Skip to main content

Representational Capabilities and Learning of Bithreshold Neural Networks

  • Conference paper
  • First Online:
Lecture Notes in Computational Intelligence and Decision Making (ISDMCI 2020)

Abstract

The paper deals with questions related to the ability of real-weighted bithreshold neurons and neural networks to solve the classification tasks. We study how many partitions of a finite set in n-dimensional vector space can be computed by using bithreshold neurons. The upper and lower bounds on the number of bithreshold dichotomies are proved. Our main theoretical result states that there exists \(\mathrm {\Theta }\left( m^{n+1}\right) \) bithreshold dichotomies of the set of m points in general position in n-dimensional space. We also estimate the Vapnik-Chervonenkis dimension of the class of bithreshold neurons. The problem of the synthesis of 2-layer bithreshold neural network for binary classification is considered. We demonstrate that an arbitrary dichotomy of m points in general position in n-dimensional space can be realized by 2-layer neural network containing at most \(\left\lceil m/(2n)\right\rceil \) bithreshold neurons in hidden layer and a single output threshold neuron. The learning algorithm with computational complexity \(O\left( m{{n}^{2}}+{{m}^{2}} \right) \) is proposed for such networks. We give simulation results of the network performance on real data sets and discuss the influence of algorithm parameters on the quality of learning and the representational capabilities of bithreshold networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anthony, M.: Discrete Mathematics of Neural Networks: Selected Topics. SIAM, Philadelphia (2001). https://doi.org/10.1137/1.9780898718539

    Book  MATH  Google Scholar 

  2. Babichev, S., Taif, M.A., Lytvynenko, V.: Inductive model of data clustering based on the agglomerative hierarchical algorithm. In: Proceedings of the 2016 IEEE 1st International Conference on Data Stream Mining and Processing, pp. 19–22 (2016)

    Google Scholar 

  3. Baum, E.B.: On the capabilities of multilayer perceptrons. J. Complex. 4(3), 193–215 (1988). https://doi.org/10.1016/0885-064X(88)90020-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Blum, A., Rives, R.: Training a 3-node neural network is NP-complete. Neural Netw. 5(1), 117–127 (1992). https://doi.org/10.1016/S0893-6080(05)80010-3

    Article  Google Scholar 

  5. Cover, T.: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electron. Comput. EC–14, 326–334 (1965)

    Article  Google Scholar 

  6. Deolalikar, V.: A two-layer paradigm capable of forming arbitrary decision regions in input space. IEEE Trans. Neural Netw. 13(1), 15–21 (2002). https://doi.org/10.1109/72.977261

    Article  Google Scholar 

  7. Geche, F., Kotsovsky, V., Batyuk, A.: Synthesis of the integer neural elements. In: 10th International Conference on Computer Sciences and Information Technologies, CSIT 2015, Lviv, pp. 63–66 (2015). https://doi.org/10.1109/STC-CSIT.2015.7325432

  8. Geche, F., Kotsovsky, V., Batyuk, A., Geche, S., Vashkeba, M.: Synthesis of time series forecasting scheme based on forecasting models system. In: CEUR Workshop Proceedings, vol. 1356, pp. 121–136 (2015)

    Google Scholar 

  9. Géron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd edn. O’Reilly Media Inc., Sebastopol (2019)

    Google Scholar 

  10. Haring, D.: Multiple threshold perceptron. IEEE Trans. Electron. Comput. EC–15, 45–65 (1965)

    Google Scholar 

  11. Izonin, I., Kryvinska, N., Tkachenko, R., Zub, K., Vitynskyi, P.: An extended-input GRNN and its application. Procedia Comput. Sci. 160, 578–583 (2019)

    Article  Google Scholar 

  12. Izonin, I., Tkachenko, R., Kryvinska, N., Zub, K., Mishchuk, O., Lisovych, T.: Recovery of incomplete IoT sensed data using high-performance extended-input neural-like structure. Procedia Comput. Sci. 160, 521–526 (2019). https://doi.org/10.1016/j.procs.2019.11.054

    Article  Google Scholar 

  13. Kazarian, A., Teslyuk, V., Tsmots, I., Tykhan, M.: Implementation of the face recognition module for the “smart” home using remote server. In: Shakhovska, N., Medykovskyy, M. (eds.) Advances in Intelligent Systems and Computing III. CSIT 2018. Advances in Intelligent Systems and Computing, vol. 871, pp. 17–27. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01069-0_2

