Skip to main content

Anti-inflammatory Effects of Statins in Lung Vascular Pathology: From Basic Science to Clinical Trials

  • Chapter
  • First Online:
Lung Inflammation in Health and Disease, Volume I

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1303))

Abstract

HMG-CoA reductase inhibitors (or statins) are cholesterol-lowering drugs and are among the most widely prescribed medications in the United States. Statins exhibit pleiotropic effects that extend beyond cholesterol reduction including anti-atherosclerotic, antiproliferative, anti-inflammatory, and antithrombotic effects. Over the last 20 years, statins have been studied and examined in pulmonary vascular disorders, including both chronic pulmonary vascular disease such as pulmonary hypertension, and acute pulmonary vascular endothelial injury such as acute lung injury. In both research and clinical settings, statins have demonstrated promising vascular protection through modulation of the endothelium, attenuation of vascular leak, and promotion of endothelial repair following lung inflammation. This chapter provides a summary of the rapidly changing literature, summarizes the anti-inflammatory mechanism of statins on pulmonary vascular disorders, and explores clinical evidence for statins as a potential therapeutic approach to modulation of the endothelium as well as a means to broaden our understanding of pulmonary vasculopathy pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ITGB4:

Integrin β4

3’UTR:

3′ untranslated region

ALI:

Acute lung injury

ARDS:

Acute respiratory distress syndrome

BAL:

Bronchoalveolar lavage

CAD:

Coronary artery disease

COPD:

Chronic obstructive pulmonary disorder

CpG:

CG dinucleotides

CRAC:

Ca2+-release-activated Ca2+

CVD:

Cardiovascular disease

DMNT:

DNA Methyltransferases

ECM:

Extracellular matrix

EMP:

Circulating endothelial microparticle

eNOS:

Endothelial nitric oxide synthase

EPC:

Endothelial progenitor cell

ET-1:

Endothelin-1

FA:

Focal adhesion

HARP trail:

Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in Acute lung injury to Reduce Pulmonary dysfunction trial

HAT:

Histone acetylase transferase

HDAC:

Histone deacetylases

ICU:

Intensive care unit

LBI:

Laminin-binding integrins

LCA:

Latent class analyses

MAPK:

Mitogen-activated protein kinase

miRNA:

microRNAs

MMP:

Matrix metalloproteases

MMP-9:

Matrix metallopeptidase 9

MPO:

Myeloperoxidase

PAK 4:

P21-activated kinase 4

PASMC:

Pulmonary arterial smooth muscle cell

PHD-3:

HIF1α-prolyl-4-hydroxylase 3

PVEC:

Pulmonary vascular endothelial cell

RISC:

RNA-induced silencing complex

ROS:

Reactive oxygen species

SAILS trail:

Statins for acutely injured lungs from Sepsis trial

SIRT1:

Silent information regulator 1

Treg:

Regulatory T-cell

VILI:

Ventilator-induced lung injury

References

  1. Wang L, Yang T, Wang C. Are statins beneficial for the treatment of pulmonary hypertension? Chronic Dis Transl Med. 2017;3(4):213–20.

    PubMed  PubMed Central  Google Scholar 

  2. Jeffery TK, Morrell NW. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis. 2002;45:173. https://doi.org/10.1053/pcad.2002.130041.

    Article  PubMed  CAS  Google Scholar 

  3. Sheikh AQ, Misra A, Rosas IO, Adams RH, Greif DM. Smooth muscle cell progenitors are primed to muscularize in pulmonary hypertension. Sci Transl Med. 2015;7:308ra159. https://doi.org/10.1126/scitranslmed.aaa9712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lee JH, Lee DS, Kim EK, et al. Simvastatin inhibits cigarette smoking-induced emphysema and pulmonary hypertension in rat lungs. Am J Respir Crit Care Med. 2005;172:987. https://doi.org/10.1164/rccm.200501-041OC.

    Article  PubMed  Google Scholar 

  5. Kim SE, Thuy TTT, Lee JH, et al. Simvastatin inhibits induction of matrix metalloproteinase-9 in rat alveolar macrophages exposed to cigarette smoke extract. Exp Mol Med. 2009;41:277. https://doi.org/10.3858/emm.2009.41.4.031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kaneta S, Satoh K, Kano S, Kanda M, Ichihara K. All hydrophobic HMG-CoA reductase inhibitors induce apoptotic death in rat pulmonary vein endothelial cells. Atherosclerosis. 2003;170:237. https://doi.org/10.1016/S0021-9150(03)00301-0.

