Skip to main content

Diverse Manifolds of Biogenic Nanoparticles in Synthesis, Characterization, and Applications

  • Chapter
  • First Online:
Nanotechnology Applications in Health and Environmental Sciences

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nanotechnology is one of the new-fangled technologies, refers to the development of devices, structures, and systems whose size varies from 1 to 100 nanometers (nm). The last decade has seen advancement in every side of nanotechnology such as nanoparticles fabrication nanolayers and coats; electrical, optic and mechanical nanodevices, and nanostructured biological. Nanoparticles are being used in different fields including electrical, biological textile and chemistry in which shape and size of colloidal metal particles play crucial role in different application including preparation of magnetic, electronic devices, wound healing, antimicrobial gene expression and in the preparation of bio composites. Noble metal colloids have the optical, catalytically electromagnetic properties which are dependent on size and shape of the particles. The synthesis processes for the preparation of colloidal nanoparticles with controlled morphology is crucial. The emergence of nanotechnology has provided an extensive research in recent years by intersecting with various other branches of science and forming impact on all forms of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: a novel tool for a green biotechnology? In: Prasad R, Kumar V, Kumar M, Wang S (eds) Fungal nanobionics: principles and applications. Springer, Singapore, pp 61–87

    Chapter  Google Scholar 

  • Abd-Elsalam K, Mohamed AA, Prasad R (2019) Magnetic nanostructures: environmental and agricultural applications. Springer, Singapore. ISBN 978-3-030-16438-6. https://www.springer.com/gp/book/9783030164386

    Book  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003a) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete Rhodococcus species. Nanotechnology 14:824–828

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S (2003b) Extracellular biosynthesis of silver nanoparticles using thefungus Fusarium oxysporum. Colloids Surf B: Biointerfaces 28(4):313–318

    Article  CAS  Google Scholar 

  • Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape controlled synthesis of colloidal platinum nanoparticles. Science 272:5270

    Article  Google Scholar 

  • Akhtar MS, Panwar J, Yun YS (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 1:591–602

    Article  CAS  Google Scholar 

  • Akhter S, Ahmad I, Ahmad MZ, Ramazani F, Singh A, Rahman Z (2013) Nanomedicines as cancer therapeutics: current status. Curr Cancer Drug Targets 13:362–378

    Article  CAS  PubMed  Google Scholar 

  • Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–423

    Article  CAS  Google Scholar 

  • Amin BM, Farideh N, Monamoniri M, Susan A, Rosafarizan M (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties and medical applications. Molecules 20(9):16540–16565

    Article  CAS  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68(1):88–92

    Article  CAS  PubMed  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B: Biointerfaces 7(2):160–164

    Article  CAS  Google Scholar 

  • Bigall NC, Thomas H, Markus K, Paul S, Lukas E, Alexander E (2008) Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: synthesis and distinct optical properties. NanoLett 8(12):4588–4592

    Article  CAS  Google Scholar 

  • Boldyrev VV, Tkáčová K (2000) Mechanochemistry of solids: past, present, and prospects. J Mater Synth Process 8(3–4):121–132

    Article  CAS  Google Scholar 

  • Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160(2):121–126

    Article  CAS  PubMed  Google Scholar 

  • Brar SK, Verma M (2011) Measurement of nanoparticles by light-scattering techniques. TrAC Trends Anal Chem 30:4–17

    Article  CAS  Google Scholar 

  • Cascone MG, Lazzeri L, Carmignani C, Zhu Z (2002) Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J Mater Sci Mater Med 13(5):523–526

    Article  CAS  PubMed  Google Scholar 

  • Castro L, Blazquez ML, Munoz JA, Gonzalez F, Garcıa-Balboa C, Ballester A (2011) Biosynthesis of gold nanowires using sugar beet pulp. Process Biochem 46:1076–1082

    Article  CAS  Google Scholar 

  • Christina G, Vossen Dirk LJ, Arnout I, Blaaderen V (2003) A general method to coat colloidal particles with silica. Langmuir 19(17):6693–6700

