Skip to main content

Exploring Microbial Nanotoxicity Against Drug Resistance in Bacteria

  • Chapter
  • First Online:
Nanotoxicology and Nanoecotoxicology Vol. 1

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 59))

  • 217 Accesses

Abstract

The growing threat of antimicrobial resistance on human health urgently calls for the need to look for novel solutions to mitigate the grave effect of this global problem and save thousands of lives each year. Nanotechnology is an emerging area that is expected to be able to have solutions toward containing the rise and spread of multidrug-resistant microorganisms. The present chapter focuses on understanding the potential of nanomaterials to cope with drug-resistant bacteria. While different types of nanoparticles have emerged as nanoweapons against drug-resistant or multidrug-resistant bacteria, other nanomaterials like quantum dots, nanotubes, dendrimers, fullerenes, and nanoparticle-conjugated antimicrobial peptides or antibiotics are being explored in parallel for their antimicrobial properties. The chapter looks at interactions between nanomaterials and drug-resistant microbes both at the physical and molecular levels to analyze their future potential as significant alternatives to antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdolhosseini M, Zamani H, Salehzadeh A (2019) Synergistic antimicrobial potential of ciprofloxacin with silver nanoparticles conjugated to thiosemicarbazide against ciprofloxacin resistant Pseudomonas aeruginosa by attenuation of MexA-B efflux pump genes. Biologia 74:1191–1196

    Article  Google Scholar 

  • Adams CP, Walker KA, Obare SO, Docherty KM (2014) Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS One 9:e85981. https://doi.org/10.1371/journal.pone.0085981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed KBA, Subramaniyan SB, Banu SF, Nithyanand P, Veerappan A (2018) Jacalin-copper sulfide nanoparticles complex enhance the antibacterial activity against drug resistant bacteria via cell surface glycan recognition. Colloids Surf B: Biointerfaces 163:209–217. https://doi.org/10.1016/j.colsurfb.2017.12.053

    Article  CAS  PubMed  Google Scholar 

  • Ali K, Dwivedi S, Azam A, Saquib Q, Al-Said MS, Alkhedhairy AA, Musarrat J (2016) Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multidrug resistant clinical bacterial isolates. J Colloid Interface Sci 472:145–156

    Article  CAS  PubMed  Google Scholar 

  • Ali SG, Ansari MA, Khan HM, Jalal M, Mahdi AA, Cameotra SS (2018) Antibacterial and antibiofilm potential of green synthesized silver nanoparticles against imipenem resistant clinical isolates of P. aeruginosa. BioNanoScience 8:544–553

    Article  Google Scholar 

  • Al-Jumaili A, Alancherry S, Bazaka K, Jacob MV (2017) Review on the antimicrobial properties of carbon nanostructures. Materials 10:1–26

    Article  CAS  Google Scholar 

  • Ansari M, Khan H, Khan A, Cameotra SS, Saquib Q, Musarrat J (2014a) Interaction of Aluminium oxide nanoparticles with Escherichia coli and their cell envelope biomolecules. J Appl Microbiol 116:772–783

    Article  CAS  PubMed  Google Scholar 

  • Ansari MA, Khan HM, Khan AA, Cameotra SS, Saquib Q, Musarrat J (2014b) Gum arabic capped silver nanoparticles inhibit biofilm formation by multidrug resistant strains of Pseudomonas aeruginosa. J Basic Microbiol 54:688–699

    Article  CAS  PubMed  Google Scholar 

  • Ansari F, Ghaedi M, Taghdiri M, Asfaram A (2016) Application of Zinc oxide nanorods loaded on activated carbon for ultrasonic assisted dyes removal: experimental design and derivative spectrophotometry method. Ultrason Sonochem 33:197–209

    Article  CAS  PubMed  Google Scholar 

  • Ashajyothi C, Harish KH, Dubey N, Chandrakanth RK (2016) Antibiofilm activity of biogenic copper and zinc oxide nanoparticles-antimicrobials collegiate against multiple drug resistant bacteria: a nanoscale approach. J Nanostruct Chem 6:329–341

    Article  CAS  Google Scholar 

  • AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  Google Scholar 

  • Auffan M et al (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735

    Article  CAS  PubMed  Google Scholar 

  • Ayala-Nunez NV, Lara Villegas HH, del Carmen Ixtepan Turrent L, Rodríguez Padilla C (2009) Silver nanoparticles toxicity and bactericidal effect against Methicillin-resistant Staphylococcus aureus: nanoscale does matter. NanoBiotechnology 5:2–9. https://doi.org/10.1007/s12030-009-9029-1

