Skip to main content

Galectin-3 Promotes ROS, Inflammation, and Vascular Fibrosis in Pulmonary Arterial Hypertension

  • Chapter
  • First Online:
Lung Inflammation in Health and Disease, Volume I

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1303))

Abstract

Pulmonary Arterial Hypertension (PAH) is a progressive vascular disease arising from the narrowing of pulmonary arteries (PA) resulting in high pulmonary arterial blood pressure and ultimately right ventricular (RV) failure. A defining characteristic of PAH is the excessive remodeling of PA that includes increased proliferation, inflammation, and fibrosis. There is no cure for PAH nor interventions that effectively impede or reverse PA remodeling, and research over the past several decades has sought to identify novel molecular mechanisms of therapeutic benefit. Galectin-3 (Gal-3; Mac-2) is a carbohydrate-binding lectin that is remarkable for its chimeric structure, comprised of an N-terminal oligomerization domain and a C-terminal carbohydrate-recognition domain. Gal-3 is a regulator of changes in cell behavior that contribute to aberrant PA remodeling including cell proliferation, inflammation, and fibrosis, but its role in PAH is poorly understood. Herein, we summarize the recent literature on the role of Gal-3 in the development of PAH and provide experimental evidence supporting the ability of Gal-3 to influence reactive oxygen species (ROS) production, NOX enzyme expression, inflammation, and fibrosis, which contributes to PA remodeling. Finally, we address the clinical significance of Gal-3 as a target in the development of therapeutic agents as a treatment for PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galie N, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37:67–119. https://doi.org/10.1093/eurheartj/ehv317.

    Article  PubMed  Google Scholar 

  2. Coons JC, Pogue K, Kolodziej AR, Hirsch GA, George MP. Pulmonary arterial hypertension: a pharmacotherapeutic update. Curr Cardiol Rep. 2019;21:141.

    Article  PubMed  Google Scholar 

  3. Fulton RM, Hutchinson EC, Jones AM. Ventricular weight in cardiac hypertrophy. Br Heart J. 1952;14:413–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Houssaini A, et al. Rapamycin reverses pulmonary artery smooth muscle cell proliferation in pulmonary hypertension. Am J Respir Cell Mol Biol. 2013;48:568–77. https://doi.org/10.1165/rcmb.2012-0429OC.

    Article  PubMed  CAS  Google Scholar 

  5. Stenmark KR, Davie N, Frid M, Gerasimovskaya E, Das M. Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda). 2006;21:134–45. https://doi.org/10.1152/physiol.00053.2005. 21/2/134 [pii].

    Article  CAS  Google Scholar 

  6. Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Phys Lung Cell Mol Phys. 2009;297:L1013–32. https://doi.org/10.1152/ajplung.00217.2009.

    Article  CAS  Google Scholar 

  7. Hassoun PM, et al. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol. 2009;54:S10–9. https://doi.org/10.1016/j.jacc.2009.04.006.

    Article  PubMed  CAS  Google Scholar 

  8. Todorovich-Hunter L, Johnson DJ, Ranger P, Keeley FW, Rabinovitch M. Altered elastin and collagen synthesis associated with progressive pulmonary hypertension induced by monocrotaline. A biochemical and ultrastructural study. Lab Investig. 1988;58:184–95.

    PubMed  CAS  Google Scholar 

  9. Rabinovitch M. Pathobiology of pulmonary hypertension. Annu Rev Pathol. 2007;2:369–99. https://doi.org/10.1146/annurev.pathol.2.010506.092033.

    Article  PubMed  CAS  Google Scholar 

  10. Milnor WR. Arterial impedance as ventricular afterload. Circ Res. 1975;36:565–70.

    Article  PubMed  CAS  Google Scholar 

  11. Vonk-Noordegraaf A, et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62:D22–33. https://doi.org/10.1016/j.jacc.2013.10.027.

    Article  PubMed  Google Scholar 

  12. Fenster BE, et al. Galectin-3 levels are associated with right ventricular functional and morphologic changes in pulmonary arterial hypertension. Heart Vessel. 2016;31:939–46. https://doi.org/10.1007/s00380-015-0691-z.

