Skip to main content

Biomonitoring and Bioremediation of a Transboundary River in India: Functional Roles of Benthic Mollusks and Fungi

  • Chapter
  • First Online:
Spatial Modeling and Assessment of Environmental Contaminants

Abstract

The increasing trend of eco-degradation of the different landscapes of the world, mostly because of human-mediated pollution has emerged as a burning environmental issue across the globe. This has necessitated to undertake sustainable eco-management in order not only to achieve proper eco-restoration of the disturbed and degraded ecosystems but also to ensure a continuous supply of ecosystem services. The embedded complexity and dynamism of the ecological problems of the riverine ecosystem require an in-depth analysis to achieve flexible, transparent, and viable environmental planning and management approaches incorporating and integrating a diversity of knowledge and values. Both the biomonitoring (an important component of eco-monitoring) and bioremediation (an integral part of any eco-restoration effort) help achieving the goal of sustainability of the functioning of the river ecosystem. This chapter of the book has dealt with the different merits and demits of such recent developments in the arena of aquatic ecosystem management practices citing case studies emphasizing on the functional roles of benthic mollusks and fungi from a transboundary river, named as Subarnarekha, India. In dealing with such studies, meticulous and detailed analyses of the ecology of these major groups of the organisms, both from the field-based and experimental studies have been made in order to justify their contribution to the biomonitoring and bioremediation process. Deduction of Water Quality Index (WQI), Biotic Community Indices, Pollution Load Index (PLI), and Bio-Concentration Factor (BCF) based on the major prevailing water quality parameters such as Dissolved oxygen (DO), Biochemical oxygen demand (BOD), Chemical oxygen demand (COD), temperature, pH, turbidity, Total dissolved solids (TDS), conductivity, alkalinity, calcium, magnesium, chloride, total hardness, etc.; geo-chemical parameters of soils such as moisture content, pH, texture (sand, silt, and clay), organic matter, available nitrogen, and toxic substances such as heavy metals alongside documenting the diversity, distribution, and abundance of studied species across the studied stretch of the riverine flows, have been correlated with the biomonitoring and bioremediation of the riverine ecosystem, alongside citing an update on the recent literature concerning the strategies available for biomonitoring and bioremediation focusing mainly on the metal-contaminated water bodies using aquatic biota with a critical discussion on their main advantages and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams SM, Brown AM, Goede RW (1993) A quantitative health assessment index for rapid evaluation of fish condition in the field. Trans Am Fish Soc 122(1):63–73

    Article  Google Scholar 

  • Adedeji OB, Okerentugba PO, Okonko IO (2012) Use of molecular, biochemical and cellular biomarkers in monitoring environmental and aquatic pollution. Nat Sci 10:83–104

    Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer, Berlin

    Book  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals - concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  • Alvarez PJJ, Illman WA (2006) Bioremediation and natural attenuation. Environmental science and technology. Process fundamentals and mathematical models. Wiley, Hoboken, NJ

    Google Scholar 

  • Annon (2010) Water quality monitoring of five rivers viz. Shilabati, Rupnarayan, Subarnarekha, Dwarakeshwar and Kansai sanctioned by West Bengal Pollution Control Board (Principal Investigator S.K. Chakraborty)

    Google Scholar 

  • Annon (2014) Hydrobiological and geomorphological studies of Subarnarekha and Kansai river basins and their interfluves (Purulia, Bankura, Purba and Paschim Midnapore districts) with special reference to environmental management (sanctioned by West Bengal West Bengal Pollution Control Board, Kolkata, India; Principal Investigator, S.K. Chakraborty)

    Google Scholar 

  • APHA (2005) Standard method for the examination of water and waste water, 20th edn. American Public Health Association, Washington, DC, pp 1–541

    Google Scholar 

  • Ashraf M, Ozturk M, Ahmad MSA (2010) Toxins and their phytoremediation. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, New York

    Chapter  Google Scholar 

  • Aslan-Yılmaz A, OkuÅŸ E, Övez S (2004) Bacteriological indicators of anthropogenic impact prior to and during the recovery of water quality in an extremely polluted estuary, Golden Horn, Turkey. Mar Pollut Bull 49(11–12):951–958

    Article  PubMed  CAS  Google Scholar 

  • Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum in seawater: limitation by nitrogen and phosphorus. Biotechnol Bioeng 14:309–318