    Article  CAS  Google Scholar 

  • Baalousha M, Manciulea A, Cumberland S, Kendall K, Lead JR (2008) Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ Toxicol Chem 27:1875–1882

    Article  CAS  PubMed  Google Scholar 

  • Baek S, Joo SH, Toborek M (2019a) Treatment of antibiotic-resistant bacteria by encapsulation of ZnO nanoparticles in an alginate biopolymer: insights into treatment mechanisms. J Hazard Mater 373:122–130. https://doi.org/10.1016/j.jhazmat.2019.03.072

    Article  CAS  PubMed  Google Scholar 

  • Baek S, Joo SH, Su C, Toborek M (2019b) Antibacterial effects of graphene- and carbon-nanotube-based nanohybrids on Escherichia coli: Implications for treating multidrug-resistant bacteria. J Environ Manag 247:214–223. https://doi.org/10.1016/j.jenvman.2019.06.077

    Article  CAS  Google Scholar 

  • Banoee M et al (2010) Zinc oxide nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J Biomed Mater Res Part B Appl Biomater 93:557–561. https://doi.org/10.1002/jbm.b.31615

    Article  CAS  Google Scholar 

  • Baptista P et al (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950. https://doi.org/10.1007/s00216-007-1768-z

    Article  CAS  PubMed  Google Scholar 

  • Bartelmess J, Giordani S (2014) Carbon nano-onions (multi-layer fullerenes): chemistry and applications Beilstein. J Nanotechnol 5:1980–1988

    Google Scholar 

  • Bassous NJ, Webster TJ (2019) The binary effect on methicillin‐resistant Staphylococcus aureus of polymeric nanovesicles appended by proline‐rich amino acid sequences and inorganic nanoparticles. Small 15:1804247

    Article  CAS  Google Scholar 

  • Besinis A, De Peralta T, Handy RD (2014) The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 8:1–16. https://doi.org/10.3109/17435390.2012.742935

    Article  CAS  PubMed  Google Scholar 

  • Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Alternat Med 2015:1–16

    Article  Google Scholar 

  • Boanini E, Torricelli P, Bonvicini F, Cassani MC, Fini M, Gentilomi GA, Bigi A (2018) A new multifunctionalized material against multidrug resistant bacteria and abnormal osteoclast activity European. J Pharm Biopharm 127:120–129. https://doi.org/10.1016/j.ejpb.2018.02.018

    Article  CAS  Google Scholar 

  • Brown A, Smith K, Samuels TA, Lu J, Obare S, Scott ME (2012) Nanoparticles Functionalized with Ampicillin Destroy Multiple Antibiotic Resistant Isolates of Pseudomonas aeruginosa, Enterobacter aerogenes and Methicillin Resistant Staphylococcus aureus. Appl Environ Microbiol 78:2768–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler KS, Casey BJ, Garborcauskas GV, Dair BJ, Elespuru RK (2014) Assessment of titanium dioxide nanoparticle effects in bacteria: association, uptake, mutagenicity, co-mutagenicity and DNA repair inhibition. Mutat Res Genet Toxicol Environ Mutagen 768:14–22. https://doi.org/10.1016/j.mrgentox.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  • Capeletti LB et al (2014) Tailored silica–antibiotic nanoparticles: overcoming bacterial resistance with low cytotoxicity. Langmuir 30:7456–7464

    Article  CAS  PubMed  Google Scholar 

  • Casciaro B, Moreactive oxygen species M, Rivera-Fernández S, Bellelli A, Jesús M, Mangoni ML (2017) Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a (1-21) NH2 as a reliable strategy for antipseudomonal drugs. Acta Biomater 47:170–181

    Article  CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2017) Antibiotic Resistance Threats in the United States, 2013. Centers for Disease Control and Prevention

    Google Scholar 

  • Chakraborti S, Mandal AK, Sarwar S, Singh P, Chakraborty R, Chakrabarti P (2014) Bactericidal effect of polyethyleneimine capped Zinc oxide nanoparticles on multiple antibiotic resistant bacteria harboring genes of high-pathogenicity island. Colloids Surf B: Biointerfaces 121:44–53

    Article  CAS  PubMed  Google Scholar 

  • Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari AA, Jasper SL, Dosunmu E, Miller ME, Arnold RD, Singh SR, Pillai S (2015) Novel pegylated silver coated carbon nanotubes kill Salmonella but they are non-toxic to eukaryotic cells. J Nanobiotechnol 13:1–23