    Article  Google Scholar 

  13. van Wolferen SA, et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007;28:1250–7. https://doi.org/10.1093/eurheartj/ehl477.

    Article  PubMed  Google Scholar 

  14. Benza RL, et al. Predicting survival in pulmonary arterial hypertension: insights from the registry to evaluate early and long-term pulmonary arterial hypertension disease management (REVEAL). Circulation. 2010;122:164–72. https://doi.org/10.1161/circulationaha.109.898122.

    Article  PubMed  Google Scholar 

  15. Girgis RE. Predicting long-term survival in pulmonary arterial hypertension: more than just pulmonary vascular resistance. J Am Coll Cardiol. 2011;58:2520–1. https://doi.org/10.1016/j.jacc.2011.09.018.

    Article  PubMed  Google Scholar 

  16. Humbert M, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol. 2004;43:13S–24S. https://doi.org/10.1016/j.jacc.2004.02.029. S0735109704004383 [pii].

    Article  PubMed  CAS  Google Scholar 

  17. Otsuki S, et al. Potential contribution of phenotypically modulated smooth muscle cells and related inflammation in the development of experimental obstructive pulmonary vasculopathy in rats. PLoS One. 2015;10:e0118655. https://doi.org/10.1371/journal.pone.0118655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Voelkel NF, Tuder RM. Cellular and molecular mechanisms in the pathogenesis of severe pulmonary hypertension. Eur Respir J. 1995;8:2129–38.

    Article  PubMed  CAS  Google Scholar 

  19. Morrell NW, et al. Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-beta(1) and bone morphogenetic proteins. Circulation. 2001;104:790–5.

    Article  PubMed  CAS  Google Scholar 

  20. Runo JR, Loyd JE. Primary pulmonary hypertension. Lancet (Lond, Engl). 2003;361:1533–44. https://doi.org/10.1016/s0140-6736(03)13167-4.

    Article  Google Scholar 

  21. Perros F, et al. Dendritic cell recruitment in lesions of human and experimental pulmonary hypertension. Eur Respir J. 2007;29:462–8. https://doi.org/10.1183/09031936.00094706.

    Article  PubMed  CAS  Google Scholar 

  22. Schafer M, et al. Pulmonary arterial stiffness: toward a new paradigm in pulmonary arterial hypertension pathophysiology and assessment. Curr Hypertens Rep. 2016;18:4. https://doi.org/10.1007/s11906-015-0609-2.

    Article  PubMed  CAS  Google Scholar 

  23. Battegay EJ, Raines EW, Seifert RA, Bowen-Pope DF, Ross R. TGF-beta induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell. 1990;63:515–24. https://doi.org/10.1016/0092-8674(90)90448-n. 0092-8674(90)90448-N [pii].

    Article  PubMed  CAS  Google Scholar 

  24. Medarametla V, et al. PK10453, a nonselective platelet-derived growth factor receptor inhibitor, prevents the progression of pulmonary arterial hypertension. Pulm Circ. 2014;4:82–102. https://doi.org/10.1086/674881.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Fulton DJR, et al. Reactive oxygen and nitrogen species in the development of pulmonary hypertension. Antioxidants (Basel, Switz). 2017;6:54. https://doi.org/10.3390/antiox6030054.

    Article  CAS  Google Scholar 

  26. Zhang S, et al. Oxidative stress and nitric oxide signaling related biomarkers in patients with pulmonary hypertension: a case control study. BMC Pulm Med. 2015;15:50. https://doi.org/10.1186/s12890-015-0045-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Reis GS, et al. Oxidative-stress biomarkers in patients with pulmonary hypertension. Pulm Circ. 2013;3:856–61. https://doi.org/10.1086/674764.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Irodova NL, Lankin VZ, Konovalova GK, Kochetov AG, Chazova IE. Oxidative stress in patients with primary pulmonary hypertension. Bull Exp Biol Med. 2002;133:580–2.