    Article  CAS  PubMed  Google Scholar 

  • Bai SR, Abrahim TE (2003) Studies on chromium (VI) adsorption–desorption using immobilized fungal biomass. Bioresour Technol 87:17–26

    Article  PubMed  Google Scholar 

  • Banerjee S, Kumar A, Maiti SK, Chowdhury A (2016) Seasonal variation in heavy metal contaminations in water and sediments of Jamshedpur stretch of Subarnarekha river, India. Environ Earth Sci 75(3):265

    Article  CAS  Google Scholar 

  • Banuelos GS, Ajwa HA, Terry N, Zayed A (1997) Phytoremediation of selenium laden soils: a new technology. J Soil Water Conserv 52(6):426–430

    Google Scholar 

  • Berti WR, Cunningham SD (2000) Phytostabilization of metals: phytoremediation of toxic metals using plants to clean up the environment. In: Raskin I, Ensley BD (eds) Phytoremediation of toxicmetals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Bharagava RN (2017) Environmental pollutants and their bioremediation approaches. CRC Press, Boca Raton

    Book  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120

    Article  CAS  Google Scholar 

  • Bhattacharya T, Bhattacharya J (1983) Community structure of soil oribatida as influenced by industrial water. Entom 8(4):337–347

    Google Scholar 

  • Bhattacharya N, Chakraborty SK (2001) Distributional pattern of some heavy metals in the structural components of two contrasting wetlands in the vicinity of a iron extraction factory of Midnapore District, West Bengal, India. In: Kumar A (ed) Ecology of polluted waters. Ashish Publishing Corporation, New Delhi, pp 287–294

    Google Scholar 

  • Bolan N, Park JH, Robinson B, Naidu R, Huh KY (2011) Phytostabilization: a green approach to contaminant containment. Adv Agron 112:145–204

    Article  CAS  Google Scholar 

  • Bose S, Rai V, Bhattacharya S, Chaudhuri P, Bhattacharyya AK (2011) Phytoremediation: a promising technology of bioremediation for the removal of heavy metal and organic pollutants from the soil. In: Golubev IA (ed) Handbook of phytoremediation. Environmental science. Engineering and technology. Nova Science, New York

    Google Scholar 

  • Bradshaw AD (1997) What do we mean by restoration? In: Urbanska KM, Webb NR, Edwards PJ (eds) Restoration ecology and sustainable development. Cambridge University Press, Cambridge, pp 8–14

    Google Scholar 

  • Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon-Valdez oil-spill. Nature 368:413–418

    Article  CAS  Google Scholar 

  • Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22:525–564

    Article  Google Scholar 

  • Chakrabarti A (2005) Sedimentary structures of tidal flats: a journey from coast to inner estuarine region of eastern India. J Earth Syst Sci 114(3):353–368

    Article  Google Scholar 

  • Chakraborty SK (2017) Ecological services on intertidal benthic fauna and the sustenance of coastal wetlands along the Midnapore (east) coast, West Bengal, India. In: Coastal wetlands: alteration and remediation. Springer, New York, pp 777–886

    Chapter  Google Scholar 

  • Chakraborty SK (2018) Bioinvasion and environmental perturbation: synergistic impact on coastal–mangrove ecosystems of West Bengal, India. In: Makowski C, Finkl C (eds) Impacts of invasive species on coastal environments: coast in crisis. Springer, New York, pp 171–245

    Google Scholar 

  • Chakraborty SK (2020a) Riverine ecology (volume 1): eco-functionality of the physical environment of the rivers. Springer, New York

    Google Scholar 

  • Chakraborty SK (2020b) Riverine ecology (volume 2): biodiversity conservation, conflicts and resolution. Springer, New York

    Google Scholar 

  • Chakraborty SK, Choudhury A (1992) Ecological studies on the zonation of brachyuran crabs in a virgin mangrove island of Sundarbans, India. J Mar Biol Assoc India 34(1 and 2):189–194

    Google Scholar 

  • Chakraborty SK, Choudhury A (1994) Community structure of macrobenthic polychaetes of intertidal region of Sagar Island, Hooghly estuary, Sundarbans, India. Trop Ecol 35(1):97–104

    Google Scholar 

  • Chakraborty SK, Giri S, Chakravarty G, Bhattacharya N (2009) Impact of eco-restoration on the biodiversity of Sundarbans mangrove ecosystem, India. Water Air Soil Pollut 9(3–4):303–320

