann C, Lanzl I. Effect of intravitreal injections and volume changes on intraocular pressure: clinical results and biomechanical model. Acta Ophthalmol Scand. 2007 Jun 16;85(7):777–81.

    Article  PubMed  Google Scholar 

  49. Coudrillier B, Tian J, Alexander S, Myers KM, Quigley HA, Nguyen TD. Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Invest Ophthalmol Vis Sci. 2012 Apr 2;53(4):1714–28.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Römer P. Neues zur Tonometrie des Auges Bericht der Deutschen Ophthalmologischen Gesellschaft. 1918;62–8.

    Google Scholar 

  51. Detorakis ET, Pallikaris IG. Ocular rigidity: biomechanical role, in vivo measurements and clinical significance. Clin Exp Ophthalmol. 2013 Jan–Feb;41(1):73–81.

    Article  PubMed  Google Scholar 

  52. Kalfa SY. On the problem of the tonometry theory with applanation tonometers. (in Russian). Russ Ophthalmol J. 1927;6(10):1132–41.

    Google Scholar 

  53. Greene PR. Stress-strain behavior for curved exponential strips. Bull Math Biol. 1985;47(6):757–64.

    Article  CAS  PubMed  Google Scholar 

  54. Detorakis ET, Tsaglioti E, Kymionis G. Non-invasive ocular rigidity measurement: a differential tonometry approach. Acta Med (Hradec Kralove). 2015;58(3):92–7.

    Article  Google Scholar 

  55. Koster W. Beiträge zur Tonometrie und Manometrie des Auges. Albrecht von Graefes Archiv für Ophthalmologie. 1895;41(2):113–58.

    Article  Google Scholar 

  56. Ridley F. The intraocular pressure and drainage of the aqueous humor. Br J Exp Pathol. 1930;11:217–40.

    PubMed Central  Google Scholar 

  57. Elsheikh A, Whitford C, Hamarashid R, Kassem W, Joda A, Buchler P. Stress free configuration of the human eye. Med Eng Phys. 2013 Feb;35(2):211–6.

    Article  PubMed  Google Scholar 

  58. Dashevskiy AI, Lvovskiy VM. Application of the shell theory to study the physical principles of ocular tonometry. (in Russian). Kiev: Budivelnik; 1975.

    Google Scholar 

  59. Perkins ES. Ocular volume and ocular rigidity. Exp Eye Res. 1981 Aug;33(2):141–5.

    Article  CAS  PubMed  Google Scholar 

  60. Eisenlohr JE, Langham ME, Maumenee AE. Manometric studies of the pressure-volume relationship in living and enucleated eyes of individual human subjects. Br J Ophthalmol. 1962;46:536–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ytteborg J. Influence of bulbar compression on rigidity coefficient of human eyes, in vivo and encleated. Acta Ophthalmol. 1960;38:562–77.

    Article  CAS  Google Scholar 

  62. Dastiridou AI, Ginis H, Tsilimbaris M, Karyotakis N, Detorakis E, Siganos C, et al. Ocular rigidity, ocular pulse amplitude, and pulsatile ocular blood flow: the effect of axial length. Invest Ophthalmol Vis Sci. 2013 Mar;54(3):2087–92.

    Article  PubMed  Google Scholar 

  63. Dastiridou AI, Tsironi EE, Tsilimbaris MK, Ginis H, Karyotakis N, Cholevas P, et al. Ocular rigidity, outflow facility, ocular pulse amplitude, and pulsatile ocular blood flow in open-angle glaucoma: a manometric study. Invest Ophthalmol Vis Sci. 2013 Jul;54(7):4571–7.

    Article  PubMed  Google Scholar 

  64. Jackson CR. Schiotz tonometers. An assessment of their usefulness. Br J Ophthalmol. 1965 Sep;49(9):478–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gloster J, Perkins ES. Ocular rigidity and tonometry. Proc R Soc Med. 1957 Sep;50(9):667–74.

    CAS  PubMed  Google Scholar 

  66. Moses RA, Grodzki WJ. Ocular rigidity in tonography. Doc Ophthalmol. 1969;26:118–29.

    Article  CAS  PubMed  Google Scholar 

  67. Friedenwald J. Contribution to the theory and praxis of the tonometry. II. An analysis of the work of Professor S. Kalfa with the applanation tonometer. Am J Ophthalmol. 1939;22:375–83.

    Article  Google Scholar 

  68. Detorakis ET, Drakonaki EE, Ginis H, Karyotakis N, Pallikaris IG. Evaluation of iridociliary and lenticular elasticity using shear-wave elastography in rabbit eyes. Acta Med (Hradec Kralove). 2014;57(1):9–14.