    Article  PubMed  CAS  Google Scholar 

  29. Hoshikawa Y, et al. Generation of oxidative stress contributes to the development of pulmonary hypertension induced by hypoxia. J Appl Physiol (1985). 2001;90:1299–306. https://doi.org/10.1152/jappl.2001.90.4.1299.

    Article  CAS  Google Scholar 

  30. Dorfmuller P, et al. Increased oxidative stress and severe arterial remodeling induced by permanent high-flow challenge in experimental pulmonary hypertension. Respir Res. 2011;12:119. https://doi.org/10.1186/1465-9921-12-119. 1465-9921-12-119 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cracowski JL, et al. Increased lipid peroxidation in patients with pulmonary hypertension. Am J Respir Crit Care Med. 2001;164:1038–42. https://doi.org/10.1164/ajrccm.164.6.2104033.

    Article  PubMed  CAS  Google Scholar 

  32. Bowers R, et al. Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med. 2004;169:764–9. https://doi.org/10.1164/rccm.200301-147OC. 200301-147OC [pii].

    Article  PubMed  Google Scholar 

  33. Frazziano G, Champion HC, Pagano PJ. NADPH oxidase-derived ROS and the regulation of pulmonary vessel tone. Am J Physiol Heart Circ Physiol. 2012;302:H2166–77. https://doi.org/10.1152/ajpheart.00780.2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Barman SA, et al. NADPH oxidase 4 is expressed in pulmonary artery adventitia and contributes to hypertensive vascular remodeling. Arterioscler Thromb Vasc Biol. 2014;34:1704–15. https://doi.org/10.1161/ATVBAHA.114.303848.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Nisimoto Y, Jackson HM, Ogawa H, Kawahara T, Lambeth JD. Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain. Biochemistry. 2010;49:2433–42. https://doi.org/10.1021/bi9022285.

    Article  PubMed  CAS  Google Scholar 

  36. Chen F, Haigh S, Barman S, Fulton DJ. From form to function: the role of Nox4 in the cardiovascular system. Front Physiol. 2012;3:412. https://doi.org/10.3389/fphys.2012.00412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mittal M, et al. Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res. 2007;101:258–67. https://doi.org/10.1161/CIRCRESAHA.107.148015. CIRCRESAHA.107.148015 [pii].

    Article  PubMed  CAS  Google Scholar 

  38. Green DE, et al. The Nox4 inhibitor, GKT137831, attenuates hypoxia-induced pulmonary vascular cell proliferation. Am J Respir Cell Mol Biol. 2012;47(5):718–26. https://doi.org/10.1165/rcmb.2011-0418OC. rcmb.2011-0418OC [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Nisbet RE, et al. The role of NADPH oxidase in chronic intermittent hypoxia-induced pulmonary hypertension in mice. Am J Respir Cell Mol Biol. 2009;40:601–9. https://doi.org/10.1165/2008-0145OC. 2008-0145OC [pii].

    Article  PubMed  CAS  Google Scholar 

  40. Veith C, et al. NADPH oxidase 4 is not involved in hypoxia-induced pulmonary hypertension. Pulm Circ. 2016;6:397–400. https://doi.org/10.1086/687756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sturrock A, et al. Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Phys Lung Cell Mol Phys. 2006;290:L661–73. https://doi.org/10.1152/ajplung.00269.2005.

    Article  CAS  Google Scholar 

  42. Ismail S, et al. NOX4 mediates hypoxia-induced proliferation of human pulmonary artery smooth muscle cells: the role of autocrine production of transforming growth factor-{beta}1 and insulin-like growth factor binding protein-3. Am J Phys Lung Cell Mol Phys. 2009;296:L489–99. https://doi.org/10.1152/ajplung.90488.2008.

    Article  CAS  Google Scholar 

  43. Ago T, et al. Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation. 2004;109:227–33. https://doi.org/10.1161/01.CIR.0000105680.92873.7001. CIR.0000105680.92873.70 [pii].