    Article  Google Scholar 

  • Chandra AK, Chakravarty G, Chakraborty SK (2003) Polychaete diversity of Midnapore Coastal Belt, West Bengal, India. J Nat Conserv 15(2):95–108

    Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    Article  CAS  PubMed  Google Scholar 

  • Chapman D (1996) Water quality assessments—a guide to use of biota, sediments and water in environmental monitoring, 2nd edn. UNESCO, WHO and UNEP by E and FN Spon, London, pp 1–626

    Google Scholar 

  • Chatterjee S, Krishna AP, Sharma AP (2014) Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environ Earth Sci 71(1):357–374

    Article  Google Scholar 

  • Chen Y, Li XD, Shen ZG (2004) Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere 57(3):187–196

    Article  CAS  PubMed  Google Scholar 

  • Chiriboga L, Xie P, Yee H, Vigorita V, Zarou D, Zakim D, Diem M (1998) Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix. Biospectroscopy 4(1):47–53

    Article  CAS  PubMed  Google Scholar 

  • Clemens S (2001) Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation. Int J Occup Med Environ Health 14:235–216

    CAS  PubMed  Google Scholar 

  • Crane M, Handy RD, Garrod J, Owen R (2008) Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17(5):421

    Article  CAS  PubMed  Google Scholar 

  • Dalal A, Gupta S (2015) Rapid bio-assessment of Magura haor (floodplain wetland), Cachar District, Assam, India using aquatic insects. Curr World Environ 10(1):296

    Article  Google Scholar 

  • Dora MM, Roy NN (1987) Investigation of water quality of Subarnarekha river for irrigation. Indian J Environ Health 29(4):292–298

    CAS  Google Scholar 

  • Dudgeon D (2003) The contribution of scientific information to the conservation and management of freshwater biodiversity in tropical Asia. In: Aquatic biodiversity. Springer, Dordrecht, pp 295–314

    Chapter  Google Scholar 

  • Dutta HM, Adhikari S, Singh NK, Roy PK, Munshi JSD (1993) Histopathological changes induced by malathion in the liver of a freshwater catfish, Heteropneustes fossilis (Bloch). Bull Environ Contam Toxicol 51(6):895–900

    Article  CAS  PubMed  Google Scholar 

  • Dutta B, Baruah D, Biswas SP (2013) Biomonitoring of benthic macroinvertebrates of the tail race of Dikhow River, Assam, India. Dibrugarh University, Dibrugarh

    Google Scholar 

  • Dutta SM, Mustafi SB, Raha S, Chakraborty SK (2014) Assessment of thermal stress adaptation by monitoring Hsp70 and MnSOD in freshwater gastropod, Bellamya bengalensis (Lamark 1882). Environ Monit Assess 186:8961–8967

    Article  CAS  PubMed  Google Scholar 

  • Elizabeth KM, Anuradha TVR (2000) Biosorption of hexavalent chromium by non-pathogenic bacterial cell preparations. Indian J Microbiol 40:263–265

    Google Scholar 

  • Ezzouhri L, Castro E, Moya M, Espinola F, Lairini K (2009) Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. Afr J Microbiol Res 3(2):35–48

    CAS  Google Scholar 

  • Farombi EO, Adelowo OA, Ajimoko YR (2007) Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African cat fish (Clarias gariepinus) from Nigeria Ogun river. Int J Environ Res Publ Health 4(2):158–165

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulekar M, Singh A, Bhaduri AM (2009) Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr J Biotechnol 8:529–535. http://www.academicjournals.org/AJB

    CAS  Google Scholar 

  • Gerhardt A (1999) Recent trends in online biomonitoring for water quality control. In: Biomonitoring of polluted water: reviews on actual topics. Environmental research forum, vol 9. TTP Switzerland, Trasadingen, pp 95–118

    Google Scholar 

  • Geva P, Kahta R, Nakonechny F, Aronov S, Nisnevitch M (2016) Increased copper bioremediation ability of new transgenic and adapted Saccharomyces cerevisiae strains. Environ Sci Pollut Res 23(19):19613–19625

    Article  CAS  Google Scholar 

  • Giri S, Singh AK (2014) Risk assessment, statistical source identification and seasonal fluctuation of dissolved metals in the Subarnarekha River, India. J Hazard Mater 265:305–314