    Article  CAS  Google Scholar 

  • Chen Y, Zhu C, Wang T (2006) The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures. Nanotechnology 17(12):3012–3017

    Article  CAS  Google Scholar 

  • Colombo M (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41(11):4306–4334

    Article  CAS  PubMed  Google Scholar 

  • de Jong JR, Vlaeyen JW, Onghena P, Cuypers C, den Hollander M, Ruijgrok J (2005) Reduction of pain-related fear in complex regional pain syndrome type I: the application of graded exposure in vivo. Pain 116(3):264–275

    Article  PubMed  Google Scholar 

  • Dhillon GG, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi:current trends and applications. Crit Rev Biotechnol 32:49–73

    Article  CAS  PubMed  Google Scholar 

  • dos Anjos VE, Rohwedder JR, Cadore S, Abate G, Grassi MT (2014) Montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: adsorption and desorption studies of As, Ba, Cu, Cd, Co, Cr, Mn, Ni, Pb, Sr, V, and Zn. Appl Clay Sci (99):289–296

    Google Scholar 

  • Dufrêne YF, Garcia-Parajo MF (2012) Recent progress in cell surface nanoscopy: light and force in the nearfield. Nano Today 7:390–403

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3(1):8

    Article  Google Scholar 

  • Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A Physicochem Eng Asp 369:27–33

    Article  CAS  Google Scholar 

  • Gadegaard N (2006) Atomic force microscopy in biology: technology and techniques. Biotech Histochem 81:87–97

    Article  CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361

    Article  CAS  Google Scholar 

  • Ghorbani HA, Reza S, Akbar H, Rezayat MS (2011) Electrochemical characterizations of gold nanoparticles using leaf extract of Magnolia. Chem Biochem Eng Q 25(3):317–326

    CAS  Google Scholar 

  • Granum B, Løvik M (2002) The effect of particles on allergic immune responses. Toxicol Sci 65(1):7–17

    Article  CAS  PubMed  Google Scholar 

  • Gu Q, Cheng C, Gonela R, Suryanarayanan S, Anabathula S, Dai K, Haynie DT (2005) DNA nanowire fabrication. Nanotechnology 17(1):R14

    Article  CAS  Google Scholar 

  • Gurunathan S, Raman J, Abdmalek SN, John PA, Vikineswary S (2013) Green synthesis of silver nanoparticles using Ganoderma neo japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomedicine 8:4399–4413

    PubMed  PubMed Central  Google Scholar 

  • Hardman R (2006) Atoxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  PubMed  Google Scholar 

  • Harris PJF (1986) Sulphur-induced faceting of platinum catalyst particles. Nature 323(6091):792–794

    Article  CAS  Google Scholar 

  • Hinterdorfer P, Garcia-Parajo MF, Dufrene YF (2012) Single-molecule imaging of cell surfaces using nearfieldnanoscopy. Acc Chem Res 45:327–336. [PubMed: 21992025]

    Article  CAS  PubMed  Google Scholar 

  • Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Not 2014:359316

    PubMed  PubMed Central  Google Scholar 

  • Jiang H, Moon KS, Zhang Z, Pothukuchi S, Wong CP (2006) Variable frequency microwave synthesis of silver nanoparticles. J Nanopart Res 8(1):117–124

    Article  CAS  Google Scholar 

  • Jores K, Mehnert W, Drecusler M, Bunyes H, Johan C, MAder K (2004) Investigation on the stricter of solid lipid nanoparticles and oil-loaded solid nanoparticles by photon correlation spectroscopy, fieldflow fractionasition and transmission electron microscopy. J Control Release 17:217–227

    Article  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B 71:133–137

    Article  CAS  Google Scholar 

  • Kharissova OV, Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31(4):240–248

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Lee S, Chen X (2013) Nanotheranostics for personalized medicine. Exp Rev Mol Diagn 13:257–269. [PubMed: 23570404]