    Article  CAS  Google Scholar 

  • Chen WY, Lin JY, Chen WJ, Luo L, Wei Guang Digold E, Chen YC (2010) Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria. Nanomedicine 5:755–764

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Deng KK, Kim N-J, Reactive oxygen species s L, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074. https://doi.org/10.1016/j.watres.2008.02.021

    Article  CAS  PubMed  Google Scholar 

  • Choi SK et al (2012) Dendrimer-based multivalent vancomycin nanoplatform for targeting the drug-resistant bacterial surface. ACS Nano 7:214–228

    Article  PubMed  CAS  Google Scholar 

  • Courtney CM, Goodman SM, McDaniel JA, Madinger NE, Chatterjee A, Nagpal P (2016) Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat Mater 15:529–534

    Article  CAS  PubMed  Google Scholar 

  • Courtney CM et al (2017) Potentiating antibiotics in drug-resistant clinical isolates via stimuli-activated superoxide generation. Sci Adv 3:e1701776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1–17

    Article  Google Scholar 

  • Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interf Sci 166:119–135

    Article  CAS  Google Scholar 

  • Das B et al (2017a) Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 10:862–876

    Article  CAS  Google Scholar 

  • Das S, Sinha S, Das B, Jayabalan R, Suar M, Mishra A, Tamhankar AJ, Lundborg CS, Tripathy SK (2017b) Disinfection of multidrug resistant Escherichia coli by solar photocatalysis using Fe doped ZnO nanoparticles. Sci Rep 7:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Faria AF, Martinez DST, Meira SMM, de Moraes ACM, Brandelli A, Souza Filho AG, Alves OL (2014) Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf B: Biointerfaces 113:115–124

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira JFA, Saito Â, Bido AT, Kobarg J, Stassen HK, Cardoso MB (2017) Defeating bacterial resistance and preventing mammalian cells toxicity through rational design of antibiotic-functionalized nanoparticles. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  • Degabriel T et al (2018) Factors impacting the aggregation/agglomeration and photocatalytic activity of highly crystalline spheroid- and rod-shaped Titanium dioxide nanoparticles in aqueous solutions. Phys Chem Chem Phys 20:12898–12907. https://doi.org/10.1039/C7CP08054A

    Article  CAS  PubMed  Google Scholar 

  • Deryabin DG et al (2014) The activity of [60] fullerene derivatives bearing amine and carboxylic solubilizing groups against Escherichia coli: a comparative study. J Nanomater 2014:1–9

    Article  CAS  Google Scholar 

  • Dibrov P, Dzioba J, Gosink KK, Hase CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob Agents Chemother 46:2668–2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinh NX, Quy NV, Huy TQ, Le A-T (2015) Decoration of silver nanoparticles on multiwalled carbon nanotubes: antibacterial mechanism and ultrastructural analysis. J Nanomater 16:1–11

    Article  CAS  Google Scholar 

  • Dorjnamjin D, Ariunaa M, Shim YK (2008) Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antimicrobial activity International. J Mol Sci 9:807–820

    Article  CAS  Google Scholar 

  • Dos Santos CA et al (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 103:1931–1944

    Article  PubMed  CAS  Google Scholar 

  • Durmus NG, Taylor EN, Kummer KM, Webster TJ (2013) Enhanced efficacy of superparamagnetic iron oxide nanoparticles against antibiotic-resistant biofilms in the presence of metabolites. Adv Mater (Deerfield Beach, Fla) 25:5706–5713. https://doi.org/10.1002/adma.201302627

    Article  CAS  Google Scholar 

  • Ebinesh A (2017) Conspiracy of domestic microenvironment, bacterial stress response and directed mutagenesis towards antimicrobial resistance: Lessons for health care. J Infect Dis Med Microbiol 1:1–3

    Google Scholar 

  • El Din SN, El Tayeb TA, Abou Aisha K, El Azizi M (2016) In vitro and in vivo antimicrobial activity of combined therapy of silver nanoparticles and visible blue light against Pseudomonas aeruginosa. Int J Nanomedicine 11:1749–1758

    Google Scholar 

  • Esparza-González S, Sánchez-Valdés S, Ramírez-Barrón S, Loera-Arias M, Bernal J, Meléndez-Ortiz HI, Betancourt-Galindo R (2016) Effects of different surface modifying agents on the cytotoxic and antimicrobial properties of Zinc oxide nanoparticles. Toxicol in Vitro 37:134–141

    Article  PubMed  CAS  Google Scholar 

  • Fathalipour S, Mardi M (2017) Synthesis of silane ligand-modified graphene oxide and antibacterial activity of modified graphene-silver nanocomposite. Mater Sci Eng C 79:55–65