    Article  PubMed  CAS  Google Scholar 

  44. Sorescu D, et al. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation. 2002;105:1429–35.

    Article  PubMed  CAS  Google Scholar 

  45. Schroder K, et al. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res. 2012;110:1217–25. https://doi.org/10.1161/CIRCRESAHA.112.267054. CIRCRESAHA.112.267054 [pii].

    Article  PubMed  CAS  Google Scholar 

  46. Craige SM, et al. NADPH oxidase 4 promotes endothelial angiogenesis through endothelial nitric oxide synthase activation. Circulation. 2011;124:731–40. https://doi.org/10.1161/CIRCULATIONAHA.111.030775. CIRCULATIONAHA.111.030775 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hecker L, et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med. 2009;15:1077–81. https://doi.org/10.1038/nm.2005. nm.2005 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhao QD, et al. NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFkappaB signaling pathways. Circulation. 2015;131:643–55. https://doi.org/10.1161/circulationaha.114.011079.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Benza RL, et al. An evaluation of long-term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL registry. Chest. 2012;142:448–56. https://doi.org/10.1378/chest.11-1460.

    Article  PubMed  Google Scholar 

  50. Schermuly RT, et al. Inhaled iloprost reverses vascular remodeling in chronic experimental pulmonary hypertension. Am J Respir Crit Care Med. 2005;172:358–63. https://doi.org/10.1164/rccm.200502-296OC. 200502-296OC [pii].

    Article  PubMed  Google Scholar 

  51. Pullamsetti SS, Savai R, Seeger W, Goncharova EA. Translational advances in the field of pulmonary hypertension. From cancer biology to new pulmonary arterial hypertension therapeutics. Targeting cell growth and proliferation signaling hubs. Am J Respir Crit Care Med. 2017;195:425–37. https://doi.org/10.1164/rccm.201606-1226PP.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Di Lella S, et al. When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry. 2011;50:7842–57. https://doi.org/10.1021/bi201121m.

    Article  PubMed  CAS  Google Scholar 

  53. Roff CF, Wang JL. Endogenous lectins from cultured cells. Isolation and characterization of carbohydrate-binding proteins from 3T3 fibroblasts. J Biol Chem. 1983;258:10657–63.

    Article  PubMed  CAS  Google Scholar 

  54. Crittenden SL, Roff CF, Wang JL. Carbohydrate-binding protein 35: identification of the galactose-specific lectin in various tissues of mice. Mol Cell Biol. 1984;4:1252–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Jia S, et al. Carbohydrate-binding protein 35: molecular cloning and expression of a recombinant polypeptide with lectin activity in Escherichia coli. Gene. 1987;60:197–204.

    Article  PubMed  CAS  Google Scholar 

  56. Moutsatsos IK, Wade M, Schindler M, Wang JL. Endogenous lectins from cultured cells: nuclear localization of carbohydrate-binding protein 35 in proliferating 3T3 fibroblasts. Proc Natl Acad Sci U S A. 1987;84:6452–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Cowles EA, Moutsatsos IK, Wang JL, Anderson RL. Expression of carbohydrate binding protein 35 in human fibroblasts: comparisons between cells with different proliferative capacities. Exp Gerontol. 1989;24:577–85.

    Article  PubMed  CAS  Google Scholar 

  58. Cherayil BJ, Weiner SJ, Pillai S. The Mac-2 antigen is a galactose-specific lectin that binds IgE. J Exp Med. 1989;170:1959–72.

    Article  PubMed  CAS  Google Scholar 

  59. Woo HJ, Shaw LM, Messier JM, Mercurio AM. The major non-integrin laminin binding protein of macrophages is identical to carbohydrate binding protein 35 (Mac-2). J Biol Chem. 1990;265:7097–9.

    Article  PubMed  CAS  Google Scholar 

  60. Nachtigal M, Al-Assaad Z, Mayer EP, Kim K, Monsigny M. Galectin-3 expression in human atherosclerotic lesions. Am J Pathol. 1998;152:1199–208.