    Article  Google Scholar 

  69. Iomdina EN, Eremina MV, Ivashchenko ZN, Tarutta EP. Applicability of the ocular response analyzer in the evaluation of biomechanics of the corneoscleral eye shell and intraocular pressure in children and adolescents with progressive myopia. Proceedings of the International Conference Ocular Biomechanics, Moscow. 2007;46–51.

    Google Scholar 

  70. Ebneter A, Wagels B, Zinkernagel MS. Non-invasive biometric assessment of ocular rigidity in glaucoma patients and controls. Eye (Lond). 2009 Mar;23(3):606–11.

    Article  CAS  Google Scholar 

  71. Kotliar K, Fuest M, Bauer SM, Voronkova E, Plange N. In-vivo estimation of the elasticity of corneoscleral shell after intravitreal injections. Ophthalmologe. 2016;Suppl.

    Google Scholar 

  72. Bayerle-Eder M, Kolodjaschna J, Wolzt M, Polska E, Gasic S, Schmetterer L. Effect of a nifedipine induced reduction in blood pressure on the association between ocular pulse amplitude and ocular fundus pulsation amplitude in systemic hypertension. Br J Ophthalmol. 2005 June;89(6):704–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roberts CJ, Dupps WJ, Downs JC, editors. Biomechanics of the eye. Amsterdam: Kugler Publications; 2018.

    Google Scholar 

  74. Ytteborg J. Further investigations of factors influencing size of rigidity coefficient. Acta Ophthalmol. 1960;38:643–57.

    Article  CAS  Google Scholar 

  75. Goldmann H, Schmidt T. Friedenwald’s rigidity coefficient. Int J Ophthalmol. 1957 Apr–May;133(4–5):330–5; discussion 5-6.

    Google Scholar 

  76. Agrawal KK, Sharma DP, Bhargava G, Sanadhya DK. Scleral rigidity in glaucoma, before and during topical antiglaucoma drug therapy. Indian J Ophthalmol. 1991 July–Sep;39(3):85–6.

    CAS  PubMed  Google Scholar 

  77. Melnik LS. On the norms of elastotonometric curves. (in Russian). J Ophthalmol. 1961;16(4):221.

    Google Scholar 

  78. Gaasterland D, Kupfer C, Milton R, Ross K, McCain L, MacLellan H. Studies of aqueous humour dynamics in man. VI. Effect of age upon parameters of intraocular pressure in normal human eyes. Exp Eye Res. 1978 Jun;26(6):651–6.

    Article  CAS  PubMed  Google Scholar 

  79. Lam AK, Chan ST, Chan H, Chan B. The effect of age on ocular blood supply determined by pulsatile ocular blood flow and color Doppler ultrasonography. Optom Vis Sci. 2003 Apr;80(4):305–11.

    Article  PubMed  Google Scholar 

  80. Jones HJ, Girard MJ, White N, Fautsch MP, Morgan JE, Ethier CR, et al. Quantitative analysis of three-dimensional fibrillar collagen microstructure within the normal, aged and glaucomatous human optic nerve head. J R Soc Interface. 2015 May 6;12(106)

    Google Scholar 

  81. Ho LC, Sigal IA, Jan NJ, Squires A, Tse Z, Wu EX, et al. Magic angle-enhanced MRI of fibrous microstructures in sclera and cornea with and without intraocular pressure loading. Invest Ophthalmol Vis Sci. 2014 Aug 7;55(9):5662–72.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Svetlova OV, Zaseeva MV, Surzhikov AV, Koshitz IN. Development of the theory of aqueous outflow and promising hypotensive treatment. (in Russian). Glaukoma. 2003;1:51–9.

    Google Scholar 

  83. Friedman E. The pathogenesis of age-related macular degeneration. Am J Ophthalmol. 2008 Sep;146(3):348–9.

    Article  PubMed  Google Scholar 

  84. To M, Goz A, Camenzind L, Oertle P, Candiello J, Sullivan M, et al. Diabetes-induced morphological, biomechanical, and compositional changes in ocular basement membranes. Exp Eye Res. 2013 Nov;116:298–307.

    Article  PubMed  CAS  Google Scholar 

  85. Panagiotoglou T, Tsilimbaris M, Ginis H, Karyotakis N, Georgiou V, Koutentakis P, et al. Ocular rigidity and outflow facility in nonproliferative diabetic retinopathy. J Diabetes Res. 2015;2015:141598.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Arora VK, Prasad VN. The intraocular pressure and diabetes: a correlative study. Indian J Ophthalmol. 1989 Jan–Mar;37(1):10–2.

    CAS  PubMed  Google Scholar 

  87. Taniashina LB. Tonometry and elastotonometry in various body positions. (in Russian). Oftalmologicheskii zhurnal. 1971;26(1):44–8.

