Skip to main content

Urinary Extracellular Vesicles Magic Particles for Biomarker Discovery

  • Chapter
  • First Online:
Translational Urinomics

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1306))

Abstract

Extracellular vesicles (EV) are small membrane-coated structures secreted by all cells of the body and can be detected in all bodily fluids, including urine. EV contents (e.g. proteins and distinct RNA classes) reflect the physiological state of their cells of origin, offering a new source of biomarkers. Accordingly, urinary Extracellular Vesicles (uEVs) are emerging as a source for early biomarkers of kidney damage and beyond, holding the potential to replace the conventional invasive techniques including kidney biopsy. However, the lack of standardization and sample collection and isolation methods, and the influence of factors such as inter- and intra-individual variability create difficulties in interpreting current results. Here we review recent results and reported uses of especially urinary EVs and also pinpoint approaches to be considered when designing experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thery, C., Witwer, K.W., Aikawa, E., Alcaraz, M.J., Anderson, J.D., Andriantsitohaina, R., et al.: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 7(1), 1535750 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kalluri, R., LeBleu, V.S.: The biology, function, and biomedical applications of exosomes. Science (New York, NY). 367(6478) (2020)

    Google Scholar 

  3. van Niel, G., D’Angelo, G., Raposo, G.: Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19(4), 213–228 (2018)

    Article  PubMed  CAS  Google Scholar 

  4. Yanez-Mo, M., Siljander, P.R., Andreu, Z., Zavec, A.B., Borras, F.E., Buzas, E.I., et al.: Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles. 4, 27066 (2015)

    Article  PubMed  Google Scholar 

  5. Maas, S.L.N., Breakefield, X.O., Weaver, A.M.: Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell. Biol. 27(3), 172–188 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. Pisitkun, T., Shen, R.F., Knepper, M.A.: Identification and proteomic profiling of exosomes in human urine. Proc. Natl. Acad. Sci. U. S. A. 101(36), 13368–13373 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maughan, R.J., Shirreffs, S.M.: Dehydration and rehydration in competative sport. Scand. J. Med. Sci. Sports. 20(Suppl 3), 40–47 (2010)

    Article  PubMed  Google Scholar 

  8. Musante, L., Tataruch, D.E., Holthofer, H.: Use and isolation of urinary exosomes as biomarkers for diabetic nephropathy. Front. Endocrinol. 5, 149 (2014)

    Article  Google Scholar 

  9. Rastaldi, M.P., Armelloni, S., Berra, S., Li, M., Pesaresi, M., Poczewski, H., et al.: Glomerular podocytes possess the synaptic vesicle molecule Rab3A and its specific effector rabphilin-3a. Am. J. Pathol. 163(3), 889–899 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huttenhofer, A., Mayer, G.: Circulating miRNAs as biomarkers of kidney disease. Clin. Kidney J. 10(1), 27–29 (2017)

    PubMed  Google Scholar 

  11. Miranda, K.C., Bond, D.T., McKee, M., Skog, J., Paunescu, T.G., Da Silva, N., et al.: Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int. 78(2), 191–199 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bryzgunova, O.E., Zaripov, M.M., Skvortsova, T.E., Lekchnov, E.A., Grigor’eva, A.E., Zaporozhchenko, I.A., et al.: Comparative study of extracellular vesicles from the urine of healthy individuals and prostate cancer patients. PLoS One. 11(6), e0157566 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Horibe, S., Tanahashi, T., Kawauchi, S., Murakami, Y., Rikitake, Y.: Mechanism of recipient cell-dependent differences in exosome uptake. BMC Cancer. 18(1), 47 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Mathieu, M., Martin-Jaular, L., Lavieu, G., Thery, C.: Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21(1), 9–17 (2019)

    Article  CAS  PubMed  Google Scholar 

  15. Mulcahy, L.A., Pink, R.C., Carter, D.R.: Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles. 3 (2014)

    Google Scholar 

  16. Eitan, E., Tosti, V., Suire, C.N., Cava, E., Berkowitz, S., Bertozzi, B., et al.: In a randomized trial in prostate cancer patients, dietary protein restriction modifies markers of leptin and insulin signaling in plasma extracellular vesicles. Aging Cell. 16(6), 1430–1433 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rigamonti, A.E., Bollati, V., Pergoli, L., Iodice, S., De Col, A., Tamini, S., et al.: Effects of an acute bout of exercise on circulating extracellular vesicles: tissue-, sex-, and BMI-related differences. Int. J. Obes. 2019 (2005)