    Article  CAS  PubMed  Google Scholar 

  • Giri S, Pradhan P, Chakraborty SK (2008) Studies on hydrobiological status of Kansai and Dwarkeswar river in West Bengal, India. J Indian Fish Soc India 40(1):59–64

    Google Scholar 

  • Giri S, Singh AK, Tewary BK (2013) Source and distribution of metals in bed sediments of Subarnarekha River, India. Environ Earth Sci 70(7):3381–3392

    Article  CAS  Google Scholar 

  • Gola D, Chauhan N, Malik A, Shaikh ZA, Sreekrishnan TR (2017) Bioremediation approach for handling multiple metal contamination. Handbook of metal-microbe interactions and bioremediation. CRC Press, Boca Raton, FL, pp 471–491

    Book  Google Scholar 

  • Guo Q, Ma K, Yang L, Cai Q, He K (2010) A comparative study of the impact of species composition on a freshwater phytoplankton community using two contrasting biotic indices. Ecol Indic 10:296–302

    Article  Google Scholar 

  • Gupta K, Nandy A, Banerjee K, Talapatra SN (2015) Biomonitoring of river Ganga bank by identifying mollusc species as an indicator. Int Lett Nat Sci 37:71

    Google Scholar 

  • Hajialigo S, Taher MA, Malekpour A (2006) A new method for the selective removal of cadmium and zinc ions from aqueous solution by modified clinoptilolite. Adv Sci Technol 24:487–496

    Google Scholar 

  • Hakanson L (1980) Ecological risk index for aquatic pollution control: a sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Hamba Y, Tamiru M (2016) Mycoremediation of heavy metals and hydrocarbons contaminated environment. Asian J Nat Appl Sci 5:2

    Google Scholar 

  • Harrison ET, Norris RH, Wilkinson SN (2008) Can an indicator of river health be related to assessments from a catchment-scale sediment model? Hydrobiologia 600(1):49–64

    Article  Google Scholar 

  • Hawkes JS (1997) Heavy metals. J Chem Educ 74:1369–1374

    Article  Google Scholar 

  • Hellawell JM (ed) (2012) Biological indicators of freshwater pollution and environmental management. Springer, Berlin

    Google Scholar 

  • Higgs E (2003) Nature by design: people, natural process, and ecological restoration. MIT Press, Cambridge

    Book  Google Scholar 

  • Holland AF, Polgar TT (1976) Seasonal changes in the structure of an intertidal community. Mar Boil 37:341–346

    Article  Google Scholar 

  • Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28:367–376

    CAS  PubMed  Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelating in lead phytoextraction. Environ Sci Technol 31:800–805. https://doi.org/10.1021/es9604828

    Article  CAS  Google Scholar 

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8:921–928

    CAS  Google Scholar 

  • Jan AT, Azam M, Ali A, Haq QMR (2014) Prospects for exploiting bacteria for bioremediation of metal pollution. Crit Rev Environ Sci Technol 44:519–560. Tailor and Francis Publication

    Article  CAS  Google Scholar 

  • Jiang JG (2006) Development of a new biotic index to assess freshwater pollution. Environ Pollut 139:306–317

    Article  CAS  PubMed  Google Scholar 

  • Jiang JG, Shan YF (2003) Development of biotic index using the correlation of protozoan communities with chemical water quality. J Mar Freshw Res 37:777–792

    Article  CAS  Google Scholar 

  • Jonnalagadda SB, Mhere G (2001) Water quality of the Odzi River in the eastern highlands of Zimbabwe. Water Res 35(10):2371–2376

    Article  CAS  PubMed  Google Scholar 

  • Kamala CT, Balaram V, Satyanarayanan M, Kumar AK, Subramanyam KSV (2015) Biomonitoring of airborne platinum group elements in urban traffic police officers. Arch Environ Contam Toxicol 68(3):421–431

    Article  CAS  PubMed  Google Scholar 

  • Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70:95–104

    Article  CAS  Google Scholar 

  • Karim AA, Panda RB (2014) Assessment of water quality of Subarnarekha river in Balasore region, Odisha, India. Curr World Environ 9(2):437

    Article  Google Scholar 

  • Karr JR, Chu EW (1999) Restoring life in running waters: better biological monitoring. Island Press, Washington, DC