    Article  PubMed  CAS  Google Scholar 

  7. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013;5 https://doi.org/10.1101/cshperspect.a008656.

  8. Liu J, Razani B, Tang S, Terman BI, Ware JA, Lisanti MP. Angiogenesis activators and inhibitors differentially regulate caveolin- 1 expression and caveolae formation in vascular endothelial cells: angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J Biol Chem. 1999;274:15781. https://doi.org/10.1074/jbc.274.22.15781.

    Article  PubMed  CAS  Google Scholar 

  9. Lin YC, Lin JH, Chou CW, Chang YF, Yeh SH, Chen CC. Statins increase p21 through inhibition of histone deacetylase activity and release of promoter-associated HDAC1/2. Cancer Res. 2008;68:2375. https://doi.org/10.1158/0008-5472.CAN-07-5807.

    Article  PubMed  CAS  Google Scholar 

  10. Tikoo K, Patel G, Kumar S, et al. Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: role of epigenetic histone modifications. Biochem Pharmacol. 2015;93:343. https://doi.org/10.1016/j.bcp.2014.11.013.

    Article  PubMed  CAS  Google Scholar 

  11. Singh RS, Chaudhary DK, Mohan A, et al. Greater efficacy of atorvastatin versus a non-statin lipid-lowering agent against renal injury: potential role as a histone deacetylase inhibitor. Sci Rep. 2016;6 https://doi.org/10.1038/srep38034.

  12. Lin YC, Lin JH, Chou CW, Chang YF, Yeh SHCC. Statins increase p21 through inhibition of histone deacetylase activity and release of promoter-associated HDAC1/2. Cancer Res. 2008;68(7):2375–83.

    Article  CAS  PubMed  Google Scholar 

  13. Mattioli E, Andrenacci D, Mai A, et al. Statins and histone Deacetylase inhibitors affect Lamin A/C – histone Deacetylase 2 interaction in human cells. Front Cell Dev Biol. 2019;7 https://doi.org/10.3389/fcell.2019.00006.

  14. Ishikawa S, Hayashi H, Kinoshita K, et al. Statins inhibit tumor progression via an enhancer of zeste homolog 2-mediated epigenetic alteration in colorectal cancer. Int J Cancer. 2014;135:2528. https://doi.org/10.1002/ijc.28672.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6. https://doi.org/10.1101/gad.947102.

    Article  PubMed  CAS  Google Scholar 

  16. Karlic H, Thaler R, Gerner C, et al. Inhibition of the mevalonate pathway affects epigenetic regulation in cancer cells. Cancer Genet. 2015;208:241. https://doi.org/10.1016/j.cancergen.2015.03.008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kodach LL, Jacobs RJ, Voorneveld PW, et al. Statins augment the chemosensitivity of colorectal cancer cells inducing epigenetic reprogramming and reducing colorectal cancer cell “stemness” via the bone morphogenetic protein pathway. Gut. 2011;60:1544. https://doi.org/10.1136/gut.2011.237495.

    Article  PubMed  CAS  Google Scholar 

  18. Kim YC, Kim KK, Shevach EM. Simvastatin induces Foxp3+ T regulatory cells by modulation of transforming growth factor-β signal transduction. Immunology. 2010;130:484. https://doi.org/10.1111/j.1365-2567.2010.03269.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Takwi AAL, Li Y, Becker Buscaglia LE, et al. A statin-regulated microRNA represses human c-Myc expression and function. EMBO Mol Med. 2012;4:896. https://doi.org/10.1002/emmm.201101045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Allen SC, Mamotte CDS. Pleiotropic and adverse effects of statins-do epigenetics play a role? J Pharmacol Exp Ther. 2017;362:319. https://doi.org/10.1124/jpet.117.242081.

    Article  PubMed  CAS  Google Scholar 

  21. Tabuchi T, Satoh M, Nakamura M. Expressions of the longevity-associated protein, SIRT1, and microRNA profiling in coronary artery disease: results from prospective and randomized study of treatment with atorvastatin or rosuvastatin. Eur Heart J. 2012;33:339–653.

    Article  Google Scholar 

  22. Marsboom G, Pokreisz P, Gheysens O, et al. Sustained endothelial progenitor cell dysfunction after chronic hypoxia-induced pulmonary hypertension. Stem Cells. 2008;26:1017. https://doi.org/10.1634/stemcells.2007-0562.