    Article  CAS  Google Scholar 

  • Foo ME et al (2018) Antimicrobial activity of functionalized single-walled carbon nanotube with herbal extract of Hempedu bumi. Surf Interface Anal 50:354–361

    Article  CAS  Google Scholar 

  • Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8:e84441. https://doi.org/10.1371/journal.pone.0084441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrielyan L, Hakobyan L, Hovhannisyan A, Trchounian A (2019) Effects of iron oxide (Fe3O4) nanoparticles on Escherichia coli antibiotic‐resistant strains. J Appl Microbiol 126:1108–1116

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria Susceptible to TiO(2) and Zinc oxide. Nanopart Appl Environ Microbiol 78:6749–6758. https://doi.org/10.1128/AEM.00941-12

    Article  CAS  Google Scholar 

  • Gokulakrishnan R, Ravikumar S, Raj JA (2012) In vitro antibacterial potential of metal oxide nanoparticles against antibiotic resistant bacterial pathogens. Asian Pac J Trop Dis 2:411–413

    Article  CAS  Google Scholar 

  • Goldberg DE, Siliciano RF, Jacobs WR Jr (2012) Outwitting evolution: fighting drug-resistant TB, malaria, and HIV. Cell 148:1271–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu H, Ho P-L, Tsang KW, Wang L, Xu B (2003) Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. J Am Chem Soc 125:15702–15703

    Article  CAS  PubMed  Google Scholar 

  • Gupta D, Singh A, Khan AU (2017) Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics. Nanoscale Res Lett 12:1–6

    Article  CAS  Google Scholar 

  • Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine 8:37–45. https://doi.org/10.1016/j.nano.2011.05.007

    Article  CAS  PubMed  Google Scholar 

  • Hajipour MJ et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511

    Article  CAS  PubMed  Google Scholar 

  • Hameed ASH, Karthikeyan C, Ahamed AP, Thajuddin N, Alharbi NS, Alharbi SA, Ravi G (2016) In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Sci Rep 6:24312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat S, Muzammil S, Rasool MH, Nisar Z, Hussain SZ, Sabri AN, Jamil S (2018) In vitro antibiofilm and anti-adhesion effects of magnesium oxide nanoparticles against antibiotic resistant bacteria. Microbiol Immunol 62:211–220. https://doi.org/10.1111/1348-0421.12580

    Article  CAS  PubMed  Google Scholar 

  • He W, Kim HK, Wamer WG, Melka D, Callahan JH, Yin JJ (2013) Photogenerated charge carriers and reactive oxygen species in ZnO/Gold hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J Am Chem Soc 136:750–757

    Article  PubMed  CAS  Google Scholar 

  • Hemeg HA (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine 12:8211–8225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang WC, Tsai PJ, Chen YC (2009) Multifunctional Fe3O4@ Gold nanoeggs as photothermal agents for selective killing of nosocomial and antibiotic-resistant bacteria. Small 5:51–56

    Article  CAS  PubMed  Google Scholar 

  • Huang L et al (2014) Antimicrobial photodynamic therapy with decacationic monoadducts and bisadducts of [70] fullerene: in vitro and in vivo studies. Nanomedicine 9:253–266

    Article  CAS  PubMed  Google Scholar 

  • Hussain N et al (2014) Reduced graphene oxide nanosheets decorated with gold nanoparticles as an effective bactericide: investigation of biocompatibility and leakage of sugars and proteins. ChemPlusChem 79:1774–1784

    CAS  Google Scholar 

  • Huy TQ, Thanh NTH, Thuy NT, Van Chung P, Hung PN, Le A-T, Hanh NTH (2017) Cytotoxicity and antiviral activity of electrochemical–synthesized silver nanoparticles against poliovirus. J Virol Methods 241:52–57

    Article  CAS  PubMed  Google Scholar 

  • Ismail RA, Sulaiman GM, Abdulrahman SA, Marzoog TR (2015) Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater Sci Eng C 53:286–297

    Article  CAS  Google Scholar 

  • Jahnke JP, Cornejo JA, Sumner JJ, Schuler AJ, Atanassov P, Ista LK (2016) Conjugated gold nanoparticles as a tool for probing the bacterial cell envelope: the case of Shewanella oneidensis MR-1. Biointerphases 11:1–7

    Article  CAS  Google Scholar 

  • Jeyaraj Pandian C, Palanivel R, Dhanasekaran S (2016) Screening antimicrobial activity of nickel nanoparticles synthesized using Ocimum sanctum leaf extract. J Nanopart 2016:1–16