    Google Scholar 

  • Kennish MJ (2017) Practical handbook of estuarine and marine pollution. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Khalua RK, Chakravorty GC, Chakraborty SK (2008) Community structure of macrobenthic molluscs of three contrasting intertidal belts of Midnapore coast, West Bengal, India. Zool Res Hum Welf 6:75–82

    Google Scholar 

  • Krebs CJ (1985) Ecology: the experimental analysis of distribution and abundance. Harper and Row, New York

    Google Scholar 

  • Lal BB, Diem M, Polavarapu PL, Oboodi M, Freedman TB, Nafie LA (1982) Vibrational circular dichroism in amino acids and peptides. 5. Carbon-hydrogen, stretching vibrational circular dichroism and fixed partial charge calculations for deuterated isotopomers of alanine. J Am Chem Soc 104(12):3336–3342

    Article  CAS  Google Scholar 

  • Lange CR, Lange SR (1997) Biomonitoring. Water Environ Res 69:900–915

    Article  CAS  Google Scholar 

  • Li L, Zheng B, Liu L (2010) Biomonitoring and bioindicators used for river ecosystems: definitions, approaches and trends. Procedia Environ Sci 2:1510–1524

    Article  Google Scholar 

  • Lorestani B, Cheraghi M, Yousefi N (2012) The potential of phytoremediation using hyperaccumulator plants: a case study at a lead- zinc mine site. Int J Phytoremediation 14:786–795

    Article  CAS  PubMed  Google Scholar 

  • Mahmood Q, Rashid A, Ahmad SS, Azim MR, Bilal M (2012) Current status of toxic metals addition to environment and its consequences. In: The plant family Brassicaceae. Springer, Dordrecht, pp 35–69

    Chapter  Google Scholar 

  • Maiti SK, Chowdhury A (2013) Effects of anthropogenic pollution on mangrove biodiversity: a review. J Environ Prot 4(12):1428

    Article  Google Scholar 

  • Maiti Dutta S, Banerjee Mustafi S, Raha S, Chakraborty SK (2014) Assessment of thermal stress adaptation by monitoring Hsp70 and MnSOD in the freshwater gastropod, Bellamya bengalensis (Lamark, 1882). Environ Monit Assess 186(12):8961–8967

    Article  CAS  Google Scholar 

  • Maiti Dutta S, Banerjee S, Mustafi RS, Chakraborty SK (2018) Biomonitoring role of some cellular markers during heat stress-induced changes in highly representative fresh water mollusc, Bellamya bengalensis: implication in climate change and biological adaptation. Ecotoxicol Environ Saf 157:482–490

    Article  CAS  Google Scholar 

  • Mandal SM, Mondal KC, Dey S, Pati BR (2007) Arsenic biosorption by mucilaginous seeds of Hyptissuaveolens (L.) Poit. J Sci Ind Res 66:577–581

    CAS  Google Scholar 

  • Mason CF (1996) Biology of freshwater pollution, 3rd edn. Longman, London

    Google Scholar 

  • Matan N, Rimkeeree H, Mawson AJ, Chompreeda P, Haruthaithanasan V, Parker M (2006) Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. Int J Food Microbiol 107(2):180–185

    Article  CAS  PubMed  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Phytoremediation. Transformation and control of contaminants. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Menhinick EF (1964) A composition of some species individuals’ diversity indices applied to samples of field insects. Ecology 45:859–861

    Article  Google Scholar 

  • Mishra A, Dutta Munshi JS, Singh M (1994) Heavy metal pollution of river Subarnarekha in Bihar, part I: industrial effluents. J Fresh Water Bio 6(3):197–199

    Google Scholar 

  • Mishra SS, Acharjee SK, Chakraborty SK (2009) Development of tools for assessing conservation categories of siluroid fishes of fresh water and brackish water wetlands of South West Bengal, India. Environ Biol Fish 84(4):395–407

    Article  Google Scholar 

  • Mishra S, Singh SN, Pande V (2014) Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition. Bioresour Technol 164:299–308

    Article  CAS  PubMed  Google Scholar 

  • Mohiuddin KM, Zakir HM, Otomo K, Sharmin S, Shikazono N (2010) Geochemical distribution of trace metal pollutants in water and sediments of downstream of an urban river. Int J Environ Sci Technol 79:778–783