    Article  PubMed  Google Scholar 

  23. Walter DH, Rittig K, Bahlmann FH, et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation. 2002;105:3017. https://doi.org/10.1161/01.CIR.0000018166.84319.55.

    Article  PubMed  CAS  Google Scholar 

  24. Sutendra G, Dromparis P, Bonnet S, et al. Pyruvate dehydrogenase inhibition by the inflammatory cytokine TNFα contributes to the pathogenesis of pulmonary arterial hypertension. J Mol Med. 2011;89:771. https://doi.org/10.1007/s00109-011-0762-2.

    Article  PubMed  CAS  Google Scholar 

  25. Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115:165. https://doi.org/10.1161/CIRCRESAHA.113.301141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhang X, Jin J, Peng X, Ramgolam VS, Markovic-Plese S. Simvastatin inhibits IL-17 secretion by targeting multiple IL-17-regulatory cytokines and by inhibiting the expression of IL-17 transcription factor RORC in CD4 + lymphocytes. J Immunol. 2008;180:6988. https://doi.org/10.4049/jimmunol.180.10.6988.

    Article  PubMed  CAS  Google Scholar 

  27. Khattri S, Zandman-Goddard G. Statins and autoimmunity. Immunol Res. 2013;56:348. https://doi.org/10.1007/s12026-013-8409-8.

    Article  PubMed  CAS  Google Scholar 

  28. Lawman S, Mauri C, Jury EC, Cook HT, Ehrenstein MR. Atorvastatin inhibits autoreactive B cell activation and delays lupus development in New Zealand black/white F 1 mice. J Immunol. 2004;173:7641. https://doi.org/10.4049/jimmunol.173.12.7641.

    Article  PubMed  CAS  Google Scholar 

  29. Paraskevas KI. Statin treatment for rheumatoid arthritis: a promising novel indication. Clin Rheumatol. 2008;27:281. https://doi.org/10.1007/s10067-007-0806-8.

    Article  PubMed  Google Scholar 

  30. Markovic-Plese S, Singh AK, Singh I. Therapeutic potential of statins in multiple sclerosis: immune modulation, neuroprotection and neurorepair. Future Neurol. 2008;3:153. https://doi.org/10.2217/14796708.3.2.153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Weber C, Erl W, Weber KSC, Weber PC. HMG-CoA reductase inhibitors decrease CD11b expression and CD11b- dependent adhesion of monocytes to endothelium and reduce increased adhesiveness of monocytes isolated from patients with hypercholesterolemia. J Am Coll Cardiol. 1997;30:1212. https://doi.org/10.1016/S0735-1097(97)00324-0.

    Article  PubMed  CAS  Google Scholar 

  32. Bellosta S, Via D, Canavesi M, et al. HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arterioscler Thromb Vasc Biol. 1998;18:1671. https://doi.org/10.1161/01.ATV.18.11.1671.

    Article  PubMed  CAS  Google Scholar 

  33. Greenwood J, Walters CE, Pryce G, et al. Lovastatin inhibits brain endothelial cell rho-mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB J. 2003;17:1. https://doi.org/10.1096/fj.02-1014fje.

    Article  CAS  Google Scholar 

  34. Ehrenstein MR, Jury EC, Mauri C. Statins for atherosclerosis – as good as it gets? N Engl J Med. 2005;352:73. https://doi.org/10.1056/NEJMe048326.

  35. Manresa-Arraut A, Johansen FF, Brakebusch C, Issazadeh-Navikas S, Hasseldam H. RhoA drives T-cell activation and encephalitogenic potential in an animal model of multiple sclerosis. Front Immunol. 2018;9 https://doi.org/10.3389/fimmu.2018.01235.

  36. Zhang FL, Casey PJ. Protein Prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem. 1996;65:241. https://doi.org/10.1146/annurev.bi.65.070196.001325.

    Article  PubMed  CAS  Google Scholar 

  37. Dichtl W, Dulak J, Frick M, et al. HMG-CoA reductase inhibitors regulate inflammatory transcription factors in human endothelial and vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2003;23:58. https://doi.org/10.1161/01.ATV.0000043456.48735.20.

    Article  PubMed  CAS  Google Scholar 

  38. Brand K, Page S, Rogler G, et al. Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Invest. 1996;97:1715. https://doi.org/10.1172/JCI118598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hölschermann H, Schuster D, Parviz B, Haberbosch W, Tillmanns H, Muth H. Statins prevent NF-κB transactivation independently of the IKK-pathway in human endothelial cells. Atherosclerosis. 2006;185:240. https://doi.org/10.1016/j.atherosclerosis.2005.06.019.