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystallinenanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96(24):1361–13614

    Article  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S (2003) Extracellular synthesis of silver nanoparticles by a silver tolerant yeast strain MKY3. Nanotechnology 14(1):95–100

    Article  CAS  Google Scholar 

  • Kreuter J (2007) Nanoparticles-a historical perspective. Int J Pharm 331:1–10

    Article  CAS  PubMed  Google Scholar 

  • Levins CG, Schafmeister EC (2006) The synthesis of curved and linear structures from a minimal set of monomer. Chem Inform 37(5):1–6

    Google Scholar 

  • Leela A, Vivekanandan M (2008) Tapping the unexploited plant resources for the synthesis of silver nanoparticles. Afr J Biotechnol 7(17)

    Google Scholar 

  • Li X, Xu H, Chen ZS, Chen G (2011a) Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater 2011:270974

    Article  Google Scholar 

  • Li X, Xu H, Chen Z, Chen G (2011b) Biosynthesis of nanoparticles bymicroorganisms and their applications. J Nanomater 16:1–15

    CAS  Google Scholar 

  • Li T, Wu TY, Chen SM, Ali MA, AlHemaid FMA (2012) Green synthesis and electrochemical characterizations of gold nanoparticles using leaf extract of Magnolia kobus. Int J Electrochem Sci 7:12742–11275

    CAS  Google Scholar 

  • Liu Y, Li W, Lao F, Liu Y, Wang L, Bai R (2011) Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes. Biomaterials 32:8291–8303. [PubMed: 21810539]

    Article  CAS  PubMed  Google Scholar 

  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41(11):4158–4163

    Article  CAS  PubMed  Google Scholar 

  • Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization and application. Angew Chem Int Ed 46(8):1222–1244

    Article  CAS  Google Scholar 

  • Luyts K, Napierska D, Nemery B, Hoet PHM (2013) How physico-chemical characteristics of nanoparticles cause their toxicity: complex and unresolved interrelations. Environ Sci Process Impacts 15:23–38. [PubMed: 24592425]

    Article  CAS  PubMed  Google Scholar 

  • Maddela NR, Chakraborty S, Prasad R (2021) Nanotechnology for Advances in Medical Microbiology. Springer Singapore (ISBN 978-981-15-9915-6) https://www.springer.com/gp/book/9789811599156

  • Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK (2014) Green chemistry based benign routes for nanoparticle synthesis. J Nanopart 2014:302429

    Article  CAS  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69(5):485–492

    Article  CAS  PubMed  Google Scholar 

  • Marin T, Slavko K, Marko J, Darko H, Dark M (2014) Magnetic properties of novel super paramagnetic iron oxide nanoclusters and their peculiarity under annealing treatment. Appl Surf Sci 322:255–264

    Article  CAS  Google Scholar 

  • Marshall AT, Haverkamp RG, Davies CE, Parsons JG, Gardea-Torresdey JL, van Agterveld D (2007) Accumulation of gold nanoparticles in Brassicjuncea. Int J Phytoremediation 9:197–206

    Article  CAS  PubMed  Google Scholar 

  • Mashaghi A, Kramer G, Bechtluft P, Zachmann-Brand B, Driessen AJ, Bukau B, Tans SJ (2013) Reshaping of the conformational search of a protein by the chaperone trigger factor. Nature 500(7460):98–101

    Article  CAS  PubMed  Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013a) Synthesis of metallic nanoparticles using plants. Biotechnol Adv 31:346–356

    Article  CAS  PubMed  Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013b) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517

    Article  CAS  Google Scholar 

  • Molpeceres J, Aberturas MR, Guzman M (2000) Biodegradable nanoparticles as a delivery system for cyclosporine: preparation and characterization. J Microencapsul 17:599–614

    Article  CAS  PubMed  Google Scholar 

  • Mondal AK, Mondal S, Samanta S, Mallick S (2011) Synthesis of ecofriendly silver nanoparticle from plant latex used as an important taxonomic tool for phylogentic interrelationship. Adv Biores 2(1):122–133