  14. Kotsovsky, V., Geche, F., Batyuk, A.: Artificial complex neurons with half-plane-like and angle-like activation function. In: 10th International Conference on Computer Sciences and Information Technologies, CSIT 2015, Lviv, pp. 57–59 (2015). https://doi.org/10.1109/STC-CSIT.2015.7325430

  15. Kotsovsky, V., Geche, F., Batyuk, A.: Finite generalization of the offline spectral learning. In: 2018 IEEE 2nd International Conference on Data Stream Mining and Processing, DSMP 2018, Lviv, pp. 356–360 (2018). https://doi.org/10.1109/DSMP.2018.8478584

  16. Kotsovsky, V., Geche, F., Batyuk, A.: On the computational complexity of learning bithreshold neural units and networks. In: Lytvynenko, V., et al. (eds.) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2019. Advances in Intelligent Systems and Computing, vol. 1020, pp. 189–202. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-26474-1_14

  17. Lupei, M., Mitsa, A., Repariuk, V., Sharkan, V.: Identification of authorship of Ukrainian-language texts of journalistic style using neural networks. East.-Eur. J. Enterp. Technol. 1(2(103)), 30–36 (2020). https://doi.org/10.15587/1729-4061.2020.195041

    Article  Google Scholar 

  18. Okrenets, S., Fefelov, A., Lytvynenko, V., Osypenko, V., Korobchynskyi, M., Voronenko, M.: Synthesis and learning of fuzzy neural networks for solving forecasting problems. In: 2017 IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2017, vol. 2, pp. 1088–1093 (2017). https://doi.org/10.1109/IDAACS.2017.8095253

  19. Olafsson, S., Abu-Mostafa, Y.S.: The capacity of multilevel threshold function. IEEE Trans. Pattern Anal. Mach. Intell. 10(2), 277–281 (1988)

    Article  Google Scholar 

  20. Polishchuk, V.: Technology to improve the safety of choosing alternatives by groups of goals. J. Autom. Inf. Sci. 51(9), 66–76 (2019). https://doi.org/10.1615/JAutomatInfScien.v51.i9.60

    Article  Google Scholar 

  21. Takiyama, R.: The separating capacity of multithreshold threshold element. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–7(1), 112–116 (1985)

    Article  Google Scholar 

  22. Teslyuk, T., Tsmots, I., Teslyuk, V., Medykovskyy, M., Opotyak, Y.: Architecture and models for system-level computer-aided design of the management system of energy efficiency of technological processes at the enterprise. In: Shakhovska, N., Stepashko, V. (eds.) Advances in Intelligent Systems and Computing II. CSIT 2017. Advances in Intelligent Systems and Computing, vol. 689, pp. 538–557. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70581-1_38

  23. Tkachenko, R., Izonin, I.: Model and principles for the implementation of neural-like structures based on geometric data transformations. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) Advances in Intelligent Systems and Computing, vol. 754, pp. 578–587. Springer, Cham (2019)

    Google Scholar 

  24. Tsmots, I., Skorokhoda, O., Tesliuk, T., Rabyk, V.: Designing features of hardware and software tools for intelligent processing of intensive data streams. In: 2016 IEEE 1st International Conference on Data Stream Mining and Processing, DSMP 2016, Lviv, pp. 332–335 (2016)

    Google Scholar 

  25. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  26. Vynokurova, O., Peleshko, D., Borzov, Y., Oskerko, S., Voloshyn, V.: Hybrid multidimensional wavelet-neuro-system and its learning using cross entropy cost function in pattern recognition. In: 2018 IEEE 2nd International Conference on Data Stream Mining and Processing, DSMP 2018, Lviv, pp. 305–309 (2018). https://doi.org/10.1109/DSMP.2018.8478608

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladyslav Kotsovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kotsovsky, V., Batyuk, A. (2021). Representational Capabilities and Learning of Bithreshold Neural Networks. In: Babichev, S., Lytvynenko, V., Wójcik, W., Vyshemyrskaya, S. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2020. Advances in Intelligent Systems and Computing, vol 1246. Springer, Cham. https://doi.org/10.1007/978-3-030-54215-3_32

Download citation

Publish with us

Policies and ethics