Skip to main content

Applying Ionic Transition Metal Complexes to Light-Emitting Electrochemical Cells

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Abstract

Since the first report on a Ru(II)-based LEC by Maness et al. in 1996, ionic transition metal complexes (iTMCs) have attracted huge interest as candidates for electroluminescent devices. In particular, after the advent of Ru-iTMCs and Os-iTMCs, Ir-iTMCs have been dominating the scene of iTMCs-based LECs, achieving high luminance and efficiency performances in concert with encouraging stabilities. Recently, the search on iTMCs based on more abundant and low-cost metals like Cu(I) or Ag(I) has attracted the interest of various research groups. Regardless of the type of iTMCs, LECs have experienced a continuous improvement in terms of efficiency, stability, turn-on time, and color by simple chemical design of iTMCs. However, there are still open challenges in the field, such as the achievement of stable and pure blue and white device. This chapter will cover selected advances regarding iTMCs with a Ru(II), Os(II), Ir(III), Cu(I), or Ag(I) ionic metal cores and their implementation in LECs divided by device color.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pei, Q., Yu, G., Zhang, C., Yang, Y., Heeger, A.J.: Polymer light-emitting electrochemical cells. Science (80-. ). 269, 1086–1088 (1995)

    Article  CAS  Google Scholar 

  2. Maness, K.M., Terrill, R.H., Meyer, T.J., Murray, R.W., Wightman, R.M.: Solid-state diode-like chemiluminescence based on serial, immobilized concentration gradients in mixed-valent poly[Ru(Vbpy)3](PF6)2 films. J. Am. Chem. Soc. 118(43), 10609–10616 (1996)

    Article  CAS  Google Scholar 

  3. Costa, R.D.: Light-Emitting Electrochemical Cells. Concepts, Advances and Challenges, 1st edn. Springer International Publishing, Basel (2017)

    Book  Google Scholar 

  4. Costa, R.D., Ortí, E., Bolink, H.J., Monti, F., Accorsi, G., Armaroli, N.: Luminescent ionic transition-metal complexes for light-emitting electrochemical cells. Angew. Chem. Int. Ed. 51(33), 8178–8211 (2012)

    Article  CAS  Google Scholar 

  5. Henwood, A.F., Zysman-Colman, E.: Luminescent iridium complexes used in light-emitting electrochemical cells (LEECs). Top. Curr. Chem. 374(4), 36 (2016)

    Article  CAS  Google Scholar 

  6. Costa, R.D., Tordera, D., Ortí, E., Bolink, H.J., Schönle, J., Graber, S., Housecroft, C.E., Constable, E.C., Zampese, J.A.: Copper(I) complexes for sustainable light-emitting electrochemical cells. J. Mater. Chem. 21(40), 16108–16118 (2011)

    Article  CAS  Google Scholar 

  7. Czerwieniec, R., Leitl, M.J., Homeier, H.H.H., Yersin, H.: Cu(I) complexes – thermally activated delayed fluorescence. Photophysical approach and material design. Coord. Chem. Rev. 325, 2–28 (2016)

    Article  CAS  Google Scholar 

  8. Bizzarri, C., Hundemer, F., Busch, J., Bräse, S.: Triplet emitters versus TADF emitters in OLEDs: a comparative study. Polyhedron. 140, 51–66 (2018)

    Article  CAS  Google Scholar 

  9. Fresta, E., Costa, R.D.: Beyond traditional light-emitting electrochemical cells-a review of new device designs and emitters. J. Mater. Chem. C. 5(23), 5643–5675 (2017)

    Article  CAS  Google Scholar 

  10. Matyba, P., Maturova, K., Kemerink, M., Robinson, N.D., Edman, L.: The dynamic organic p-n junction. Nat. Mater. 8(8), 672–676 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. Slinker, J.D., DeFranco, J.A., Jaquith, M.J., Silveira, W.R., Zhong, Y.W., Moran-Mirabal, J.M., Craighead, H.G., Abrua, H.D., Marohn, J.A., Malliaras, G.G.: Direct measurement of the electric-field distribution in a light-emitting electrochemical cell. Nat. Mater. 6(11), 894–899 (2007)

    Google Scholar 

  12. Pei, Q., Yang, Yu, G., Zhang, C., Heeger, A.J.: Polymer light-emitting electrochemical cells: in situ formation of a light-emitting p−n junction. J. Am. Chem. Soc. 118(16), 3922–3929 (1996)

    Article  CAS  PubMed  Google Scholar 

  13. de Mello, J.C., Tessler, N., Graham, S.C., Friend, R.H.: Ionic space-charge effects in polymer light-emitting diodes. Phys. Rev. B. 57(20), 12951–12963 (1998)

    Article  Google Scholar 

  14. de Mello, J.C.: Interfacial feedback dynamics in polymer light-emitting electrochemical cells. Phys. Rev. B. 66(23), 235210 (2002)

    Article  CAS  Google Scholar 

  15. Smith, D.L.: Steady state model for polymer light-emitting electrochemical cells. J. Appl. Phys. 81(6), 2869–2880 (1997)

    Article  CAS  Google Scholar 

  16. Rodovsky, D.B., Reid, O.G., Pingree, L.S.C., Ginger, D.S.: Concerted emission and local potentiometry of light-emitting electrochemical cells. ACS Nano. 4(5), 2673–2680 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. van Reenen, S., Matyba, P., Dzwilewski, A., Janssen, R.A.J., Edman, L., Kemerink, M.: A unifying model for the operation of light-emitting electrochemical cells. J. Am. Chem. Soc. 132(39), 13776–13781 (2010)