    Google Scholar 

  88. Kymionis GD, Diakonis VF, Kounis G, Charisis S, Bouzoukis D, Ginis H, et al. Ocular rigidity evaluation after photorefractive keratectomy: an experimental study. J Refract Surg. 2008 Feb;24(2):173–7.

    Article  PubMed  Google Scholar 

  89. Cronemberger S, Guimaraes CS, Calixto N, Calixto JM. Intraocular pressure and ocular rigidity after LASIK. Arq Bras Oftalmol. 2009 July–Aug;72(4):439–43.

    Article  PubMed  Google Scholar 

  90. Moses RA, Tarkkanen A. Tonometry; the pressure-volume relationship in the intact human eye at low pressures. Am J Ophthalmol. 1959 Jan;47(1 Part 2):557–63; discussion 63-4.

    Google Scholar 

  91. Draeger J. Studies on the rigidity coefficient. Doc Ophthalmol. 1959;13:431–86.

    Article  CAS  PubMed  Google Scholar 

  92. Dashevsky AI. Comparison between Friedenwald’s tonometry and Filatov-Kalf’s elastotonometry. (in Russian). Vestn oftalmol. 1949 Jan–Feb;28(1):14–21.

    Google Scholar 

  93. Ytteborg J. The effect of intraocular pressure on rigidity coefficient in the human eye. Acta Ophthalmol. 1960;38:548–61.

    Article  CAS  Google Scholar 

  94. Castren J, Pohjola S. The measurement of scleral rigidity. Evaluation of various methods used. Acta Ophthalmol (Copenh). 1961;39:1005–10.

    Article  CAS  Google Scholar 

  95. Kiselev GA, Taniashina LB. Verification of the new calibration tables for the Filatov-Kalf elastotonometer. (in Russian). Vestn oftalmol. 1972 Mar–Apr;2:25–30.

    Google Scholar 

  96. Goldmann H. Second conference on Glaucoma, 1956. In: Newell FW, editor. The central nervous system and behavior. Transactions of the second conference. New York: Josiah Macy, Jr. Foundation; 1957. p. 201.

    Google Scholar 

  97. Phillips CI, Quick MC. Impression tonometry and the effect of eye volume variation. Br J Ophthalmol. 1960 Mar;44:149–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ytteborg J. The role of intraocular blood volume in rigidity measurements on human eyes. Acta Ophthalmol. 1960;38:410–36.

    Article  CAS  Google Scholar 

  99. Nagel E, Vilser W. Autoregulative behavior of retinal arteries and veins during changes of perfusion pressure: a clinical study. Graefes Arch Clin Exp Ophthalmol. 2004 Jan;242(1):13–7.

    Article  PubMed  Google Scholar 

  100. Best M, Masket S, Rabinovitz AZ. Measurement of vascular rigidity in the living eye. Arch Ophthalmol. 1971 Dec;86(6):699–705.

    Article  CAS  PubMed  Google Scholar 

  101. Kiel JW. The effect of arterial pressure on the ocular pressure-volume relationship in the rabbit. Exp Eye Res. 1995 Mar;60(3):267–78.

    Article  CAS  PubMed  Google Scholar 

  102. Kiel JW. Choroidal myogenic autoregulation and intraocular pressure. Exp Eye Res. 1994 May;58(5):529–43.

    Article  CAS  PubMed  Google Scholar 

  103. Sigal IA, Flanagan JG, Ethier CR. Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4189–99.

    Article  PubMed  Google Scholar 

  104. Nesterov AP. Hydrodynamics of the eye. (in Russian). Moscow: Medicina; 1967.

    Google Scholar 

  105. Curtin BJ. Pathologic myopia. Acta Ophthalmol Suppl. 1988;185:105–6.

    Google Scholar 

  106. Curtin BJ. Physiopathologic aspects of scleral stress-strain. Trans Am Ophthalmol Soc. 1969;67:417–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kalenak JW. More ocular elasticity? Ophthalmology. 1991 Apr;98(4):411–2.

    Article  CAS  PubMed  Google Scholar 

  108. Poloz MV. Biomechanical model of the human eye. Doctoral Thesis: Ph.D. (in Russian). Moscow: Helmholtz Institute for Eye Diseases; 2011.

    Google Scholar 

Download references

Acknowledgement

I would like to acknowledge my teacher Ivan Koshitz for inspiring me and granting me the astounding world of ocular biomechanics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Kotliar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kotliar, K. (2021). Ocular Rigidity: Clinical Approach. In: Pallikaris, I., Tsilimbaris, M.K., Dastiridou, A.I. (eds) Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye. Springer, Cham. https://doi.org/10.1007/978-3-030-64422-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64422-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64421-5

  • Online ISBN: 978-3-030-64422-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics