Skip to main content

Synthesis of the Centered Bithreshold Neural Network Classifier

  • Conference paper
  • First Online:
Advances in Intelligent Systems and Computing V (CSIT 2020)

Abstract

The paper deals with the issues concerning the application of bithreshold-like neural units in the solving of the classification tasks. The fully connected 2-layer feedforward network architecture with the hidden layer consisting of bithreshold neurons is considered in the paper. We design the neural network multicategory classifier based on such an architecture. The upper bound is given on the size of the bithreshold network, which is capable to recognize an arbitrary partition of the given finite set of patterns into a predefined number of classes. The synthesis algorithm is proposed for such neural networks. We also introduce the model of centered bithreshold neuron whose two boundary surfaces get closer as far as the distance to the center of the neuron increases, which is often more convenient in the design of multicategory classifiers. The synthesis algorithm is described for neural network classifier whose hidden layer consists of centered bithreshold neurons. For both type of networks, we give simulation results of the classifier performance on the real data sets and discuss the influence of algorithm parameters on the process of synthesis, quality of the network performance and the representational capacity of classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Izonin, I., Kryvinska, N., Tkachenko, R., Zub, K., Vitynskyi, P.: An extended-input GRNN and its application. In: Shakshuki, E., Yasar, A., Malik, H. (eds.) Procedia Computer Science, vol. 160, pp. 578–583. Elsevier B.V. (2019). https://doi.org/10.1016/j.procs.2019.11.044

  2. Geche, F., Kotsovsky, V., Batyuk, A., Geche, S., Vashkeba, M.: Synthesis of time series forecasting scheme based on forecasting models system. CEUR Workshop Proc. 1356, 121–136 (2015)

    Google Scholar 

  3. Teslyuk, T., Tsmots, I., Teslyuk, V., Medykovskyy, M., Opotyak, Y.: Architecture and models for system-level computer-aided design of the management system of energy efficiency of technological processes at the enterprise. In: Shakhovska, N., Stepashko, V. (eds.) CSIT 2017. AISC, vol. 689, pp. 538–557. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70581-1_38

    Chapter  Google Scholar 

  4. Kazarian, A., Teslyuk, V., Tsmots, I., Tykhan, M.: Implementation of the face recognition module for the “smart” home using remote server. In: Shakhovska, N., Medykovskyy, M.O. (eds.) CSIT 2018. AISC, vol. 871, pp. 17–27. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01069-0_2

    Chapter  Google Scholar 

  5. Kotsovsky, V., Geche, F., Batyuk, A.: Bithreshold neural network classifier. In: 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies, CSIT 2020, in press (2020)

    Google Scholar 

  6. Lupei, M., Mitsa, A., Repariuk, V., Sharkan, V.: Identication of authorship of Ukrainian-language texts of journalistic style using neural networks. Eastern-Euro. J. Enerprise Technol. 1(2(103)), 30–36 (2020). https://doi.org/10.15587/1729-4061.2020.195041

  7. Mukalov, P., Zelinskyi, O., Levkovych, R., Tarnavskyi, P., Pylypm, A., Shakhovska, N.: Development of system for auto-tagging articles, based on neural network. CEUR Workshop Proc. 2362, 106–115 (2019)

    Google Scholar 

  8. Kazarian, A., Teslyuk, V.: Optimization of neural network structure for smart house systems. In: 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering, (UKRCON), pp. 562–565 (2019). https://doi.org/10.1109/UKRCON.2019.8879772

  9. Tsmots, I., Tsymbal, Y., Skorokhoda, O., Tkachenko, R.: Neural-like methods and hardware structures for real-time data encryption and decryption. In: 2019 IEEE 14th International Conference on Computer Sciences and Information Technologies, CSIT 2019, pp. 248–253. Lviv (2019). https://doi.org/10.1109/STC-CSIT.2019.8929809

  10. Izonin, I., Tkachenko, R., Kryvinska, N., Zub, K., Mishchuk, O., Lisovych, T.: Recovery of incomplete IoT sensed data using high-performance extended-input neural-like structure. In Shakshuki, E., Yasar, A., Malik, H. (eds.) Procedia Computer Science, vol. 160, pp. 521–526. Elsevier B.V. (2019). https://doi.org/10.1016/j.procs.2019.11.054

  11. Tkachenko, R., Izonin, I., Kryvinska, N., Dronyuk, I., Zub, K.: An approach towards increasing prediction accuracy for the recovery of missing IoT data based on the GRNN-SGTM ensemble. Sensors, 20(9), 2625 (2020). https://doi.org/10.3390/s20092625

  12. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, Upper Saddle River (2009)