    Article  PubMed  CAS  Google Scholar 

  40. Troussard AA, Costello P, Yoganathan TN, Kumagai S, Roskelley CD, Dedhar S. The integrin linked kinase (ILK) induces an invasive phenotype via AP-1 transcription factor-dependent upregulation of matrix metalloproteinase 9 (MMP-9). Oncogene. 2000;19:5444. https://doi.org/10.1038/sj.onc.1203928.

    Article  PubMed  CAS  Google Scholar 

  41. Ahmad M, Theofanidis P, Medford RM. Role of activating protein-1 in the regulation of the vascular cell adhesion molecule-1 gene expression by tumor necrosis factor-α. J Biol Chem. 1998;273:4616. https://doi.org/10.1074/jbc.273.8.4616.

    Article  PubMed  CAS  Google Scholar 

  42. Marks-Konczalik J, Chu SC, Moss J. Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor κB-binding sites. J Biol Chem. 1998;273:22201. https://doi.org/10.1074/jbc.273.35.22201.

    Article  PubMed  CAS  Google Scholar 

  43. Martin G, Duez H, Blanquart C, et al. Statin-induced inhibition of the rho-signaling pathway activates PPARα and induces HDL apoA-I. J Clin Invest. 2001;107:1423. https://doi.org/10.1172/JCI10852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Crisby M, Nordin-Fredriksson G, Shah PK, Yano J, Zhu J, Nilsson J. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation. 2001;103:926. https://doi.org/10.1161/01.CIR.103.7.926.

    Article  PubMed  CAS  Google Scholar 

  45. Semenza GL. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev. 1998;8:588. https://doi.org/10.1016/S0959-437X(98)80016-6.

    Article  PubMed  CAS  Google Scholar 

  46. Peng J, Zhang L, Drysdale L, Fong GH. The transcription factor EPAS-1/hypoxia-inducible factor 2α plays an important role in vascular remodeling. Proc Natl Acad Sci U S A. 2000;97:8386. https://doi.org/10.1073/pnas.140087397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nishimoto-Hazuku A, Hirase T, Ide N, Ikeda Y, Node K. Simvastatin stimulates vascular endothelial growth factor production by hypoxia-inducible factor-1α upregulation in endothelial cells. J Cardiovasc Pharmacol. 2008;51:267. https://doi.org/10.1097/FJC.0b013e3181624b44.

    Article  PubMed  CAS  Google Scholar 

  48. Thirunavukkarasu M, Selvaraju V, Dunna NR, et al. Simvastatin treatment inhibits hypoxia inducible factor 1-alpha-(HIF-1alpha)-prolyl-4-hydroxylase 3 (PHD-3) and increases angiogenesis after myocardial infarction in streptozotocin-induced diabetic rat. Int J Cardiol. 2013;168:2474. https://doi.org/10.1016/j.ijcard.2013.03.005.

    Article  PubMed  Google Scholar 

  49. Leonard RJ, Garcia ML, Slaughter RS, Reuben JP. Selective blockers of voltage-gated K+ channels depolarize human T lymphocytes: mechanism of the antiproliferative effect of charybdotoxin. Proc Natl Acad Sci U S A. 1992;89:10094. https://doi.org/10.1073/pnas.89.21.10094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zhao N, Dong Q, Qian C, et al. Lovastatin blocks Kv1.3 channel in human T cells: a new mechanism to explain its immunomodulatory properties. Sci Rep. 2015;5 https://doi.org/10.1038/srep17381.

  51. Varisco BM. The pharmacology of acute lung injury in sepsis. Adv Pharmacol Sci. 2011;2011:1. https://doi.org/10.1155/2011/254619.

    Article  Google Scholar 

  52. Chen W, Sammani S, Mitra S, Ma SF, Garcia JGN, Jacobson JR. Critical role for integrin-β4 in the attenuation of murine acute lung injury by simvastatin. Am J Physiol Lung Cell Mol Physiol. 2012;303:L279. https://doi.org/10.1152/ajplung.00361.2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Garcia JGN, Davis HW, Patterson CE. Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol. 1995;163:510. https://doi.org/10.1002/jcp.1041630311.