    Google Scholar 

  18. Fruhbeis, C., Helmig, S., Tug, S., Simon, P., Kramer-Albers, E.M.: Physical exercise induces rapid release of small extracellular vesicles into the circulation. J. Extracell. Vesicles. 4, 28239 (2015)

    Article  PubMed  Google Scholar 

  19. Zachar, R., Jensen, B.L., Svenningsen, P.: Dietary Na(+) intake in healthy humans changes the urine extracellular vesicle prostasin abundance while the vesicle excretion rate, NCC, and ENaC are not altered. Am. J. Physiol. Renal Physiol. 317(6), F1612–F1f22 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. Cheruvanky, A., Zhou, H., Pisitkun, T., Kopp, J.B., Knepper, M.A., Yuen, P.S., et al.: Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am. J. Physiol. Renal Physiol. 292(5), F1657–F1661 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rider, M.A., Hurwitz, S.N., Meckes Jr., D.G.: ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. Sci. Rep. 6, 23978 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Musante, L., Tataruch, D., Gu, D., Benito-Martin, A., Calzaferri, G., Aherne, S., et al.: A simplified method to recover urinary vesicles for clinical applications, and sample banking. Sci. Rep. 4, 7532 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gardiner, C., Di Vizio, D., Sahoo, S., Théry, C., Witwer, K.W., Wauben, M., et al.: Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J. Extracell. Vesicles. 5, 32945 (2016)

    Article  PubMed  CAS  Google Scholar 

  24. Konoshenko, M.Y., Lekchnov, E.A., Vlassov, A.V., Laktionov, P.P.: Isolation of extracellular vesicles: general methodologies and latest trends. Biomed. Res. Int. 2018, 8545347 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Barreiro, K., Holthofer, H.: Urinary extracellular vesicles. A promising shortcut to novel biomarker discoveries. Cell Tissue Res. 369(1), 217–227 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Merchant, M.L., Rood, I.M., Deegens, J.K.J., Klein, J.B.: Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat. Rev. Nephrol. 13(12), 731–749 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van der Pol, E., Boing, A.N., Gool, E.L., Nieuwland, R.: Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J. Throm. Haem. 14(1), 48–56 (2016)

    Article  Google Scholar 

  28. Lee, J., McKinney, K.Q., Pavlopoulos, A.J., Niu, M., Kang, J.W., Oh, J.W., et al.: Altered proteome of extracellular vesicles derived from bladder cancer patients urine. Mol. Cells. 41(3), 179–187 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, S., Kojima, K., Mobley, J.A., West, A.B.: Proteomic analysis of urinary extracellular vesicles reveal biomarkers for neurologic disease. EBioMedicine. 45, 351–361 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tiruvayipati, S., Wolfgeher, D., Yue, M., Duan, F., Andrade, J., Jiang, H., et al.: Variability in protein cargo detection in technical and biological replicates of exosome-enriched extracellular vesicles. PLoS One. 15(3), e0228871 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ben-Dov, I.Z., Whalen, V.M., Goilav, B., Max, K.E., Tuschl, T.: Cell and microvesicle urine microRNA deep sequencing profiles from healthy individuals: observations with potential impact on biomarker studies. PLoS One. 11(1), e0147249 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sanz-Rubio, D., Martin-Burriel, I., Gil, A., Cubero, P., Forner, M., Khalyfa, A., et al.: Stability of circulating Exosomal miRNAs in healthy subjects. Sci. Rep. 8(1), 10306 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Oeyen, E., Willems, H., Kindt, R., Sandra, K., Boonen, K., Hoekx, L., et al.: Determination of variability due to biological and technical variation in urinary extracellular vesicles as a crucial step in biomarker discovery studies. J. Extracell. Vesicles. 8(1), 1676035 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Noren Hooten, N., McFarland, M.H., Freeman, D.W., Mode, N.A., Ezike, N., Zonderman, A.B., et al.: Association of extracellular vesicle protein cargo with race and clinical markers of mortality. Sci. Rep. 9(1), 17582 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gustafson, C.M., Shepherd, A.J., Miller, V.M., Jayachandran, M.: Age- and sex-specific differences in blood-borne microvesicles from apparently healthy humans. Biol. Sex Differ. 6, 10 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Barreiro, K., Huber, T.B., Holthofer, H.: Isolating urinary extracellular vesicles as biomarkers for diabetic disease. Meth. Mol. Biol. (Clifton, NJ). 2067, 175–188 (2020)

    Article  CAS  Google Scholar 

  37. Zebrowska, A., Skowronek, A., Wojakowska, A., Widlak, P., Pietrowska, M.: Metabolome of exosomes: focus on vesicles released by cancer cells and present in human body fluids. Int. J. Mol. Sci. 20(14) (2019)