    Google Scholar 

  • Mukhopadhyay SC (1980) Geomorphology of the Subarnarekha Basin: the Chota Nagpur plateau, Eastern India. University of Burdwan, Bardhaman

    Google Scholar 

  • Muller G (1979) Schwermetalle in den sediments des Rheins-Veranderugen seitt 1971. Ther Umsch 79:778–783

    Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: A review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  • Nordberg GF, Fowler BA, Nordberg M (2014) Handbook on the toxicology of metals, 4th edn. Academic Press, Edinburgh

    Google Scholar 

  • Odum EP (1971) Fundamentals of ecology. W.B. Sundarbans, Philadelphia and Landan

    Google Scholar 

  • Oertel N, Salanki J (2003) Biomonitoring and bioindicators in aquatic ecosystems. In: Ambasht NK (ed) Modern trends in applied aquatic ecology. Kluwer Academic/Plenum Publishers, New York, pp 219–246

    Chapter  Google Scholar 

  • Olguín EJ, Sánchez-Galván G (2012) Heavy metal removal in phytofi ltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotechnol 30:3–8

    Article  CAS  Google Scholar 

  • Pakhira H, Chakraborty SK (2016) Diversity and distribution of Molluscs in Subarnarekha River, India with emphasis on identifying indicator species. Int J Curr Res 8(11):42162–42164

    Google Scholar 

  • Pakhira H, Chakraborty SK (2018) Community structure of benthic mollusks in contrasting ecozones of a transboundary river in India: an ecological interpretation. Int J Life Sci Res 6(3):233–238

    Google Scholar 

  • Panda UC, Rath P, Sahu KC, Majumdar S, Sundaray SK (2006) Environmental quantification of heavy metals in the Subarnarekha, estuary and near-shore environment, East Coast of India. Asian J Water Environ Pollut 3(2):85–92

    CAS  Google Scholar 

  • Paria K, Chakraborty SK (2019) Eco-potential of Aspergillus penicillioides (F12): bioremediation and antibacterial activity. SN Appl Sci 1(11):1515

    Article  CAS  Google Scholar 

  • Paria K, Mandal SM, Chakroborty SK (2018) Simultaneous removal of cd (II) and Pb (II) using a fungal isolate, Aspergillus penicillioides (F12) from Subarnarekha estuary. Int J Environ Res 12(1):77–86

    Article  CAS  Google Scholar 

  • Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung JW (2011) Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J Hazard Mater 185:549–574

    Article  CAS  PubMed  Google Scholar 

  • Parker FS (1971) Application of infrared spectroscopy in biochemistry, biology and medicine. Plenum, New York

    Book  Google Scholar 

  • Pielou EG (1966) The Measurement of diversity in different types of biological collection. J Theor Biol 13:131–144

    Article  Google Scholar 

  • Pradhan P, Mishra SS, Majumder R, Chakraborty SK (2003) Environmental monitoring with special emphasis on bio-monitoring: a prerequisite for sustainable environmental management: aa case study in Darwakeswar river of South West Bengal, India. In: Kumar A, Bhora C, Sing LK (eds) Environment pollution and management. Ashish Publishing Corporation, New Delhi, pp 87–103

    Google Scholar 

  • Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants and biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:275–321

    Article  Google Scholar 

  • Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromium and nickel absorption from polluted soil. Int J Environ Res 5:961–970

    CAS  Google Scholar 

  • Ramakrishna DA (2007) Handbook on Indian freshwater molluscs. Zoological Survey of India, Kolkata, pp 1–399

    Google Scholar 

  • Rashed MN (2001) Cadmium and lead levels in fish (Tilapia niloticus) tissues as biological indicator for lake water pollution. Environ Monit Assess 68:75–89

    Article  CAS  PubMed  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  PubMed  Google Scholar 

  • Resh VH, Norris RH, Barbour MT (1995) Design and implementation of rapid assessment approaches for water resource monitoring using benthic macroinvertebrates. Aust J Ecol 20(1):108–121

    Article  Google Scholar 

  • Röling WFM, Milner MG, Jones DM, Fratepietro F, Swannell RPJ, Daniel F, Head IM (2004) Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 70(5):2603–2613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenberg DM (1993) In: Resh VH (ed) Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York

    Google Scholar 

  • Rosenberg DM (1998) A national aquatic ecosystem healgth program for Canada: we should go against the flow. Bull Entomol Soc Can 30(4):144–152