    Article  PubMed  CAS  Google Scholar 

  18. Campagna, S., Putoriero, F., Nastasi, F., Bergamini, G., Balzani, V.: Photochemistry and photophysics of coordination compounds: ruthenium. Top. Curr. Chem. 280, 117–214 (2007)

    Article  CAS  Google Scholar 

  19. Slinker, J.D., Rivnay, J., Moskowitz, J.S., Parker, J.B., Bernhard, S., Abruña, H.D., Malliaras, G.G.: Electroluminescent devices from ionic transition metal complexes. J. Mater. Chem. 17(29), 2976–2988 (2007)

    Article  CAS  Google Scholar 

  20. Rudmann, H., Rubner, M.F.: Single layer light-emitting devices with high efficiency and long lifetime based on Tris(2,2- Bipyridyl) ruthenium(II) hexafluorophosphate. J. Appl. Phys. 90, 4338 (2001)

    Article  CAS  Google Scholar 

  21. Barron, J.A., Bernhard, S., Houston, P.L., Abruña, H.D., Ruglovsky, J.L., Malliaras, G.G.: Electroluminescence in ruthenium(II) dendrimers. J. Phys. Chem. A. 107(40), 8130–8133 (2003)

    Article  CAS  Google Scholar 

  22. Rudmann, H., Shimada, S., Rubner, M.F.: Solid-state light-emitting devices based on the tris-chelated devices based on derivatives of the Tris (2, 2′ -bipyridyl) ruthenium (II) complex. J. Am. Chem. Soc. 124(17), 4918–4921 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. Gao, F.G., Bard, A.J.: High-brightness and low-voltage light-emitting devices based on trischelated ruthenium(II) and tris(2,2′-Bipyridine)osmium(II) emitter layers and low melting point alloy cathode contacts. Chem. Mater. 14(8), 3465–3470 (2002)

    Article  CAS  Google Scholar 

  24. Liu, C.Y., Bard, A.J.: Individually addressable submicron scale light-emitting devices based on electroluminescence of solid Ru(Bpy)3(CIO4)2 films. J. Am. Chem. Soc. 124(16), 4190–4191 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. Bolink, H.J., Cappelli, L., Coronado, E., Gra, M.: Efficient and stable solid-state light-emitting electrochemical cell using tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) hexafluorophosphate. J. Am. Chem. Soc. 128(1), 46–47 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. Zysman-Colman, E., Slinker, J.D., Parker, J.B., Malliaras, G.G., Bernhard, S.: Improved turn-on times of light-emitting electrochemical cells. Chem. Mater. 20(11), 388–396 (2008)

    Article  CAS  Google Scholar 

  27. Nemati Bideh, B., Shahroosvand, H.: Efficient near infrared light emitting electrochemical cell (NIR-LEEC) based on new binuclear ruthenium phenanthroimidazole exhibiting desired charge carrier dynamics. Sci. Rep. 7(1), 15739 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Nemati Bideh, B., Roldán-Carmona, C., Shahroosvand, H., Nazeeruddin, M.K.: Low-voltage, high-brightness and deep-red light-emitting electrochemical cells (LECs) based on new ruthenium (II) phenanthroimidazole complexes. Dalt. Trans. 45(17), 7195–7199 (2016)

    Article  CAS  Google Scholar 

  29. Soltzberg, L.J., Slinker, J.D., Flores-Torres, S., Bernards, D.A., Malliaras, G.G., Abruña, H.D., Kim, J.S., Friend, R.H., Kaplan, M.D., Goldberg, V.: Identification of a quenching species in ruthenium tris-bipyridine electroluminescent devices. J. Am. Chem. Soc. 128(24), 7761–7764 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. Kalyuzhny, G., Buda, M., Mcneill, J., Barbara, P., Bard, A.J.: Stability of thin-film solid-state electroluminescent devices based on tris (2, 2′ -bipyridine) ruthenium (II) complexes. J. Am. Chem. Soc. 125(II), 6272–6283 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. Slinker, J.D., Kim, J.-S., Flores-Torres, S., Delcamp, J.H., Abruña, H.D., Friend, R.H., Malliaras, G.G.: In situ identification of a luminescence quencher in an organic light-emitting device. J. Mater. Chem. 17(1), 76 (2007)

    Article  CAS  Google Scholar 

  32. Englman, R., Jortner, J.: The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18(2), 285–287 (1970)

    Article  Google Scholar 

  33. Kober, E.M., Caspar, J.V., Sullivan, B.P.: Synthetic routes to new polypyridyl complexes of osmium(II). Inorg. Chem. 27, 4587–4598 (1988)

    Article  CAS  Google Scholar 

  34. Kumaresan, D., Shankar, K., Vaidya, S., Schmehl, R.H.: Photochemistry and photophysics of coordination compounds: osmium BT. In: Balzani, V., Campagna, S. (eds.) Photochemistry and Photophysics of Coordination Compounds II, pp. 101–142. Springer, Berlin Heidelberg (2007)

    Chapter  Google Scholar 

  35. Bernhard, S., Gao, X., Malliaras, G.G., Abruña, H.D.: Efficient electroluminescent devices based on a chelated osmium(II) complex. Adv. Mater. 14(6), 433–436 (2002)

    Article  CAS  Google Scholar 

  36. Hosseini, A.R., Koh, C.Y., Slinker, J.D., Flores-Torres, S., Abruña, H.D., Malliaras, G.G.: Addition of a phosphorescent dopant in electroluminescent devices from ionic transition metal complexes. Chem. Mater. 17(24), 6114–6116 (2005)