    CAS  Google Scholar 

  • Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl 20(11):8

    Google Scholar 

  • Mubarak Ali D, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B: Biointerfaces 85(2):360–365

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D (2001) Fungus mediated synthesis of silver anoparticles and their immobilization in the mycelia matrix: a novel biological approach to nanoparticles synthesis. Nano Lett 1(10):515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3:461–463

    Article  CAS  PubMed  Google Scholar 

  • Murali S, Absar A, Khan IM, Rajiv K (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Sci 85(2):162–170

    Google Scholar 

  • Murugan K, Senthilkumar B, Senbagam D, Sohaibani SA (2014) Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. Int J Nanomed 9(1):2431–2438

    Google Scholar 

  • Naqvi SZH, Kiran U, Ali MI (2013) Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrugresistant bacteria. Int J Nanomed 8:3187–3195

    Article  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park Y-H, Bae HC, Jang Y, Jeong SH, Lee HN, Ryu W-I (2013) Effect of the size and surface charge of silica nanoparticles on cutaneous toxicity. Mol Cell Toxicol 9:67–74

    Article  CAS  Google Scholar 

  • Parot P, Dufrêne YF, Hinterdorfer P, Le Grimellec C, Navajas D, Pellequer J-L (2007) Past, present and future of atomic force microscopy in life sciences and medicine. J Mol Recognit 20:418–431. [PubMed: 18080995]

    Article  CAS  PubMed  Google Scholar 

  • Parashar V, Parashar R, Sharma B, Pandey AC (2009) Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Dig J Nanomater Bios (DJNB) 4(1)

    Google Scholar 

  • Paull J, Lyons K (2008) Nanotechnology: the next challenge for organics. J Org Systems 3(1):3–22

    Google Scholar 

  • Patri A, Dobrovolskaia M, Stern S, McNeil S, Amiji M (2006) Nanotechnology for cancer therapy. In: Preclinical characterization of engineered nanoparticles intended for cancer therapeutics. CRC Press, Boca Raton, pp 105–138

    Google Scholar 

  • Pease RF, Chou SY (2008) Lithography and other pattering techniques for future electronics. Proc IEEE 96:248–256

    Article  CAS  Google Scholar 

  • Pooley FD (1982) Bacteria accumulate silver during leaching of sulphide ore minerals. Nature 296(5858):642–643

    Article  CAS  Google Scholar 

  • Pradeep (2007) Nano essentials understanding the nano science and nanotechnology. Tata, New Delhi

    Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 2014:963961. https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, Cham. ISBN: 978-3-319-42989-2

    Book  Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer, Singapore. ISBN 978-3-319-68423-9

    Book  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Jha A, Prasad K (2018a) Exploring the realms of nature for nanosynthesis. Springer, Singapore. ISBN 978-3-319-99570-0. https://www.springer.com/978-3-319-99570-0

    Book  Google Scholar 

  • Prasad R, Kumar V, Kumar M, Wang S (2018b) Fungal nanobionics: principles and applications. Springer, Singapore. ISBN 978-981-10-8666-3. https://www.springer.com/gb/book/9789811086656

    Book  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobial agent. J Biotechnol 27:76–83

    CAS  Google Scholar 

  • Redhead HM, Davis SS, Illum L (2001) Drug delivery in poly (lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Control Release 70(3):353–363

    Article  CAS  PubMed  Google Scholar 

  • Richard C, Charles A, Wilson S (1992) Encyclopedia of materials characterization –surfaces, interfaces, thin films. Elsevier, Amsterdam

    Google Scholar 

  • Safarik I, Safarikova M (2009) Magnetic nano-and microparticles in biotechnology. Chem Pap 63(5):497–505

    Article  CAS  Google Scholar 

  • Samuel P, Maheswari M, Vijayakumar J, Selvarathinam T, Amirtharaj K, Deenathayalan R (2018) Bio-prospecting of marine-derived fungi with special reference to production of keratinase enzyme-a need-based optimization study. J Appl Biol 6(3):35–41