    Article  CAS  Google Scholar 

  • Kakkar R, Madgula K, Nehru YS, Kakkar J (2015) Polyvinyl alcohol-melamine Formaldehyde films and coatings with silver nano particles as wound dressings in diabetic foot disease. Eur Chem Bull 4:98–105

    Google Scholar 

  • Kalita S, Kandimalla R, Bhowal AC, Kotoky J, Kundu S (2018) Functionalization of β-lactam antibiotic on lysozyme capped gold nanoclusters retrogress MRSA and its persisters following awakening. Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  • Kanmani P, Lim ST (2013) Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens. Process Biochem 48:1099–1106

    Article  CAS  Google Scholar 

  • Kaweeteerawat C, Na Ubol P, Sangmuang S, Aueviriyavit S, Maniratanachote R (2017) Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J Toxic Environ Health A 80:1276–1289

    Article  CAS  Google Scholar 

  • Khalandi B, Asadi N, Milani M, Davaran S, Abadi AJN, Abasi E, Akbarzadeh A (2017) A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. Drug Res 67:70–76

    CAS  Google Scholar 

  • Khameneh B, Diab R, Ghazvini K, Bazzaz BSF (2016) Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog 95:32–42

    Article  CAS  PubMed  Google Scholar 

  • Khataminejad MR, Mirnejad R, Sharif M, Hashemi M, Sajadi N, Piranfar V (2015) Antimicrobial effect of imipenem-functionalized Fe2O3 nanoparticles on Pseudomonas aeruginosa producing Metallo β-lactamases Iranian. J Biotechnol 13:43–47

    Google Scholar 

  • Kumar MS, Karthikeyan S, Ramprasad C, Aruna PR, Mathivanan N, Velmurugan D, Ganesan S (2015) Investigation of phloroglucinol succinic acid dendrimer as antimicrobial agent against Staphylococcus Aureus, Escherichia Coli and Candida Albicans. Nano Biomed Eng 7:62–74

    Article  Google Scholar 

  • Kunkalekar R, Naik M, Dubey S, Salker A (2013) Antibacterial activity of silver-doped manganese dioxide nanoparticles on multidrug-resistant bacteria. J Chem Technol Biotechnol 88:873–877

    Article  CAS  Google Scholar 

  • Kuo WS, Shao YT, Huang KS, Chou TM, Yang CH (2018) Antimicrobial amino-functionalized nitrogen-doped graphene quantum dots for eliminating multidrug-resistant species in dual-modality photodynamic therapy and bioimaging under two-photon excitation. ACS Appl Mater Interfaces 10:14438–14446

    Article  CAS  PubMed  Google Scholar 

  • Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010a) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8:1. https://doi.org/10.1186/1477-3155-8-1

    Article  CAS  Google Scholar 

  • Lara HH, Ayala-Núñez NV, Ixtepan Turrent LC, Rodríguez Padilla C (2010b) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria world. J Microbiol Biotechnol 26:615–621. https://doi.org/10.1007/s11274-009-0211-3

    Article  CAS  Google Scholar 

  • Lee B et al (2017) Antimicrobial peptide-loaded gold nanoparticle-DNA aptamer conjugates as highly effective antibacterial therapeutics against Vibrio vulnificus. Sci Rep 7:1–10

    CAS  Google Scholar 

  • Li X et al (2014) Functional gold nanoparticles as potent antimicrobial agents against multidrug-resistant bacteria. ACS Nano 8:10682–10686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R et al (2016) Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings. ACS Nano 10:10966–10980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lind TK, Polcyn P, Zielinska P, Cárdenas M, Urbanczyk-Lipkowska Z (2015) On the antimicrobial activity of various peptide-based dendrimers of similar architecture. Molecules 20:738–753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, He L, Mustapha A, Li H, Hu Z, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J Appl Microbiol 107:1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Rong K, Li J, Yang H, Chen R (2013) Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J Mater Sci Mater Med 24:1465–1471. https://doi.org/10.1007/s10856-013-4894-5

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Zhang J, Xiong Z, Yong Y, Zhao X (2011) Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J Mater Chem 21:3350–3352

    Article  CAS  Google Scholar 

  • Maleki Dizaj S, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharma Bull 5:19–23. https://doi.org/10.5681/apb.2015.003

    Article  CAS  Google Scholar 

  • Malka E et al (2013) Eradication of multidrug resistant bacteria by a novel Zn-doped copper oxide nanocomposite. Small 9:4069–4076

    Article  CAS  PubMed  Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. https://doi.org/10.1007/s11051-010-9900-y

    Article  CAS  Google Scholar 

  • Maruthupandy M, Rajivgandhi G, Muneeswaran T, Song J-M, Manoharan N (2018) Biologically synthesized zinc oxide nanoparticles as nanoantibiotics against ESBLs producing gram negative bacteria. Microb Pathog 121:224–231. https://doi.org/10.1016/j.micpath.2018.05.041

    Article  CAS  PubMed  Google Scholar 

  • Meghana S, Kabra P, Chakraborty S, Padmavathy N (2015) Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv 5:12293–12299. https://doi.org/10.1039/C4RA12163E

    Article  CAS  Google Scholar 

  • Mizuno T, Masuda Y, Irie K (2015) The Saccharomyces cerevisiae AMPK, Snf1, negatively regulates the Hog1 MAPK pathway in ER stress response. PLoS Genet 11:e1005491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mocan L et al (2016) Selective laser ablation of methicillin-resistant Staphylococcus Aureus with IgG functionalized multi-walled carbon nanotubes. J Biomed Nanotechnol 12:781–788

    Article  CAS  PubMed  Google Scholar 

  • Morales-Avila E, Ferro-Flores G, Ocampo-García BE, López-Téllez G, López-Ortega J, Rogel-Ayala DG, Sánchez-Padilla D (2017) Antibacterial efficacy of gold and silver nanoparticles functionalized with the ubiquicidin (29–41) antimicrobial peptide. J Nanomater 2017:1–10

    Article  CAS  Google Scholar 

  • Mori Y, Ono T, Miyahira Y, Nguyen VQ, Matsui T, Ishihara M (2013) Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus nanoscale. Res Lett 8:1–6. https://doi.org/10.1186/1556-276x-8-93

    Article  Google Scholar 

  • Mosallam FM, El-Sayyad GS, Fathy RM, El-Batal AI (2018) Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb Pathog 122:108–116. https://doi.org/10.1016/j.micpath.2018.06.013

    Article  CAS  PubMed  Google Scholar 

  • Naqvi SZH, Kiran U, Ali MI, Jamal A, Hameed A, Ahmed S, Ali N (2013) Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria International. J Nanomed 8:3187–3195

    Article  CAS  Google Scholar 

  • Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472

    Article  CAS  PubMed  Google Scholar 

  • O’Neill J (2016) Tackling drug-resistant infections globally: Final report and recommendations. The Review on Antimicrobial Resistance

    Google Scholar 

  • Padwal P, Bandyopadhyaya R, Mehra S (2014) Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria. Langmuir 30:15266–15276. https://doi.org/10.1021/la503808d

    Article  CAS  PubMed  Google Scholar 

  • Patra P, Mitra S, Debnath N, Pramanik P, Goswami A (2014) Ciprofloxacin conjugated zinc oxide nanoparticle: A camouflage towards multidrug resistant bacteria. Bull Mater Sci 37:199–206

    Article  CAS  Google Scholar 

  • Perron GG, Inglis RF, Pennings PS, Cobey S (2015) Fighting microbial drug resistance: a primer on the role of evolutionary biology in public health. Evol Appl 8:211–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Pissinis DE, Benitez GA, Schilardi PL (2018) Two-step biocompatible surface functionalization for two-pathway antimicrobial action against Gram-positive bacteria. Colloids Surf B: Biointerfaces 164:262–271. https://doi.org/10.1016/j.colsurfb.2018.01.057

    Article  CAS  PubMed  Google Scholar 

  • Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M (2013) Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B: Biointerfaces 108:255–259

    Article  CAS  PubMed  Google Scholar 

  • Prylutskyy YI et al (2014) On the origin of C60 fullerene solubility in aqueous solution. Langmuir 30:3967–3970

    Article  CAS  PubMed  Google Scholar 

  • Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112:841–852. https://doi.org/10.1111/j.1365-2672.2012.05253.x

    Article  CAS  PubMed  Google Scholar 

  • Rajchakit U, Sarojini V (2017) Recent developments in antimicrobial-peptide-conjugated gold nanoparticles. Bioconjug Chem 28:2673–2686

    Article  CAS  PubMed  Google Scholar 

  • Ramalingam B, Parandhaman T, Das SK (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces 8:4963–4976

    Article  CAS  PubMed  Google Scholar 

  • Ranjan S, Ramalingam C (2016) Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ Chem Lett 14:487–494

    Article  CAS  Google Scholar 

  • Ribeiro KL et al (2018) Clavanin A-bioconjugated Fe3O4/Silane core-shell nanoparticles for thermal ablation of bacterial biofilms. Colloids Surf B: Biointerfaces 169:72–81. https://doi.org/10.1016/j.colsurfb.2018.04.055

    Article  CAS  PubMed  Google Scholar 

  • Ristic BZ et al (2014) Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 35:4428–4435. https://doi.org/10.1016/j.biomaterials.2014.02.014

    Article  CAS  PubMed  Google Scholar 

  • Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21:1–30

    Article  CAS  Google Scholar 

  • Sanyasi S et al (2016) Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multidrug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci Rep 6:1s–16s

    Article  Google Scholar 

  • Saravanan M, Barik SK, MubarakAli D, Prakash P, Pugazhendhi A (2018) Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog 116:221–226

    Article  CAS  PubMed  Google Scholar 

  • Scandorieiro S et al (2016) Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front Microbiol 7:1–14

    Article  Google Scholar 

  • Scorciapino MA, Serra I, Manzo G, Rinaldi AC (2017) Antimicrobial dendrimeric peptides: structure, activity and new therapeutic applications. Int J Mol Sci 18:1–13. https://doi.org/10.3390/ijms18030542

    Article  CAS  Google Scholar 

  • Shaikh S, Rizvi SM, Shakil S, Hussain T, Alshammari TM, Ahmad W, Tabrez S, Al‐Qahtani MH, Abuzenadah AM (2017) Synthesis and characterization of cefotaxime conjugated gold nanoparticles and their use to target drug-resistant CTX-M-producing bacterial pathogens. J Cell Biochem 118:2802–2808

    Google Scholar 

  • Shionoiri N, Sato T, Fujimori Y, Nakayama T, Nemoto M, Matsunaga T, Tanaka T (2012) Investigation of the antiviral properties of copper iodide nanoparticles against feline calicivirus. J Biosci Bioeng 113:580–586. https://doi.org/10.1016/j.jbiosc.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  • Silvero C MJ, Rocca DM, de la Villarmois EA, Fournier K, Lanterna AE, Perez MF, Becerra MC, Scaiano JC (2018) Selective photoinduced antibacterial activity of amoxicillin-coated gold nanoparticles: from one-step synthesis to in vivo cytocompatibility. ACS Omega 3:1220–1230

    Google Scholar 

  • Singh K, Panghal M, Kadyan S, Chaudhary U, Yadav JP (2014) Green silver nanoparticles of Phyllanthus amarus: as an antibacterial agent against multi drug resistant clinical isolates of Pseudomonas aeruginosa. J Nanobiotechnol 12:1–9

    Article  CAS  Google Scholar 

  • Sinha R, Khare SK (2014) Differential interactions of halophilic and non-halophilic proteases with nanoparticles. Sust Chem Processes 2:1–8

    CAS  Google Scholar 

  • Sinha R, Karan R, Sinha A, Khare S (2011) Interaction and nanotoxic effect of Zinc oxide and Silver nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol 102:1516–1520

    Article  CAS  PubMed  Google Scholar 

  • Sirelkhatim A et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters 7:219–242

    Article  CAS  PubMed  Google Scholar 

  • Soren S, Kumar S, Mishra S, Jena PK, Verma SK, Parhi P (2018) Evaluation of antibacterial and antioxidant potential of the zinc oxide nanoparticles synthesized by aqueous and polyol method. Microb Pathog 119:145–151

    Article  CAS  PubMed  Google Scholar 

  • Steffy K, Shanthi G, Maroky AS, Selvakumar S (2017) Enhanced antibacterial effects of green synthesized Zinc oxide NPs using Aristolochia indica against multidrug resistant bacterial pathogens from Diabetic Foot Ulcer. J Infect Public Health 11:463–471

    Article  PubMed  Google Scholar 

  • Steffy K, Shanthi G, Maroky AS, Selvakumar S (2018) Synthesis and characterization of Zinc oxide phytonanocomposite using Strychnos nux-vomica L.(Loganiaceae) and antimicrobial activity against multidrug-resistant bacterial strains from diabetic foot ulcer. J Adv Res 9:69–77

    Article  CAS  PubMed  Google Scholar 

  • Surwade P, Ghildyal C, Weikel C, Luxton T, Peloquin D, Fan X, Shah V (2019) Augmented antibacterial activity of ampicillin with silver nanoparticles against methicillin-resistant Staphylococcus aureus (MRSA). J Antibiot 72:50–53. https://doi.org/10.1038/s41429-018-0111-6