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Arar C, Gaudin JC, Capron L, Legrand A. Galectin-3 gene (LGALS3) expression in experimental atherosclerosis and cultured smooth muscle cells. FEBS Lett. 1998;430:307–11.

    Article  PubMed  CAS  Google Scholar 

  62. Nangia-Makker P, et al. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol. 2000;156:899–909. https://doi.org/10.1016/S0002-9440(10)64959-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Joo HG, et al. Expression and function of galectin-3, a beta-galactoside-binding protein in activated T lymphocytes. J Leukoc Biol. 2001;69:555–64.

    Article  PubMed  CAS  Google Scholar 

  64. Huflejt ME, Turck CW, Lindstedt R, Barondes SH, Leffler H. L-29, a soluble lactose-binding lectin, is phosphorylated on serine 6 and serine 12 in vivo and by casein kinase I. J Biol Chem. 1993;268:26712–8.

    Article  PubMed  CAS  Google Scholar 

  65. Kaltner H, Seyrek K, Heck A, Sinowatz F, Gabius HJ. Galectin-1 and galectin-3 in fetal development of bovine respiratory and digestive tracts. Comparison of cell type-specific expression profiles and subcellular localization. Cell Tissue Res. 2002;307:35–46. https://doi.org/10.1007/s004410100457.

    Article  PubMed  CAS  Google Scholar 

  66. Lee EC, Woo HJ, Korzelius CA, Steele GD Jr, Mercurio AM. Carbohydrate-binding protein 35 is the major cell-surface laminin-binding protein in colon carcinoma. Arch Surg (Chicago Ill: 1960). 1991;126:1498–502.

    Article  CAS  Google Scholar 

  67. Woo HJ, Lotz MM, Jung JU, Mercurio AM. Carbohydrate-binding protein 35 (Mac-2), a laminin-binding lectin, forms functional dimers using cysteine 186. J Biol Chem. 1991;266:18419–22.

    Article  PubMed  CAS  Google Scholar 

  68. Halimi H, et al. Glycan dependence of Galectin-3 self-association properties. PLoS One. 2014;9:e111836. https://doi.org/10.1371/journal.pone.0111836.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lepur A, Salomonsson E, Nilsson UJ, Leffler H. Ligand induced galectin-3 protein self-association. J Biol Chem. 2012;287:21751–6. https://doi.org/10.1074/jbc.C112.358002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Liu FT, et al. Modulation of functional properties of galectin-3 by monoclonal antibodies binding to the non-lectin domains. Biochemistry. 1996;35:6073–9. https://doi.org/10.1021/bi952716q.

    Article  PubMed  CAS  Google Scholar 

  71. Ippel H, et al. Intra- and intermolecular interactions of human galectin-3: assessment by full-assignment-based NMR. Glycobiology. 2016;26:888–903. https://doi.org/10.1093/glycob/cww021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Sundqvist M, et al. Galectin-3 type-C self-association on neutrophil surfaces; the carbohydrate recognition domain regulates cell function. J Leukoc Biol. 2018;103:341–53. https://doi.org/10.1002/jlb.3a0317-110r.

    Article  PubMed  CAS  Google Scholar 

  73. Mehul B, Bawumia S, Hughes RC. Cross-linking of galectin 3, a galactose-binding protein of mammalian cells, by tissue-type transglutaminase. FEBS Lett. 1995;360:160–4.

    Article  PubMed  CAS  Google Scholar 

  74. van den Brule FA, Liu FT, Castronovo V. Transglutaminase-mediated oligomerization of galectin-3 modulates human melanoma cell interactions with laminin. Cell Adhes Commun. 1998;5:425–35.

    Article  PubMed  Google Scholar 

  75. Akahani S, Nangia-Makker P, Inohara H, Kim HR, Raz A. Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res. 1997;57:5272–6.