    CAS  Google Scholar 

  • Samadi N, Golkaran D, Eslamifar A, Jamalifar H, Fazeli MR, Mohseni FA (2009) Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. J Biomed Nanotechnol 5(3):247–253

    Article  CAS  PubMed  Google Scholar 

  • Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL (2011) Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem 83:4453–4488. [PubMed: 21545140]

    Article  CAS  PubMed  Google Scholar 

  • Saravanan M, Amelash T, Negash L (2014) Extracellular biosynthesis and biomedical application of silver nanoparticles synthesized from baker’s yeast. Int J Res Pharmaceut Biomed Sci 4(3):822–828

    Google Scholar 

  • Sayed IH, Huang MAX, Sayed E (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–835

    Article  PubMed  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13(7):1822–1826

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145(1):83–96

    Article  CAS  Google Scholar 

  • Shi X, Wang S, Duan X, Zhang Q (2008) Synthesis of nano Ag powder by template and spray pyrolysis technology. Maters Chem Phys 112(3):1110–1113

    Article  CAS  Google Scholar 

  • Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine algae Sargassum wightii Greville. Colloids Surf B: Biointerfaces 57(1):97–101

    Article  CAS  PubMed  Google Scholar 

  • Slawson RM, Trevors JT, Lee H (1992) Silver accumulation and resistance in Pseudomonas stutzeri. Arch Microbiol 158(6):398–404

    Article  CAS  Google Scholar 

  • Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, Prasad R, Gupta G, Sharma M, Bhargava A (2021) Biological nanofactories: Using living forms for metal nanoparticle synthesis. Mini-Reviews in Medicinal Chemistry 21(2): 245–265

    Google Scholar 

  • Sunkar S, Nachiyar CV (2012) Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymu. Asian Pac J Trop Biomed 12:953–959

    Article  CAS  Google Scholar 

  • Tavakoli A, Sohrabi M, Kargari A (2007) A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem Pap 61(3):151–170

    Article  CAS  Google Scholar 

  • Tien DC, Liao CY, Huang JC, Tseng KH, Lung JK, Tsung TT, Kao WS, Tsai TH, Cheng TW, Yu BS, Lin HM (2008) Novel technique for preparing a nano-silver water suspension by the arc-discharge method. Rev Adv Mater Sci 1(18):750–756

    Google Scholar 

  • Tollamadugu NVKV, Prasad T, Kambala VSR, Naidu RA (2011) Critical review on biogenic silver nanoparticles and their antimicrobial activity. Curr Nanosci 7:531–544

    Article  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B: Biointerfaces 53(1):55–59

    Article  CAS  PubMed  Google Scholar 

  • Xiaoting M, Hughseton C, Le Lu T, Ian A, Nguyen TK (2011) Magnetic CoPt nanoparticles as MRI contrast agent for transplanted neural stem cells detection. Nanoscale 3(3):977–984

    Article  CAS  Google Scholar 

  • Yezheyev MV, Gao X, Xing Y, Hajj AA, Nie S, Regan RMO (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7:657–667

    Article  CAS  Google Scholar 

  • Zadegan RM, Norton ML (2012) Structural DNA nanotechnology: from design to applications. Int J Mol Sci 13(6):7149–7162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4:66–80

    Article  CAS  Google Scholar 

  • Zhu L, Attard P, Neto C (2011) Reliable measurements of interfacial slip by colloid probe atomic force microscopy. II. Hydrodynamic force measurements. Langmuir 27:6712–6719. [PubMed: 21542568]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeyaraj Pandiarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandiarajan, J. (2021). Diverse Manifolds of Biogenic Nanoparticles in Synthesis, Characterization, and Applications. In: Saglam, N., Korkusuz, F., Prasad, R. (eds) Nanotechnology Applications in Health and Environmental Sciences. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-64410-9_1

Download citation

Publish with us

Policies and ethics