    Google Scholar 

  • Sanyal P, Bhattacharya N, Chakraborty SK (2015) Biomonitoring of four contrasting wetlands of Kolkata, West Bengal based on zooplankton eco-dynamics and biotic indices. J Environ Prot 6(7):683–699

    Article  Google Scholar 

  • Sanyal P, Chakraborty SK, Ghosh PB (2014) Phytoremediation of sewage-fed wetlands of East-Kolkata, India: a case study. Int Res J Environ Sci 4(1):80–89

    Google Scholar 

  • Sekara A, Poniedzialeek M, Ciura J, Jedrszczyk E (2005) Cadmium and lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Pol J Environ Stud 14:509–516

    CAS  Google Scholar 

  • Senapati NK, Sahu KC (1996) Heavy metal distribution in Subarnarekha River East Coast of India. Indian J Mar Sci 25:109–114

    CAS  Google Scholar 

  • Shannon CE, Weaner W (1949) The mathematical theory of communications. Illionois University Press, Urbana

    Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2010) Science and technology for water purification in the coming decades. In: Nanoscience and technology: a collection of reviews from nature journals. World Scientific, Singapore, pp 337–346

    Google Scholar 

  • Sharma KK, Chowdhary S (2011) Macroinvertebrate assemblages as biological indicators of pollution in a central Himalayan River, Tawi (JK). Int J Biodivers Conserv 3(5):167–174

    CAS  Google Scholar 

  • Sharma S, Sharma P (2010) Biomonitoring of aquatic ecosystem with concept and procedures particular reference to aquatic macro invertebrates. J Am Sci 6:1246–1255

    Google Scholar 

  • Sharma S, Singh DN (2015) Characterization of sediments for sustainable development: state of the art. Mar Georesour Geotechnol 33(5):447–465

    Article  Google Scholar 

  • Sharma KK, Kour S, Antal N (2015) Diversity of zooplankton and macrobenthic invertebrates of two perennial ponds in Jammu region. J Glob Biosci 4(2):1382–1392

    Google Scholar 

  • Silverstein RM, Bassler GC, Morril TC (1991) Spectrometric identification of organic compounds. John Wiley & Sons, Oxford

    Google Scholar 

  • Simpson EH (1949) Measurement of biodiversity. Nature 163:688

    Article  Google Scholar 

  • Singh AK, Giri S (2018) Subarnarekha river: the gold streak of India. In: The Indian rivers. Springer, Singapore, pp 273–285

    Chapter  Google Scholar 

  • Singh H, Maheshwari JK (1993) Phytotherapy for diphtheria by the Bhoxas of Nainital district, Uttar Pradesh, India. Ethnobotany 5:63–65

    Google Scholar 

  • Sklar L, Dietrich WE (1998) River longitudinal profiles and bedrock incision models: stream power and the influence of sediment supply. In: Rivers over rock: fluvial processes in bedrock channels, vol 107, Boca Raton, FL, pp 237–260

    Google Scholar 

  • Smith RL (1996) Ecology and field biology, 5th edn. Addison-Wesley Educational Publishers, New York, p 740

    Google Scholar 

  • Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J N Am Benthol Soc 29(1):344–358

    Article  Google Scholar 

  • Subba Rao NB (1989) Freshwater Molluscs of India, vol XXIII. Handbook Zoological Survey of India, Calcutta, pp 1–289

    Google Scholar 

  • Supian Z, Ikhwanuddin AM (2002) Population dynamics of freshwater molluscs (gastropod: Melanoides tuberculata) in Crocker Range Park, Sabah. ASEAN Rev Biodivers Environ Conserv (ARBEC) 11:1–9

    Article  Google Scholar 

  • Suthar S, Nema AK, Chabukdhara M, Gupta SK (2009) Assessment of metals in water and sediments of Hindon River, India: impact of industrial and urban discharges. J Hazard Mater 171(1–3):1088–1095

    Article  CAS  PubMed  Google Scholar 

  • Swannell RPJ, Croft BC, Grant AL, Lee K (1995) Evaluation of bioremediation agents in beach microcosms. Spill Sci Technol Bull 2:151–159

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavymmetal toxicity and the environment. In: Molecular, clinical and environmental toxicology. Springer, Basel, pp 133–164