    Google Scholar 

  13. Anthony, M.: Discrete Mathematics of Neural Networks: Selected Topics. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  14. Haring, D.: Multiple threshold perceptron. Pattern Recognition EC-15, 45–65 (1965)

    Google Scholar 

  15. Kotsovsky, V., Geche, F., Batyuk, A.: On the computational complexity of learning bithreshold neural units and networks. In: Lytvynenko, V., Babichev, S., Wójcik, W., Vynokurova, O., Vyshemyrskaya, S., Radetskaya, S. (eds.) ISDMCI 2019. AISC, vol. 1020, pp. 189–202. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-26474-1_14

    Chapter  Google Scholar 

  16. Takiyama, R.: The separating capacity of multithreshold threshold element. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-7(1), 112–116 (1985)

    Google Scholar 

  17. Olafsson, S., Abu-Mostafa, Y.S.: The capacity of multilevel threshold function. IEEE Trans. Pattern Anal. Mach. Intell. 10(2), 277–281 (1988)

    Article  Google Scholar 

  18. Kotsovsky, V., Batyuk, A., Mykoriak, I.: The computation power and capacity of bithreshold neurons. In: 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies, CSIT 2020, in press (2020)

    Google Scholar 

  19. Tkachenko, R., Izonin, I.: Model and principles for the implementation of neural-like structures based on geometric data transformations. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) ICCSEEA 2018. AISC, vol. 754, pp. 578–587. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91008-6_58

    Chapter  Google Scholar 

  20. Tsmots, I., Teslyuk, V., Teslyuk, T., Ihnatyev, I.: Basic components of neuronetworks with parallel vertical group data real-time processing. In: Shakhovska, N., Stepashko, V. (eds.) CSIT 2017. AISC, vol. 689, pp. 558–576. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70581-1_39

    Chapter  Google Scholar 

  21. Kotsovsky, V., Geche, F., Batyuk, A.: Artificial complex neurons with half-plane-like and angle-like activation function. In: 10th International Conference on Computer Sciences and Information Technologies, CSIT 2015, pp. 57–59. Lviv (2015)

    Google Scholar 

  22. Polishchuk, V.: Fuzzy method for evaluating commercial projects of different origin. J. Autom. Inf. Sci. 50(5), 60–73 (2018). https://doi.org/10.1615/JAutomatInfScien.v50.i5.60

    Article  Google Scholar 

  23. Baum, E.B.: On the capabilities of multilayer perceptrons. J. Complexity 4(3), 193–215 (1988). https://doi.org/10.1016/0885-064X(88)90020-9

    Article  MathSciNet  MATH  Google Scholar 

  24. Deolalikar, V.: A two-layer paradigm capable of forming arbitrary decision regions in input space. IEEE Trans. Neural Netw. 13(1), 15–21 (2002)

    Article  Google Scholar 

  25. Kotsovsky, V., Batyuk, A.: Representational capabilities and learning of bithreshold neural networks. In: Babichev, S., Lytvynenko, V., Wójcik, W., Vyshemyrskaya, S. (eds.) ISDMCI 2020. AISC, vol. 1246, pp. 499–514. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-54215-3_32

    Chapter  Google Scholar 

  26. Geche, F., Kotsovsky, V., Batyuk, A.: Synthesis of the integer neural elements. In: 10th International Conference on Computer Sciences and Information Technologies, CSIT 2015, pp. 63–66. Lviv (2015). https://doi.org/10.1109/STC-CSIT.2015.7325432

  27. Dua, D., Graff, C.: UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. University of California, School of Information and Computer Science, Irvine, CA (2019)

  28. Polishchuk, V.: Technology to improve the safety of choosing alter-natives by groups of goals. J. Autom. Inf. Sci. 51(9), 66–76 (2019). https://doi.org/10.1615/JAutomatInfScien.v51.i9.60

    Article  Google Scholar 

  29. Kotsovsky, V., Geche, F., Batyuk, A.: Finite generalization of the offline spectral learning. In: 2018 IEEE 2nd International Conference on Data Stream Mining and Processing, DSMP 2018, pp. 356–360. Lviv (2018). https://doi.org/10.1109/DSMP.2018.8478584

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladyslav Kotsovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kotsovsky, V., Geche, F., Batyuk, A. (2021). Synthesis of the Centered Bithreshold Neural Network Classifier. In: Shakhovska, N., Medykovskyy, M.O. (eds) Advances in Intelligent Systems and Computing V. CSIT 2020. Advances in Intelligent Systems and Computing, vol 1293. Springer, Cham. https://doi.org/10.1007/978-3-030-63270-0_15

Download citation

Publish with us

Policies and ethics