    Article  CAS  Google Scholar 

  37. Ross, D.A.W., Scattergood, P.A., Babaei, A., Pertegás, A., Bolink, H.J., Elliott, P.I.P.: Luminescent osmium(II) bi-1,2,3-Triazol-4-Yl complexes: photophysical characterisation and application in light-emitting electrochemical cells. Dalt. Trans. 45(18), 7748–7757 (2016)

    Article  CAS  Google Scholar 

  38. Housecroft, C.E., Constable, E.C.: Over the LEC rainbow: colour and stability tuning of cyclometallated iridium(III) complexes in light-emitting electrochemical cells. Coord. Chem. Rev. 350, 155–177 (2017)

    Article  CAS  Google Scholar 

  39. Flamigni, L., Barbieri, A., Sabatini, C., Ventura, B., Barigelletti, F.: Photochemistry and photophysics of coordination compounds: iridium BT – photochemistry and photophysics of coordination compounds II. Top. Curr. Chem. 281, 143–203 (2007)

    Article  CAS  Google Scholar 

  40. Lowry, M.S., Goldsmith, J.I., Slinker, J.D., Rohl, R., Pascal, R.A., Malliaras, G.G., Bernhard, S.: Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17(23), 5712–5719 (2005)

    Article  CAS  Google Scholar 

  41. He, L., Duan, L., Qiao, J., Wang, R., Wei, P., Wang, L., Qiu, Y.: Blue-emitting cationic iridium complexes with 2-(1H-Pyrazol-1-Yl)pyridine as the ancillary ligand for efficient light-emitting electrochemical cells. Adv. Funct. Mater. 18(14), 2123–2131 (2008)

    Article  CAS  Google Scholar 

  42. Tamayo, A.B.., Garon, S., Sajoto, T., Djurovich, P.I., Tsyba, I.M., Bau, R., Thompson, M.E.: Cationic bis-cyclometalated iridium(III) diimine complexes and their use in efficient blue, green, and red electroluminescent devices. Inorg. Chem. 44(24), 8723–8732 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. He, L., Qiao, J., Duan, L., Dong, G., Zhang, D., Wang, L., Qiu, Y.: Toward highly efficient solid-state white light-emitting electrochemical cells: blue-green to red emitting cationic iridium complexes with imidazole-type ancillary ligands. Adv. Funct. Mater. 19(18), 2950–2960 (2009)

    Article  CAS  Google Scholar 

  44. He, L., Duan, L., Qiao, J., Dong, G., Wang, L., Qiu, Y.: Highly efficient blue-green and white light-emitting electrochemical cells based on a cationic iridium complex with a bulky side group. Chem. Mater. 22(11), 3535–3542 (2010)

    Article  CAS  Google Scholar 

  45. Meier, S.B., Sarfert, W., Junquera-Hernández, J.M., Delgado, M., Tordera, D., Ortí, E., Bolink, H.J., Kessler, F., Scopelliti, R., Grätzel, M., et al.: A deep-blue emitting charged bis-cyclometallated iridium(III) complex for light-emitting electrochemical cells. J. Mater. Chem. C. 1(1), 58–68 (2013)

    Article  CAS  Google Scholar 

  46. Zhang, F., Duan, L., Qiao, J., Dong, G., Wang, L., Qiu, Y.: The intramolecular π–π stacking interaction does not always work for improving the stabilities of light-emitting electrochemical cells. Org. Electron. 13, 2442–2449 (2012)

    Article  CAS  Google Scholar 

  47. Ertl, C.D., Cerdá, J., Junquera-Hernandez, J.M., Pertegás, A., Bolink, H.J., Constable, E.C., Neuburger, M., Ort, E.: Colour tuning by the ring roundabout. RSC Adv. 2, 42815–42827 (2015)

    Article  Google Scholar 

  48. Slinker, J.D., Koh, C.Y., Malliaras, G.G., Lowry, M.S., Bernhard, S.: Green electroluminescence from an ionic iridium complex. Appl. Phys. Lett. 86(17), 1–3 (2005)

    Article  CAS  Google Scholar 

  49. Evariste, S., Sandroni, M., Rees, T.W., Roldán-Carmona, C., Gil-Escrig, L., Bolink, H.J., Baranoff, E., Zysman-Colman, E.: Fluorine-free blue-green emitters for light-emitting electrochemical cells. J. Mater. Chem. C. 2(29), 5793–5804 (2014)

    Article  CAS  Google Scholar 

  50. Su, H.C., Fang, F.C., Hwu, T.Y., Hsieh, H.H., Chen, H.F., Lee, G.H., Peng, S.M., Wong, K.T., Wu, C.C.: Highly efficient orange and green solid-state light-emitting electrochemical cells based on cationic Ir(III) complexes with enhanced steric hindrance. Adv. Funct. Mater. 17(6), 1019–1027 (2007)

    Article  CAS  Google Scholar 

  51. Bolink, H.J., Coronado, E., Costa, D., Lardie, N., Ortı, E.: Near-quantitative internal quantum efficiency in a light-emitting electrochemical cell. Inorg. Chem. 47(20), 9149–9151 (2008)

    Article  CAS  PubMed  Google Scholar 

  52. Costa, R.D., Orti, E., Tordera, D., Pertegas, A., Bolink, H.J., Graber, S., Housecroft, C.E., Sachno, L., Neuburger, M., Constable, E.C.: Stable and efficient solid-state light-emitting electrochemical cells based on a series of hydrophobic iridium complexes. Adv. Energy Mater. 1(2), 282–290 (2011)