    Article  CAS  Google Scholar 

  • Tacconelli E et al (2018) Discovery, research, and development of new antibiotics: the World Health Organization priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327

    Article  PubMed  Google Scholar 

  • Tam KH et al (2008) Antibacterial activity of Zinc oxide nanorods prepared by a hydrothermal method. Thin Solid Films 516:6167–6174. https://doi.org/10.1016/j.tsf.2007.11.081

    Article  CAS  Google Scholar 

  • Tanwar J, Das S, Fatima Z, Hameed S (2014) Multidrug resistance: an emerging crisis Interdisciplinary. Perspect Infect Dis 2014:1–7

    Article  CAS  Google Scholar 

  • Tiwari PM, Vig K, Dennis VA, Singh SR (2011) Functionalized gold nanoparticles and their biomedical applications. Nano 1:31–63

    CAS  Google Scholar 

  • Tiwari V, Tiwari M, Solanki V (2017) Polyvinylpyrrolidone-capped silver nanoparticle inhibits infection of carbapenem-resistant strain of Acinetobacter baumannii in the human pulmonary epithelial cell. Front Immunol 8:1–9

    Article  CAS  Google Scholar 

  • Tiwari V, Mishra N, Gadani K, Solanki PS, Shah NA, Tiwari M (2018) Mechanism of anti-bacterial activity of Zinc Oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Front Microbiol 9:1–10. https://doi.org/10.3389/fmicb.2018.01218

    Article  Google Scholar 

  • Wan G, Ruan L, Yin Y, Yang T, Ge M, Cheng X (2016) Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii. Int J Nanomedicine 11:3789–3800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Guo C, Yang LR, Liu CZ (2010) Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance. Bioresour Technol 101:8931–8935. https://doi.org/10.1016/j.biortech.2010.06.115

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhou Z, Chen F (2017) Surface modification of carbon nanotubes with an enhanced antifungal activity for the control of plant fungal pathogen. Materials 10:1–11. https://doi.org/10.3390/ma10121375

    Article  CAS  Google Scholar 

  • Wong MS, Chen CW, Hsieh CC, Hung SC, Sun DS, Chang HH (2015) Antibacterial property of Silver nanoparticle-impregnated N-doped titania films under visible light. Sci Rep 5:1–11

    Article  Google Scholar 

  • World Health Organization (2017) Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2016–2017. In: Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2016–2017

    Google Scholar 

  • Xue XY et al (2015) A potent and selective antimicrobial poly (amidoamine) dendrimer conjugate with LED209 targeting QseC receptor to inhibit the virulence genes of gram negative bacteria. Nanomedicine 11:329–339

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593. https://doi.org/10.1128/aem.71.11.7589-7593.2005

  • Yousefi M et al (2017) Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater Sci Eng C Mater Biol Appl 74:568–581. https://doi.org/10.1016/j.msec.2016.12.125

    Article  CAS  PubMed  Google Scholar 

  • Yu TJ, Li PH, Tseng TW, Chen YC (2011) Multifunctional Fe(3)O(4)/alumina core/shell MNPs as photothermal agents for targeted hyperthermia of nosocomial and antibiotic-resistant bacteria. Nanomedicine (London, England) 6:1353–1363. https://doi.org/10.2217/nnm.11.34

    Article  CAS  Google Scholar 

  • Yuan YG, Peng QL, Gurunathan S (2017) Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomedicine 12:6487–6502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L et al (2010) Mechanistic investigation into antibacterial behaviour of suspensions of Zinc oxide nanoparticles against E. coli. J Nanopart Res 12:1625–1636

    Article  CAS  Google Scholar 

  • Zhang Y, Dai T, Wang M, Vecchio D, Chiang LY, Hamblin MR (2015) Potentiation of antimicrobial photodynamic inactivation mediated by a cationic fullerene by added iodide: in vitro and in vivo studies. Nanomedicine 10:603–614

    Article  CAS  PubMed  Google Scholar 

  • Zhang N et al (2016) Rapidly probing antibacterial activity of graphene oxide by mass spectrometry-based metabolite fingerprinting. Sci Rep 6:1–10

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil K. Khare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinha, R., Sadaf, A., Khare, S.K. (2021). Exploring Microbial Nanotoxicity Against Drug Resistance in Bacteria. In: Kumar, V., Guleria, P., Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanotoxicology and Nanoecotoxicology Vol. 1. Environmental Chemistry for a Sustainable World, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-030-63241-0_6

Download citation

Publish with us

Policies and ethics