    Google Scholar 

  38. Williams, C., Palviainen, M., Reichardt, N.C., Siljander, P.R., Falcon-Perez, J.M.: Metabolomics applied to the study of extracellular vesicles. Metabolites. 9(11) (2019)

    Google Scholar 

  39. Erozenci, L.A., Bottger, F., Bijnsdorp, I.V., Jimenez, C.R.: Urinary exosomal proteins as (pan-)cancer biomarkers: insights from the proteome. FEBS Lett. 593(13), 1580–1597 (2019)

    Article  CAS  PubMed  Google Scholar 

  40. Turchinovich, A., Drapkina, O., Tonevitsky, A.: Transcriptome of extracellular vesicles: state-of-the-art. Front. Immunol. 10, 202 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gezsi, A., Kovacs, A., Visnovitz, T., Buzas, E.I.: Systems biology approaches to investigating the roles of extracellular vesicles in human diseases. Exp. Mol. Med. 51(3), 1–11 (2019)

    Article  CAS  PubMed  Google Scholar 

  42. Ramirez, M.I., Amorim, M.G., Gadelha, C., Milic, I., Welsh, J.A., Freitas, V.M., et al.: Technical challenges of working with extracellular vesicles. Nanoscale. 10(3), 881–906 (2018)

    Article  CAS  PubMed  Google Scholar 

  43. Srinivasan, S., Yeri, A., Cheah, P.S., Chung, A., Danielson, K., De Hoff, P., et al.: Small RNA sequencing across diverse biofluids identifies optimal methods for exRNA isolation. Cell. 177(2), 446-62.e16 (2019)

    Article  CAS  Google Scholar 

  44. Mussack, V., Wittmann, G., Pfaffl, M.W.: Comparing small urinary extracellular vesicle purification methods with a view to RNA sequencing-enabling robust and non-invasive biomarker research. Biomol. Detect. Quant. 17, 100089 (2019)

    CAS  Google Scholar 

  45. Cheng, L., Sun, X., Scicluna, B.J., Coleman, B.M., Hill, A.F.: Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int. 86(2), 433–444 (2014)

    Article  CAS  PubMed  Google Scholar 

  46. Srinivasan, S., Duval, M.X., Kaimal, V., Cuff, C., Clarke, S.H.: Assessment of methods for serum extracellular vesicle small RNA sequencing to support biomarker development. J. Extracell. Vesicles. 8(1), 1684425 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gunasekaran, P.M., Luther, J.M., Byrd, J.B.: For what factors should we normalize urinary extracellular mRNA biomarkers? Biomol. Detect. Quant. 17, 100090 (2019)

    CAS  Google Scholar 

  48. Git, A., Dvinge, H., Salmon-Divon, M., Osborne, M., Kutter, C., Hadfield, J., et al.: Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA (New York, NY). 16(5), 991–1006 (2010)

    Article  CAS  Google Scholar 

  49. Hill, A.F., Pegtel, D.M., Lambertz, U., Leonardi, T., O’Driscoll, L., Pluchino, S., et al.: ISEV position paper: extracellular vesicle RNA analysis and bioinformatics. J. Extracell. Vesicles. 2 (2013)

    Google Scholar 

  50. Mateescu, B., Kowal, E.J., van Balkom, B.W., Bartel, S., Bhattacharyya, S.N., Buzas, E.I., et al.: Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – An ISEV position paper. J. Extracell. Vesicles. 6(1), 1286095 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Xu, X., Barreiro, K., Musante, L., Kretz, O., Lin, H., Zou, H., et al.: Management of Tamm-Horsfall protein for reliable urinary analytics. Proteomics Clin. Appl. 13(6), e1900018 (2019)

    Article  PubMed  CAS  Google Scholar 

  52. Tian, Y., Gong, M., Hu, Y., Liu, H., Zhang, W., Zhang, M., et al.: Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. J. Extracell. Vesicles. 9(1), 1697028 (2020)

    Article  CAS  PubMed  Google Scholar 

  53. Patel, G.K., Khan, M.A., Zubair, H., Srivastava, S.K., Khushman, M., Singh, S., et al.: Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci. Rep. 9(1), 5335 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sunkara, V., Kim, C.J., Park, J., Woo, H.K., Kim, D., Ha, H.K., et al.: Fully automated, label-free isolation of extracellular vesicles from whole blood for cancer diagnosis and monitoring. Theranostics. 9(7), 1851–1863 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chiriaco, M.S., Bianco, M., Nigro, A., Primiceri, E., Ferrara, F., Romano, A., et al.: Lab-on-chip for exosomes and microvesicles detection and characterization. Sensors (Basel, Switzerland). 18(10) (2018)