    Article  CAS  Google Scholar 

  53. Tordera, D., Serrano-Perez, J.J., Pertegas, A., Orti, E., Bolink, H.J., Baranoff, E., Nazeeruddin, M.K., Frey, J.: Correlating the lifetime and fluorine content of iridium(III) emitters in green light-emitting electrochemical cells. Chem. Mater. 25(16), 3391–3397 (2013)

    Article  CAS  Google Scholar 

  54. Costa, R.D., Ortí, E., Bolink, H.J., Graber, S., Schaffner, S., Neuburger, M., Housecroft, C.E., Constable, E.C.: Archetype cationic iridium complexes and their use in solid-state light-emitting electrochemical cells. Adv. Funct. Mater. 19(21), 3456–3463 (2009)

    Article  CAS  Google Scholar 

  55. Slinker, J.D., Gorodetsky, A.A., Lowry, M.S., Wang, J., Parker, S., Rohl, R., Bernhard, S., Malliaras, G.G.: Efficient yellow electroluminescence from a single layer of a cyclometalated iridium complex. J. Am. Chem. Soc. 126(9), 2763–2767 (2004)

    Article  CAS  PubMed  Google Scholar 

  56. Bolink, H.J., Coronado, E., Costa, R.D., Ortì, E., Sessolo, M., Graber, S., Doyle, K., Neuburger, M., Housecroft, C.E., Constable, E.C.: Long-living light-emitting electrochemical cells - control through supramolecular interactions. Adv. Mater. 20(20), 3910–3913 (2008)

    Article  CAS  Google Scholar 

  57. Costa, R.D., Ortí, E., Bolink, H.J., Graber, S., Housecroft, C.E., Neuburger, M., Schaffner, S., Constable, E.C.: Two are not always better than one: ligand optimisation for long-living light-emitting electrochemical cells. Chem. Commun. 15, 2029–2031 (2008)

    Google Scholar 

  58. Costa, R.D., Ortì, E., Bolink, H.J., Graber, S., Housecroft, C.E., Constable, E.C.: Efficient and long-living light-emitting electrochemical cells. Adv. Funct. Mater. 20(9), 1511–1520 (2010)

    Article  CAS  Google Scholar 

  59. Martínez-Alonso, M., Cerdá, J., Momblona, C., Pertegás, A., Junquera-Hernández, J.M., Heras, A., Rodríguez, A.M., Espino, G., Bolink, H., Ortí, E.: Highly stable and efficient light-emitting electrochemical cells based on cationic iridium complexes bearing arylazole ancillary ligands. Inorg. Chem. 56(17), 10298–10310 (2017)

    Article  PubMed  CAS  Google Scholar 

  60. Suhr, K.J., Bastatas, L.D., Shen, Y., Mitchell, L.A., Holliday, B.J., Slinker, J.D.: Enhanced luminance of electrochemical cells with a rationally designed ionic iridium complex and an ionic additive. ACS Appl. Mater. Interfaces. 8(14), 8888–8892 (2016)

    Article  CAS  PubMed  Google Scholar 

  61. Graber, S., Doyle, K., Neuburger, M., Housecroft, C.E., Constable, E.C., Costa, R.D., Ortí, E., Repetto, D., Bolink, H.J.: A supramolecularly-caged ionic iridium(III) complex yielding bright and very stable solid-state light-emitting electrochemical cells. J. Am. Chem. Soc. 130(45), 14944–14945 (2008)

    Article  CAS  PubMed  Google Scholar 

  62. Rodríguez-Redondo, J.L., Costa, R.D., Ortí, E., Sastre-Santos, A., Bolink, H.J., Fernández-Lázaro, F.: Red-light-emitting electrochemical cell using a polypyridyl iridium(III) polymer. Dalt. Trans. 44, 9787–9793 (2009)

    Article  CAS  Google Scholar 

  63. Zhang, J., Zhou, L., Al-Attar, H.A., Shao, K., Wang, L., Zhu, D., Su, Z., Bryce, M.R., Monkman, A.P.: Efficient light-emitting electrochemical cells (LECs) based on ionic iridium(III) complexes with 1,3,4-oxadiazole ligands. Adv. Funct. Mater. 23(37), 4667–4677 (2013)

    CAS  Google Scholar 

  64. Hasan, K., Donato, L., Shen, Y., Slinker, J.D., Zysman-Colman, E.: Cationic iridium(III) complexes bearing ancillary 2,5-dipyridyl(pyrazine) (2,5-dpp) and 2,2′:5′,2″-terpyridine (2,5-Tpy) ligands: synthesis, optoelectronic characterization and light-emitting electrochemical cells. Dalt. Trans. 43(36), 13672–13682 (2014)

    Article  CAS  Google Scholar 

  65. Namanga, J.E., Gerlitzki, N., Mallick, B., Mudring, A.V.: Long term stable deep red light-emitting electrochemical cells based on an emissive, rigid cationic Ir(III) complex. J. Mater. Chem. C. 5(12), 3049–3055 (2017)

    Article  CAS  Google Scholar 

  66. Ertl, C.D., Momblona, C., Pertegás, A., Junquera-Hernández, J.M., La-Placa, M.-G., Prescimone, A., Ortí, E., Housecroft, C.E., Constable, E.C., Bolink, H.J.: Highly stable red-light-emitting electrochemical cells. J. Am. Chem. Soc. 139, 3237–3248 (2017)