    Chapter  Google Scholar 

  • Tiwari S, Dixit S, Verma N (2007) An effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Eichhornia crassipes. Environ Monit Assess 129(1–3):253–256

    Article  CAS  PubMed  Google Scholar 

  • Tlustos P, Szakova J, Hruby J, Hartman I, Najmanova J, Nedelnik J, Pavlikova D, Batysta M (2006) Removal of As, Cd, Pb, and Zn from contaminated soil by high biomass producing plants. Plants Soil Environ 52:413–423

    Article  CAS  Google Scholar 

  • Trivedy RK, Goel PK (1984) Chemical and biological methods for water pollution studies. Environmental Publications, Karad, pp 1–215

    Google Scholar 

  • USEPA (2001) Best management practices for lead at outdoor shooting ranges. EPA-902-B01-001. USEPA, Washington, DC

    Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • Venosa AD, Suidan M, Wrenn T, Strohmeier BA, Haines KL, Eberhart JR, King BL, Holder E (1996) Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ Sci Technol 30:1764–1775

    Article  CAS  Google Scholar 

  • Verkleij JAC, Prast JE (1990) Cadmium tolerance and co-tolerance in Silene vulgaris. New Phytol 111:637–645

    Article  Google Scholar 

  • Vesilind PA, Peirce JJ, Weiner RF (2013) Environmental pollution and control. Elsevier, Amsterdam

    Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226

    Article  PubMed  CAS  Google Scholar 

  • Wang WS, Shan XQ, Wen B, Zhang SZ (2003) Relationship between the extractable metals from soils and metals taken up by maize roots and shoots. Chemosphere 53:523–530. https://doi.org/10.1016/S0045-6535(03)00518-6

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Feng X, Anderson CWN, Xing Y, Shang L (2012) Remediation of mercury contaminated sites – a review. J Hazard Mater 221–222:1–18

    PubMed  Google Scholar 

  • Whipple KX, Tucker GE (1999) Dynamics of the stream power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J Geophys Res Solid Earth 104(B8):17661–17674

    Article  Google Scholar 

  • Whittaker RH (1965) Dominance and diversity in land plant communities. Science 147:250–260

    Article  CAS  PubMed  Google Scholar 

  • Wilhm JL, Dorris TC (1966) Species diversity of benthic macroinvertebrates in a stream receiving domestic and oil refinery effluents. Am Midland Nat 76:427–449

    Article  Google Scholar 

  • Wilfred F. M. Röling, Michael G. Milner, D. Martin Jones, Francesco Fratepietro, Richard P. J. Swannell, Fabien Daniel,and Ian M. Head 2004 Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Applied and Environmental Microbiology 70(5):2603–2613

    Google Scholar 

  • Willscher S, Mirgorodsky D, Jablonski L, Ollivier D, Merten D, Büchel G, Wittig J, Werner P (2013) Field scale phytoremediation experiments on a heavy metal and uranium contaminated site, and further utilization of the plant residues. Hydrometallurgy 131–132:46–53

    Article  CAS  Google Scholar 

  • Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc Lond B Biol Sci 365(1549):2093–2106

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu LH, Luo Y, Song J (2007) Manipulating soil metal availability using EDTA and low-molecular-weight organic acids. In: Willey N (ed) Methods in biotechnology: phytoremediation. Methods and reviews. Humana, Mahwah, NJ

    Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Ecology

    Google Scholar 

  • Zhang Y, Sillanpaa M, Li C, Qu B, Kang S (2015) River water quality across the Himalayan region: element concentrations in headwaters of Yarlung Tsangbo, Indus and Ganges River. Environ Earth Sci 73:4151–4163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the West Bengal Pollution Control Board for financial support. Special thanks are due to Dr. Subrata Jana, Assistant Professor of Geography for helping the preparation of location maps. The library and laboratory facilities provided by the Vidyasagar University, Midnapore, West Bengal, India is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, S.K., Pakhira, H., Paria, K. (2021). Biomonitoring and Bioremediation of a Transboundary River in India: Functional Roles of Benthic Mollusks and Fungi. In: Shit, P.K., Adhikary, P.P., Sengupta, D. (eds) Spatial Modeling and Assessment of Environmental Contaminants. Environmental Challenges and Solutions. Springer, Cham. https://doi.org/10.1007/978-3-030-63422-3_30

Download citation

Publish with us

Policies and ethics