    Article  PubMed  CAS  Google Scholar 

  54. Chen W, Pendyala S, Natarajan V, Garcia JGN, Jacobson JR. Endothelial cell barrier protection by simvastatin: GTPase regulation and NADPH oxidase inhibition. Am J Physiol Lung Cell Mol Physiol. 2008;295:L575. https://doi.org/10.1152/ajplung.00428.2007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Schönbeck U, Libby P. Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory agents? Circulation. 2004;109:II-18. https://doi.org/10.1161/01.cir.0000129505.34151.23.

    Article  Google Scholar 

  56. Chen W, Epshtein Y, Ni X, et al. Role of integrin β4 in lung endothelial cell inflammatory responses to mechanical stress. Sci Rep. 2015;5 https://doi.org/10.1038/srep16529.

  57. Mercurio AM, Bachelder RE, Rabinovitz I, O’Connor KL, Tani T, Shaw LM. The metastatic odyssey: the integrin connection. Surg Oncol Clin N Am. 2001;10:313. https://doi.org/10.1016/S1055-3207(18)30067-X.

    Article  PubMed  CAS  Google Scholar 

  58. Kelly GT, Faraj R, Zhang Y, et al. Pulmonary endothelial mechanical sensing and signaling, a story of focal adhesions and integrins in ventilator induced lung injury. Front Physiol. 2019;10(APR) https://doi.org/10.3389/fphys.2019.00511.

  59. Kennel SJ, Godfrey V, Ch’ang LY, Lankford TK, Foote LJ, Makkinje A. The beta 4 subunit of the integrin family is displayed on a restricted subset of endothelium in mice. J Cell Sci. 1992;

    Google Scholar 

  60. Chen W, Belvitch P, Hong T, Cress A, Natarajan V, Jacobson JR (2019) Endothelial cell integrin beta4 knockout attenuates LPS-induced murine acute lung injury. https://doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a7067

  61. Yu Y, Jing L, Zhang X, Gao C. Simvastatin attenuates acute lung injury via regulating CDC42-PAK4 and endothelial microparticles. Shock. 2017;47:378. https://doi.org/10.1097/SHK.0000000000000723.

    Article  PubMed  CAS  Google Scholar 

  62. Pan S, Wu Z, Liu X, et al. Simvastatin ameliorates PAK4 inhibitor-induced gut and lung injury. Biomed Res Int. 2017;2017:1. https://doi.org/10.1155/2017/8314276.

    Article  CAS  Google Scholar 

  63. Ota H, Eto M, Kano MR, et al. Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the Akt pathway. Arterioscler Thromb Vasc Biol. 2010;30:2205. https://doi.org/10.1161/ATVBAHA.110.210500.

    Article  PubMed  CAS  Google Scholar 

  64. Zhang W, Huang Q, Zeng Z, Wu J, Zhang Y, Chen Z. Sirt1 inhibits oxidative stress in vascular endothelial cells. Oxidative Med Cell Longev. 2017;2017:1. https://doi.org/10.1155/2017/7543973.

    Article  CAS  Google Scholar 

  65. Jiang BH, Tawara S, Abe K, Takaki A, Fukumoto Y, Shimokawa H. Acute vasodilator effect of fasudil, a Rho-kinase inhibitor, in monocrotaline-induced pulmonary hypertension in rats. J Cardiovasc Pharmacol. 2007;49:85. https://doi.org/10.1097/FJC.0b013e31802df112.

    Article  PubMed  CAS  Google Scholar 

  66. Guilluy C, Sauzeau V, Rolli-Derkinderen M, et al. Inhibition of RhoA/Rho kinase pathway is involved in the beneficial effect of sildenafil on pulmonary hypertension. Br J Pharmacol. 2005;146:1010. https://doi.org/10.1038/sj.bjp.0706408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Xing X-Q, Gan Y, Wu S-J, Chen P, Zhou R, Xiang X-D. Statins may ameliorate pulmonary hypertension via RhoA/Rho-kinase signaling pathway. Med Hypotheses. 2007;68(5):5.

    Article  CAS  Google Scholar 

  68. Chou HC, Huang LT, Yeh TF, Chen CM. Rho-kinase inhibitor Y-27632 attenuates pulmonary hypertension in hyperoxia-exposed newborn rats. Acta Pharmacol Sin. 2013;34:1310. https://doi.org/10.1038/aps.2013.93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Laufs U, La Fata V, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation. 1998;97:1129. https://doi.org/10.1161/01.CIR.97.12.1129.

    Article  PubMed  CAS  Google Scholar 

  70. Henderson WR, Chen L, Amato MBP, Brochard LJ. Fifty years of research in ARDS: respiratory mechanics in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196:822. https://doi.org/10.1164/rccm.201612-2495CI.