    Article  CAS  PubMed  Google Scholar 

  67. Yeonah, J., Sunesh, C.D., Chitumalla, R.K., Jang, J., Choe, Y.: Red-light-emitting electrochemical cells based on cationic iridium complexes with phenanthroimidazole-type ancillary ligand. Org. Electron. 54, 167–176 (2018)

    Article  CAS  Google Scholar 

  68. Nishikitani, Y., Takizawa, D., Nishide, H., Uchida, S., Nishimura, S.: White polymer light-emitting electrochemical cells fabricated using energy donor and acceptor fluorescent π-conjugated polymers based on concepts of band-structure engineering. J. Phys. Chem. C. 119(52), 28701–28710 (2015)

    Article  CAS  Google Scholar 

  69. Nishikitani, Y., Suga, K., Uchida, S., Nishimura, S., Oyaizu, K., Nishide, H.: High-color-rendering-index White polymer light-emitting electrochemical cells based on ionic host-guest systems: utilization of blend films of blue-fluorescent cationic polyfluorenes and red-phosphorescent cationic iridium complexes. Org. Electron. 51, 168–172 (2017)

    Article  CAS  Google Scholar 

  70. Sessolo, M., Tordera, D., Bolink, H.J.: Ionic iridium complex and conjugated polymer used to solution-process a bilayer White light-emitting diode. ACS Appl. Mater. Interfaces. 5(3), 630–634 (2013)

    Article  CAS  PubMed  Google Scholar 

  71. Wu, H.B., Chen, H.F., Liao, C.T., Su, H.C., Wong, K.T.: Efficient and color-stable solid-state White light-emitting electrochemical cells employing red color conversion layers. Org. Electron. 13(3), 483–490 (2012)

    Article  CAS  Google Scholar 

  72. Lin, G.-R., Cheng, J.-R., Wang, C.-W., Sarma, M., Chen, H.-F., Su, H.-C., Chang, C.-H., Wong, K.-T.: Solid-state White light-emitting electrochemical cells based on scattering red color conversion layers. J. Mater. Chem. C. 3(48), 12492–12498 (2015)

    Article  CAS  Google Scholar 

  73. Lu, J.-S., Chen, H.-F., Kuo, J.-C., Sun, R., Cheng, C.-Y., Yeh, Y.-S., Su, H.-C., Wong, K.-T.: Efficient solid-state White light-emitting electrochemical cells employing embedded red color conversion layers. J. Mater. Chem. C. 3(12), 2802–2809 (2015)

    Article  CAS  Google Scholar 

  74. Su, H.C., Chen, H.F., Shen, Y.C., Liao, C.T., Wong, K.T.: Highly efficient double-doped solid-state white light-emitting electrochemical cells. J. Mater. Chem. 21(26), 9653–9660 (2011)

    Article  CAS  Google Scholar 

  75. Su, H.C., Chen, H.F., Fang, F.C., Liu, C.C., Wu, C.C., Wong, K.T., Liu, Y.H., Peng, S.M.: Solid-state White light-emitting electrochemical cells using iridium-based cationic transition metal complexes. J. Am. Chem. Soc. 130(11), 3413–3419 (2008)

    Google Scholar 

  76. Elie, M., Gaillard, S., Renaud, J.L.: Luminescent cationic copper(I) complexes: synthesis, photophysical properties and application in light-emitting electrochemical cells. In: Light-Emitting Electrochemical Cells: Concepts, Advances and Challenges, pp. 287–327. Springer International Publishing, Basel (2017)

    Chapter  Google Scholar 

  77. Leitl, M.J., Zink, D.M., Schinabeck, A., Baumann, T., Volz, D., Yersin, H.: Copper(I) complexes for thermally activated delayed fluorescence: from photophysical to device properties. Top. Curr. Chem. 374(3), 25 (2016)

    Google Scholar 

  78. Barbieri, A., Accorsi, G., Armaroli, N.: Luminescent complexes beyond the platinum group: the D10 avenue. Chem. Commun. 19, 2185–2193 (2008)

    Article  CAS  Google Scholar 

  79. Balzani, C., Campagna, S., Armaroli, N., Accorsi, G., Cardinali, F., Listorti, A.: Photochemistry and photophysics of coordination compounds. Top. Curr. Chem. 281, 143–203 (2007)

    Article  CAS  Google Scholar 

  80. Gneuß, T., Leitl, M.J., Finger, L.H., Rau, N., Yersin, H., Sundermeyer, J.: A new class of luminescent Cu(I) complexes with Tripodal ligands – TADF emitters for the yellow to red color range. Dalt. Trans. 44(18), 8506–8520 (2015)

    Article  CAS  Google Scholar 

  81. Fu, Z.C., Yin, Q., Yao, Z.F., Li, C., Fu, W.F.: Copper(I)-1,1,1-tris(diphenylphosphinomethyl)ethane complexes with different coordination modes tuned by auxiliary ligands and their spectroscopic properties. J. Coord. Chem. 68(17–18), 3282–3294 (2015)

    Article  CAS  Google Scholar 

  82. Murray, N.S., Keller, S., Constable, E.C., Housecroft, C.E., Neuburger, M., Prescimone, A.: [cu(N^N)(P^P)]+ complexes with 2,2′:6′,2″-terpyridine ligands as the N^N domain. Dalt. Trans. 44(16), 7626–7633 (2015)

    Article  CAS  Google Scholar 

  83. Elie, M., Sguerra, F., Di Meo, F., Weber, M.D., Marion, R., Grimault, A., Lohier, J.-F., Stallivieri, A., Brosseau, A., Pansu, R.B., et al.: Designing NHC–copper(I) dipyridylamine complexes for blue light-emitting electrochemical cells. ACS Appl. Mater. Interfaces. 8(23), 14678–14691 (2016)