    Google Scholar 

  56. Ramshani, Z., Zhang, C., Richards, K., Chen, L., Xu, G., Stiles, B.L., et al.: Extracellular vesicle microRNA quantification from plasma using an integrated microfluidic device. Comm. Biol. 2, 189 (2019)

    Article  Google Scholar 

  57. Wang, S., Khan, A., Huang, R., Ye, S., Di, K., Xiong, T., et al.: Recent advances in single extracellular vesicle detection methods. Biosens. Bioelectron. 154, 112056 (2020)

    Article  CAS  PubMed  Google Scholar 

  58. Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J.R., Maciejewski, A., et al.: Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 44(W1), W147–W153 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou, G., Xia, J.: Using OmicsNet for network integration and 3D visualization. Curr. Protoc. Bioinformatics. 65(1), e69 (2019)

    Article  PubMed  Google Scholar 

  60. Ghai, V., Wu, X., Bheda-Malge, A., Argyropoulos, C.P., Bernardo, J.F., Orchard, T., et al.: Genome-wide profiling of urinary extracellular vesicle microRNAs associated with diabetic nephropathy in type 1 diabetes. Kidney Int. Rep. 3(3), 555–572 (2018)

    Article  PubMed  Google Scholar 

  61. Khurana, R., Ranches, G., Schafferer, S., Lukasser, M., Rudnicki, M., Mayer, G., et al.: Identification of urinary exosomal noncoding RNAs as novel biomarkers in chronic kidney disease. RNA (New York, NY). 23(2), 142–152 (2017)

    Article  CAS  Google Scholar 

  62. Salih, M., Demmers, J.A., Bezstarosti, K., Leonhard, W.N., Losekoot, M., van Kooten, C., et al.: Proteomics of urinary vesicles links plakins and complement to polycystic kidney disease. J Am Soc Nephrol. 27(10), 3079–3092 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Puhka, M., Takatalo, M., Nordberg, M.E., Valkonen, S., Nandania, J., Aatonen, M., et al.: Metabolomic profiling of extracellular vesicles and alternative normalization methods reveal enriched metabolites and strategies to study prostate cancer-related changes. Theranostics. 7(16), 3824–3841 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Clos-Garcia, M., Loizaga-Iriarte, A., Zuniga-Garcia, P., Sanchez-Mosquera, P., Rosa Cortazar, A., Gonzalez, E., et al.: Metabolic alterations in urine extracellular vesicles are associated to prostate cancer pathogenesis and progression. J. Extracell. Vesicles. 7(1), 1470442 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Skotland, T., Ekroos, K., Kauhanen, D., Simolin, H., Seierstad, T., Berge, V., et al.: Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. Eur. J. Cancer (Oxford, England: 1990). 70, 122–132 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research lines reported here are based on fruitful collaborative efforts and are gratefully acknowledged as follows:

  • Prof Richard Coward’s team (Bristol University, UK, in-vitro models);

  • Prof Leif Groop’s team (University of Helsinki, Finland, Clinical samples);

  • Dr. Carol Forsblom (The Finnish Diabetic Nephropathy Study, Finland, Clinical Samples;);

  • Prof Riitta Lassila (University of Helsinki, Finland, in vivo experimental model);

  • And Dr. Denis Delic, Dr. German Leparc, Marcel Rosler (Boehringer Ingelheim Pharma GmbH & Co. KG, Germany, short and long RNA sequencing)

This study was supported by grants from the Paulo Foundation of Finland and NovoNordisk Foundation.

TBH was supported by the DFG (CRC1192, HU 1016/8-2, HU 1016/11-1, HU 1016/12-1), by the BMBF (STOP-FSGS-01GM1518C), and by the European Research Council-ERC (grant 616891).

This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement no. 115974 (BEAt-DKD; T.B.H., H.H.). This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA and by the H2020-IMI2 consortium BEAt-DKD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Holthofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barreiro, K., Huber, T.B., Holthofer, H. (2021). Urinary Extracellular Vesicles Magic Particles for Biomarker Discovery. In: Baptista Carreira dos Santos, H.M. (eds) Translational Urinomics. Advances in Experimental Medicine and Biology(), vol 1306. Springer, Cham. https://doi.org/10.1007/978-3-030-63908-2_3

Download citation

Publish with us

Policies and ethics