    Article  PubMed  Google Scholar 

  71. Craig TR, Duffy MJ, Shyamsundar M, et al. A randomized clinical trial of hydroxymethylglutaryl-coenzyme a reductase inhibition for acute lung injury (the HARP study). Am J Respir Crit Care Med. 2011;183:620. https://doi.org/10.1164/rccm.201003-0423OC.

    Article  PubMed  CAS  Google Scholar 

  72. Kor DJ, Iscimen R, Yilmaz M, Brown MJ, Brown DR, Gajic O. Statin administration did not influence the progression of lung injury or associated organ failures in a cohort of patients with acute lung injury. Intensive Care Med. 2009;35:1039. https://doi.org/10.1007/s00134-009-1421-8.

    Article  PubMed  CAS  Google Scholar 

  73. O’Neal HR, Koyama T, Koehler EAS, et al. Prehospital statin and aspirin use and the prevalence of severe sepsis and acute lung injury/acute respiratory distress syndrome. Crit Care Med. 2011;39:1343. https://doi.org/10.1097/CCM.0b013e3182120992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Terblanche MJ, Pinto R, Whiteley C, Brett S, Beale R, Adhikari NKJ. Statins do not prevent acute organ failure in ventilated ICU patients: single-centre retrospective cohort study. Crit Care. 2011;15:R74. https://doi.org/10.1186/cc10063.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bajwa EK, Malhotra CK, Thompson BT, Christiani DC, Gong MN. Statin therapy as prevention against development of acute respiratory distress syndrome: an observational study. Crit Care Med. 2012;40:1470. https://doi.org/10.1097/CCM.0b013e3182416d7a.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Bruyere R, Vigneron C, Prin S, et al. Impact of prior statin therapy on the outcome of patients with suspected ventilator-associated pneumonia: an observational study. Crit Care. 2014;18:R83. https://doi.org/10.1186/cc13845.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yadav H, Lingineni RK, Slivinski EJ, et al. Preoperative statin administration does not protect against early postoperative acute respiratory distress syndrome: a retrospective cohort study. Anesth Analg. 2014;119:891. https://doi.org/10.1213/ANE.0000000000000387.

    Article  PubMed  CAS  Google Scholar 

  78. Mansur A, Steinau M, Popov AF, et al. Impact of statin therapy on mortality in patients with sepsis-associated acute respiratory distress syndrome (ARDS) depends on ARDS severity: a prospective observational cohort study. BMC Med. 2015;13 https://doi.org/10.1186/s12916-015-0368-6.

  79. Holzhauser L, Hovnanians N, Eshtehardi P, et al. Statin therapy improves survival in patients with severe pulmonary hypertension: a propensity score matching study. Heart Vessel. 2017;32:969. https://doi.org/10.1007/s00380-017-0957-8.

    Article  Google Scholar 

  80. Kao PN. Simvastatin treatment of pulmonary hypertension: an observational case series. Chest. 2005;127:1446. https://doi.org/10.1378/chest.127.4.1446.

    Article  PubMed  CAS  Google Scholar 

  81. Shyamsundar M, McKeown STW, O’Kane CM, et al. Simvastatin decreases lipopolysaccharide-induced pulmonary inflammation in healthy volunteers. Am J Respir Crit Care Med. 2009;179:1107. https://doi.org/10.1164/rccm.200810-1584OC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wilkins MR, Ali O, Bradlow W, et al. Simvastatin as a treatment for pulmonary hypertension trial. Am J Respir Crit Care Med. 2010;181:1106. https://doi.org/10.1164/rccm.2009111-699OC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Reed RM, Iacono A, Defilippis A, et al. Statin therapy is associated with decreased pulmonary vascular pressures in severe COPD. COPD J Chronic Obstr Pulm Dis. 2011;8:96. https://doi.org/10.3109/15412555.2011.558545.

    Article  Google Scholar 

  84. Kawut SM, Bagiella E, Lederer DJ, et al. Randomized clinical trial of aspirin and simvastatin for pulmonary arterial hypertension: ASA-STAT. Circulation. 2011;123:2985. https://doi.org/10.1161/CIRCULATIONAHA.110.015693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. McAuley DF, Laffey JG, O’Kane CM, et al. Simvastatin in the acute respiratory distress syndrome. N Engl J Med. 2014;371:1695. https://doi.org/10.1056/NEJMoa1403285.