    Article  CAS  PubMed  Google Scholar 

  84. Elie, M., Weber, M.D., Di Meo, F., Sguerra, F., Lohier, J.-F., Pansu, R.B., Renaud, J.-L., Hamel, M., Linares, M., Costa, R.D., et al.: Role of the bridging group in bis-pyridyl ligands: enhancing both photo- and electro-luminescent features of cationic (IPr)Cu(I) complexes. Chem. Eur. J. 23(64), 16328–16337 (2017)

    Article  CAS  PubMed  Google Scholar 

  85. Weber, M.D., Fresta, E., Elie, M., Miehlich, M.E., Renaud, J.-L., Meyer, K., Gaillard, S., Costa, R.D.: Rationalizing fabrication and design toward highly efficient and stable blue light-emitting electrochemical cells based on NHC copper(I) complexes. Adv. Funct. Mater. 28(17), 1707423 (2018)

    Article  CAS  Google Scholar 

  86. Krylova, V.A., Djurovich, P.I., Whited, M.T., Thompson, M.E.: Synthesis and characterization of phosphorescent three-coordinate Cu(I)-NHC complexes. Chem. Commun. 46(36), 6696–6698 (2010)

    Article  CAS  Google Scholar 

  87. Bizzarri, C., Strabler, C., Prock, J., Trettenbrein, B., Ruggenthaler, M., Yang, C.H., Polo, F., Iordache, A., Brüggeller, P., De Cola, L.: Luminescent dinuclear Cu(I) complexes containing rigid tetraphosphine ligands. Inorg. Chem. 53(20), 10944–10951 (2014)

    Article  CAS  PubMed  Google Scholar 

  88. Wen, L.J., McCormick, T., Tao, Y., Lu, J.P., Wang, S.: New phosphorescent polynuclear Cu(I) compounds based on linear and star-shaped 2-(2’-pyridyl)benzimidazolyl derivatives: syntheses, structures, luminescence, and electroluminescence. Inorg. Chem. 44(16), 5706–5712 (2005)

    Article  CAS  Google Scholar 

  89. De Liu, Q., Jia, W.L., Wang, S.: Blue luminescent 2-(2′-pyridyl)benzimidazole derivative ligands and their orange luminescent mononuclear and polynuclear organoplatinum(II) complexes. Inorg. Chem. 44(5), 1332–1343 (2005)

    Article  CAS  PubMed  Google Scholar 

  90. Asil, D., Foster, J.A., Patra, A., Dehatten, X., Delbarrio, J., Scherman, O.A., Nitschke, J.R., Friend, R.H.: Temperature- and voltage-induced ligand rearrangement of a dynamic electroluminescent metallopolymer. Angew. Chem. Int. Ed. 53(32), 8388–8391 (2014)

    Article  CAS  Google Scholar 

  91. Qin, L., Zhang, Q., Sun, W., Wang, J., Lu, C., Cheng, Y., Wang, L.: Novel luminescent iminephosphine complex of copper(I) with high photochemical and electrochemical stability. Dalt. Trans. 43, 9388–9391 (2009)

    Article  CAS  Google Scholar 

  92. Cid, J.J., Mohanraj, J., Mohankumar, M., Holler, M., Monti, F., Accorsi, G., Karmazin-Brelot, L., Nierengarten, I., Malicka, J.M., Cocchi, M., et al.: Dinuclear Cu(I) complexes prepared from 2-diphenylphosphino-6-methylpyridine. Polyhedron. 82, 158–172 (2014)

    Article  CAS  Google Scholar 

  93. Zhang, J.F., Fu, W.F., Gan, X., Chen, J.H.: Synthesis, structures and photophysical properties of luminescent copper(I) and platinum(II) complexes with a flexible naphthyridine-phosphine ligand. Dalt. Trans. 23, 3093–3100 (2008)

    Article  CAS  Google Scholar 

  94. Keller, S., Brunner, F., Junquera-Hernández, J.M., Pertegás, A., La-Placa, M.-G., Prescimone, A., Constable, E.C., Bolink, H.J., Ortí, E., Housecroft, C.E.: CF 3 substitution of [Cu(P^P)(Bpy)][PF 6 ] complexes: effects on photophysical properties and light-emitting electrochemical cell performance. ChemPlusChem. 83(4), 217–223 (2018)

    Article  CAS  PubMed  Google Scholar 

  95. Weber, M.D., Garino, C., Volpi, G., Casamassa, E., Milanesio, M., Barolo, C., Costa, R.D.: Origin of a counterintuitive yellow light-emitting electrochemical cell based on a blue-emitting heteroleptic copper(I) complex. Dalt. Trans. 45(21), 8984–8993 (2016)

    Article  CAS  Google Scholar 

  96. Linfoot, C.L., Leitl, M.J., Richardson, P., Rausch, A.F., Chepelin, O., White, F.J., Yersin, H., Robertson, N.: Thermally activated delayed fluorescence (TADF) and enhancing photoluminescence quantum yields of [Cu(I) (diimine)(diphosphine)] + complexes—photophysical, structural, and computational studies. Inorg. Chem. 53(20), 10854–10861 (2014)

    Article  CAS  PubMed  Google Scholar 

  97. Keller, S., Constable, E.C., Housecroft, C.E., Neuburger, M., Prescimone, A., Longo, G., Pertegás, A., Sessolo, M., Bolink, H.J.: [cu(Bpy)(P^P)] + containing light-emitting electrochemical cells: improving performance through simple substitution. Dalt. Trans. 43(44), 16593–16596 (2014)

    Article  CAS  Google Scholar 

  98. Keller, S., Pertegás, A., Longo, G., Martínez, L., Cerdá, J., Junquera-Hernández, J.M., Prescimone, A., Constable, E.C., Housecroft, C.E., Ortí, E., et al.: Shine bright or live long: substituent effects in [Cu(N^N)(P^P)]+-based light-emitting electrochemical cells where N^N is a 6-substituted 2,2′-bipyridine. J. Mater. Chem. C. 4(17), 3857–3871 (2016)

    Article  CAS  Google Scholar 

  99. Alkan-Zambada, M., Keller, S., Martínez-Sarti, L., Prescimone, A., Junquera-Hernández, J.M., Constable, E.C., Bolink, H.J., Sessolo, M., Ortí, E., Housecroft, C.E.: [Cu(P^P)(N^N)][PF 6 ] compounds with bis(phosphane) and 6-alkoxy, 6-alkylthio, 6-phenyloxy and 6-phenylthio-substituted 2,2′-bipyridine ligands for light-emitting electrochemical cells. J. Mater. Chem. C. 6(31), 8460–8471 (2018)

    Article  CAS  Google Scholar 

  100. Weber, M.D., Viciano-Chumillas, M., Armentano, D., Cano, J., Costa, R.D.: σ-Hammett parameter: a strategy to enhance both photo- and electro-luminescence features of heteroleptic copper(I) complexes. Dalt. Trans. 46(6312), 6312–6323 (2017)

    Article  CAS  Google Scholar 

  101. Fresta, E., Volpi, G., Milanesio, M., Garino, C., Barolo, C., Costa, R.D.: Novel ligand and device designs for stable light-emitting electrochemical cells based on heteroleptic copper(I) complexes. Inorg. Chem. 57(16), 10469–10479 (2018)

    Article  CAS  PubMed  Google Scholar 

  102. Brunner, F., Martínez-Sarti, L., Keller, S., Pertegás, A., Prescimone, A., Constable, E.C., Bolink, H.J., Housecroft, C.E.: Peripheral halo-functionalization in [Cu(N^N)(P^P)](+) emitters: influence on the performances of light-emitting electrochemical cells. Dalt. Trans. 45(38), 15180–15192 (2016)

    Article  CAS  Google Scholar 

  103. Housecroft, C.E., Constable, E.C., Orti, E., Bolink, H.J., Keller, S., Prescimone, A., Sessolo, M., Longo, G., Martinez-Sarti, L., Junquera-Hernandez, J.M.: Luminescent copper(I) complexes with bisphosphane and halogen-substituted 2,2′-bipyridine ligands. Dalt. Trans. 47(40), 14263–14276 (2018)

    Article  Google Scholar 

  104. O’Hagan, D., Rzepa, H.S.: Some influences of fluorine in bioorganic chemistry. Chem. Commun. 7, 645–652 (1997)

    Article  Google Scholar 

  105. Kaeser, A., Mohankumar, M., Mohanraj, J., Monti, F., Holler, M., Cid, J.-J., Moudam, O., Nierengarten, I., Karmazin-Brelot, L., Duhayon, C., et al.: Heteroleptic copper(I) complexes prepared from phenanthroline and bis-phosphine ligands. Inorg. Chem. 52(20), 12140–12151 (2013)

    Article  CAS  PubMed  Google Scholar 

  106. Fresta, E., Carbonell-Vilar, J.-M., Yu, J., Armentano, D., Cano, J., Viciano-Chumillas, M., Costa, R.D.: Deciphering the electroluminescence behaviour of silver (I)-complexes in light-emitting electrochemical cells: limitations and solutions towards highly stable devices. Adv. Funct. Mater. 29(31),1901797. https://doi.org/10.1002/adfm.201901797

  107. Carbonell-Vilar, J.M., Fresta, E., Armentano, D., Cano, J., Costa, R.D., Viciano-Chumillas, M.: Photoluminescent Cu(I) vs Ag(I) complexes: slowing down emission in Cu(I) complexes by pentacoordinate low-lying excited states. Dalt. Trans. 48, 9765–9775 (2019)

    Article  CAS  Google Scholar 

  108. Shafikov, M.Z., Suleymanova, A., Schinabeck, A., Yersin, H.: A di-nuclear Ag(I) complex designed for highly efficient thermally activated delayed fluorescence. J. Phys. Chem. Lett. 9(4), 702–709 (2018)

    Article  CAS  PubMed  Google Scholar 

  109. Keller, S., Prescimone, A., Constable, E.C., Housecroft, C.E.: Copper (I) and silver (I) complexes of 9,9-dimethyl-4,5-bis(di- tert -butylphosphino)xanthene: photophysical properties and structural rigidity under pressure. Photochem. Photobiol. Sci. 17(4), 375–385 (2018)

    Article  CAS  PubMed  Google Scholar 

  110. Hsu, C.-W., Lin, C.-C., Chung, M.-W., Chi, Y., Lee, G.-H., Chou, P.-T., Chang, C.-H., Chen, P.-Y.: Systematic investigation of the metal-structure–photophysics relationship of emissive d 10 -complexes of group 11 elements: the Prospect of application in organic light emitting devices. J. Am. Chem. Soc. 133(31), 12085–12099 (2011)