    Article  PubMed  CAS  Google Scholar 

  86. Barreto AC, Maeda NY, Soares RPS, Cícero C, Lopes AA. Rosuvastatin and vascular dysfunction markers in pulmonary arterial hypertension: a placebo-controlled study. Braz J Med Biol Res. 2008;41:657. https://doi.org/10.1590/S0100-879X2008000800003.

    Article  PubMed  CAS  Google Scholar 

  87. Dinglas VD, Hopkins RO, Wozniak AW, et al. One-year outcomes of rosuvastatin versus placebo in sepsis-associated acute respiratory distress syndrome: prospective follow-up of SAILS randomised trial. Thorax. 2016;71:401. https://doi.org/10.1136/thoraxjnl-2015-208017.

    Article  PubMed  Google Scholar 

  88. Chogtu B, Kuriachan S, Magazine R, et al. A prospective, randomized study: evaluation of the effect of rosuvastatin in patients with chronic obstructive pulmonary disease and pulmonary hypertension. Indian J Pharmacol. 2016;48:503. https://doi.org/10.4103/0253-7613.190721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Lee TM, Chen CC, Shen HN, Chang NC. Effects of pravastatin on functional capacity in patients with chronic obstructive pulmonary disease and pulmonary hypertension. Clin Sci. 2009;116:497. https://doi.org/10.1042/CS20080241.

    Article  CAS  Google Scholar 

  90. Zeng WJ, Xiong CM, Zhao L, et al. Atorvastatin in pulmonary arterial hypertension (APATH) study. Eur Respir J. 2012;40:67. https://doi.org/10.1183/09031936.00149011.

    Article  PubMed  CAS  Google Scholar 

  91. Liu HF, Qi XW, Ma LL, Yao DK, Wang L. Atorvastatin improves endothelial progenitor cell function and reduces pulmonary hypertension in patients with chronic pulmonary heart disease. Exp Clin Cardiol 2013.

    Google Scholar 

  92. Moosavi SAJ, Raji H, Faghankhani M, Yazdani R, Esmaeili M. Evaluation of the effects of atorvastatin on the treatment of secondary pulmonary hypertension due to chronic obstructive pulmonary diseases: a randomized controlled trial. Iran Red Crescent Med J. 2013;15:649. https://doi.org/10.5812/ircmj.8267.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Arian A, Moghadam SM, Kazemi T, Hajihosseini M. The effects of statins on pulmonary artery pressure in patients with chronic obstructive pulmonary disease: a randomized controlled trial. J Res Pharm Pract. 2017;6:27. https://doi.org/10.4103/2279-042x.200985.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Truwit JD, Bernard GR, Steingrub J, et al. Rosuvastatin for sepsis-associated acute respiratory distress syndrome. N Engl J Med. 2014;370:2191. https://doi.org/10.1056/NEJMoa1401520.

    Article  PubMed  CAS  Google Scholar 

  95. Bernard GR, Artigas A, Brigham KL, et al. The American-European consensus conference on ARDS: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149:818. https://doi.org/10.1164/ajrccm.149.3.7509706.

    Article  PubMed  CAS  Google Scholar 

  96. Truwit JD, Bernard GR, Steingrub J, et al. Sails: Statins for acutely injured lungs (ARDS) from sepsis. Am J Respir Crit Care Med. 2014;370:2191–200.

    Google Scholar 

  97. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012; https://doi.org/10.1001/jama.2012.5669.

  98. Sinha P, Calfee CS. Phenotypes in acute respiratory distress syndrome: moving towards precision medicine. Curr Opin Crit Care. 2019;25:12. https://doi.org/10.1097/MCC.0000000000000571.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014;2:611. https://doi.org/10.1016/S2213-2600(14)70097-9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Reilly JP, Meyer NJ. Pattern recognition in ARDS: a crucial first step toward personalised treatment. Lancet Respir Med. 2014;2:594. https://doi.org/10.1016/S2213-2600(14)70116-X.

    Article  PubMed  Google Scholar 

  101. Jabaudon M, Blondonnet R, Pereira B, et al. Plasma sRAGE is independently associated with increased mortality in ARDS: a meta-analysis of individual patient data. Intensive Care Med. 2018;44:1388. https://doi.org/10.1007/s00134-018-5327-1.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327. https://doi.org/10.1056/NEJMoa032193.