    Article  CAS  PubMed  Google Scholar 

  111. Hsu, C., Lin, C., Chou, P., Lai, C., Hsu, C.: Harvesting highly electronically excited energy to triplet manifolds: state-dependent intersystem crossing rate in Os(II) and Ag(I) complexes. J. Am. Chem. Soc. 134(18), 7715–7724 (2012)

    Article  CAS  PubMed  Google Scholar 

  112. Moudam, O., Tsipis, A.C., Kommanaboyina, S., Horton, P.N., Coles, S.J.: First light-emitting electrochemical cell with [ag(I)(N^N)(P^P)] type complex. RSC Adv. 5(115), 95047–95053 (2015)

    Article  CAS  Google Scholar 

  113. Su, H.-C., Cheng, C.-Y.: Recent advances in solid-state white light-emitting electrochemical cells. Isr. J. Chem. 54(7), 855–866 (2014)

    Article  CAS  Google Scholar 

  114. Weber, M.D., Wittmann, J.E., Burger, A., Malcıoğlu, O.B., Segarra-Martí, J., Hirsch, A., Coto, P.B., Bockstedte, M., Costa, R.D.: From White to red: electric-field dependent chromaticity of light-emitting electrochemical cells based on archetypal porphyrins. Adv. Funct. Mater. 26(37), 6737–6750 (2016)

    Article  CAS  Google Scholar 

  115. Weber, M.D., Adam, M., Tykwinski, R.R., Costa, R.D.: Controlling the chromaticity of small-molecule light-emitting electrochemical cells based on TIPS-pentacene. Adv. Funct. Mater. 25(31), 5066–5074 (2015)

    Article  CAS  Google Scholar 

  116. Weber, K.T., Karikis, K., Weber, M.D., Coto, P.B., Charisiadis, A., Charitaki, D., Charalambidis, G., Angaridis, P., Coutsolelos, A.G., Costa, R.D.: Cunning metal Core: efficiency/stability dilemma in metallated porphyrin based light-emitting electrochemical cells. Dalt. Trans. 45(34), 13284–13288 (2016)

    Article  CAS  Google Scholar 

  117. Fresta, E., Volpi, G., Garino, C., Barolo, C., Costa, R.D.: Contextualizing yellow light-emitting electrochemical cells based on a blue-emitting imidazo-pyridine emitter. Polyhedron. 140, 129–137 (2018)

    Article  CAS  Google Scholar 

  118. Shanmugasundaram, K., Subeesh, M.S., Sunesh, C.D., Choe, Y.: Non-doped deep blue light-emitting electrochemical cells from charged organic small molecules. RSC Adv. 6, 28912–28918 (2016)

    Article  CAS  Google Scholar 

  119. Tang, S., Tan, W.-Y., Zhu, X.-H., Edman, L.: Small-molecule light-emitting electrochemical cells: evidence for in situ electrochemical doping and functional operation. Chem. Commun. 49(43), 4926–4928 (2013)

    Article  CAS  Google Scholar 

  120. Weber, M.D., Nikolaou, V., Wittmann, J.E., Nikolaou, A., Angaridis, P.A., Charalambidis, G., Stangel, C., Kahnt, A., Coutsolelos, A.G., Costa, R.D.: Benefits of using BODIPY–porphyrin dyads for developing deep-red lighting sources. Chem. Commun. 52(8), 1602–1605 (2016)

    Article  CAS  Google Scholar 

  121. Pertegás, A., Tordera, D., Serrano-Pérez, J.: Light-emitting electrochemical cells using cyanine dyes as the active components. J. Am. Chem. Soc. 135(48), 18008–18011 (2013)

    Article  PubMed  CAS  Google Scholar 

  122. Aygüler, M.F., Weber, M.D., Puscher, B.M.D., Medina, D.D., Docampo, P., Costa, R.D.: Light-emitting electrochemical cells based on hybrid Lead halide perovskite nanoparticles. J. Phys. Chem. C. 119(21), 12047–12054 (2015)

    Article  CAS  Google Scholar 

  123. Puscher, B.M.D., Aygueler, M.F., Docampo, P., Costa, R.D.: Unveiling the dynamic processes in hybrid lead bromide perovskite nanoparticle thin film devices. Adv. Energy Mater. 7(15), 1602283 (2017)

    Article  CAS  Google Scholar 

  124. Aygüler, M.F., Puscher, B.M.D., Yu, T., Bein, T., Urban, A.S., Costa, R.D., Docampo, P.: Light-emitting electrochemical cells based on inorganic metal halide perovskite nanocrystals. J. Phys. D. Appl. Phys. 51(33), 334001 (2018)

    Article  CAS  Google Scholar 

  125. Frohleiks, J., Wepfer, S., Kelestemur, Y., Demir, H.V., Bacher, G., Nannen, E.: Quantum dot/light-emitting electrochemical cell hybrid device and mechanism of its operation. ACS Appl. Mater. Interfaces. 8(37), 24692–24698 (2016)

    Article  CAS  PubMed  Google Scholar 

  126. Frohleiks, J., Wefers, F., Wepfer, S., Hong, A.-R., Jang, H.S., Nannen, E.: CuInS 2 -based quantum dot light-emitting electrochemical cells (QLECs). Adv. Mater. Technol. 2(11), 1700154 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R. D. C. acknowledges the European Union’s Horizon 2020 research and innovation FET-OPEN under grant agreement ARTIBLED No. 863170, the ERC-Co InOutBioLight No. 816856, and the MSCA-ITN STiBNite No. 956923.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén D. Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fresta, E., Costa, R.D. (2022). Applying Ionic Transition Metal Complexes to Light-Emitting Electrochemical Cells. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_63

Download citation

Publish with us

Policies and ethics