    Article  PubMed  Google Scholar 

  103. Famous KR, Delucchi K, Ware LB, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2017;195:331. https://doi.org/10.1164/rccm.201603-0645OC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Calfee CS, Delucchi KL, Sinha P, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med. 2018;6:691. https://doi.org/10.1016/S2213-2600(18)30177-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Heijnen NFL, Bergmans DCJJ, Schnabel RM, Bos LDJ. Targeted treatment of acute respiratory distress syndrome with statins — a commentary on two phenotype stratified re-analysis of randomized controlled trials. J Thorac Dis. 2019;11:S296. https://doi.org/10.21037/jtd.2019.01.23.

  106. Illingworth DR, Crouse JR, Hunninghake DB, et al. A comparison of simvastatin and atorvastatin up to maximal recommended doses in a large multicenter randomized clinical trial. Curr Med Res Opin. 2001;17:43. https://doi.org/10.1185/03007990152005351.

    Article  PubMed  CAS  Google Scholar 

  107. Sinha P, Delucchi KL, Thompson BT, McAuley DF, Matthay MA, Calfee CS. Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive Care Med. 2018;44:1859. https://doi.org/10.1007/s00134-018-5378-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Gbelcová H, Rimpelová S, Ruml T, et al. Variability in statin-induced changes in gene expression profiles of pancreatic cancer. Sci Rep. 2017;7 https://doi.org/10.1038/srep44219.

  109. Björkhem-Bergman L, Lindh JD, Bergman P. What is a relevant statin concentration in cell experiments claiming pleiotropic effects? Br J Clin Pharmacol. 2011;72:164. https://doi.org/10.1111/j.1365-2125.2011.03907.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Ichimura K, Matoba T, Koga JI, et al. Nanoparticle-mediated targeting of pitavastatin to small pulmonary arteries and leukocytes by intravenous administration attenuates the progression of monocrotaline-induced established pulmonary arterial hypertension in rats. Int Heart J. 2018;59:1432. https://doi.org/10.1536/ihj.17-683.

    Article  PubMed  CAS  Google Scholar 

  111. Chen L, Nakano K, Kimura S, et al. Nanoparticle-mediated delivery of pitavastatin into lungs ameliorates the development and induces regression of monocrotaline-induced pulmonary artery hypertension. Hypertension. 2011;57:343. https://doi.org/10.1161/HYPERTENSIONAHA.110.157032.

    Article  PubMed  CAS  Google Scholar 

  112. Jacobson JR, Barnard JW, Grigoryev DN, Ma SF, Tuder RM, Garcia JGN. Simvastatin attenuates vascular leak and inflammation in murine inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol. 2005;288:L1026. https://doi.org/10.1152/ajplung.00354.2004.

    Article  PubMed  CAS  Google Scholar 

  113. Kaye JA, Jick H. Statin use and cancer risk in the general practice research database. Br J Cancer. 2004;90:635. https://doi.org/10.1038/sj.bjc.6601566.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA. Statins and the risk of dementia. Lancet. 2000;356:1627. https://doi.org/10.1016/S0140-6736(00)03155-X.

    Article  PubMed  CAS  Google Scholar 

  115. Holbrook A, Wright M, Sung M, Ribic CBS. Statin-associated rhabdomyolysis: is there a dose-response relationship? Can J Cardiol. 2011;27(2):146–51.

    Article  CAS  PubMed  Google Scholar 

  116. Nakashiro S, Matoba T, Umezu R, et al. Pioglitazone-incorporated nanoparticles prevent plaque destabilization and rupture by regulating monocyte/macrophage differentiation in ApoE −/−Mice. Arterioscler Thromb Vasc Biol. 2016;36:491. https://doi.org/10.1161/ATVBAHA.115.307057.

    Article  PubMed  CAS  Google Scholar 

  117. Nakano K, Matoba T, Koga JI, et al. Safety, tolerability, and pharmacokinetics of NK-104-NP a multicenter, randomized, placebo-controlled phase I investigator-initiated trial for intravenous administration of pitavastatin-loaded plga nanoparticles (Nk-104-NP) in healthy Japanese male subjects. Int Heart J. 2018;59:1015. https://doi.org/10.1536/ihj.17-555.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen M. Black or Ting Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faraj, R., Paine, D., Black, S.M., Wang, T. (2021). Anti-inflammatory Effects of Statins in Lung Vascular Pathology: From Basic Science to Clinical Trials. In: Wang, YX. (eds) Lung Inflammation in Health and Disease, Volume I. Advances in Experimental Medicine and Biology, vol 1303. Springer, Cham. https://doi.org/10.1007/978-3-030-63046-1_3

Download citation

Publish with us

Policies and ethics