    PubMed  CAS  Google Scholar 

  76. Hughes RC. Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta. 1999;1473:172–85.

    Article  PubMed  CAS  Google Scholar 

  77. Banfer S, et al. Molecular mechanism to recruit galectin-3 into multivesicular bodies for polarized exosomal secretion. Proc Natl Acad Sci U S A. 2018;115:E4396–e4405. https://doi.org/10.1073/pnas.1718921115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Sato S, Burdett I, Hughes RC. Secretion of the baby hamster kidney 30-kDa galactose-binding lectin from polarized and nonpolarized cells: a pathway independent of the endoplasmic reticulum-Golgi complex. Exp Cell Res. 1993;207:8–18. https://doi.org/10.1006/excr.1993.1157.

    Article  PubMed  CAS  Google Scholar 

  79. Stewart SE, et al. A genome-wide CRISPR screen reconciles the role of N-linked glycosylation in galectin-3 transport to the cell surface. J Cell Sci. 2017;130:3234–47. https://doi.org/10.1242/jcs.206425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Lukyanov P, Furtak V, Ochieng J. Galectin-3 interacts with membrane lipids and penetrates the lipid bilayer. Biochem Biophys Res Commun. 2005;338:1031–6. https://doi.org/10.1016/j.bbrc.2005.10.033.

    Article  PubMed  CAS  Google Scholar 

  81. Ochieng J, Green B, Evans S, James O, Warfield P. Modulation of the biological functions of galectin-3 by matrix metalloproteinases. Biochim Biophys Acta. 1998;1379:97–106.

    Article  PubMed  CAS  Google Scholar 

  82. Gao X, Liu J, Liu X, Li L, Zheng J. Cleavage and phosphorylation: important post-translational modifications of galectin-3. Cancer Metastasis Rev. 2017;36:367–74. https://doi.org/10.1007/s10555-017-9666-0.

    Article  PubMed  CAS  Google Scholar 

  83. Balan V, Nangia-Makker P, Kho DH, Wang Y, Raz A. Tyrosine-phosphorylated galectin-3 protein is resistant to prostate-specific antigen (PSA) cleavage. J Biol Chem. 2012;287:5192–8. https://doi.org/10.1074/jbc.C111.331686.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Balan V, Nangia-Makker P, Jung YS, Wang Y, Raz A. Galectin-3: a novel substrate for c-Abl kinase. Biochim Biophys Acta. 2010;1803:1198–205. https://doi.org/10.1016/j.bbamcr.2010.06.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Takenaka Y, et al. Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Mol Cell Biol. 2004;24:4395–406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Yoshii T, et al. Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J Biol Chem. 2002;277:6852–7. https://doi.org/10.1074/jbc.M107668200.

    Article  PubMed  CAS  Google Scholar 

  87. Stillman BN, et al. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol. 2006;176:778–89.

    Article  PubMed  CAS  Google Scholar 

  88. Newlaczyl AU, Yu LG. Galectin-3 – a jack-of-all-trades in cancer. Cancer Lett. 2011;313:123–8. https://doi.org/10.1016/j.canlet.2011.09.003.

  89. Ochieng J, Furtak V, Lukyanov P. Extracellular functions of galectin-3. Glycoconj J. 2004;19:527–35. https://doi.org/10.1023/B:GLYC.0000014082.99675.2f. 5256157 [pii].

    Article  Google Scholar 

  90. Dumic J, Dabelic S, Flogel M. Galectin-3: an open-ended story. Biochim Biophys Acta. 2006;1760:616–35. https://doi.org/10.1016/j.bbagen.2005.12.020.

    Article  PubMed  CAS  Google Scholar 

  91. Rossez Y, et al. Interaction between DMBT1 and galectin 3 is modulated by the structure of the oligosaccharides carried by DMBT1. Biochimie. 2011;93:593–603. https://doi.org/10.1016/j.biochi.2010.12.002.

    Article  PubMed  CAS  Google Scholar 

  92. Honig E, et al. Galectin-3 modulates the polarized surface delivery of beta1-integrin in epithelial cells. J Cell Sci. 2018;131(11):jcs213199. https://doi.org/10.1242/jcs.213199.

    Article  PubMed  CAS  Google Scholar 

  93. Markowska AI, Jefferies KC, Panjwani N. Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells. J Biol Chem. 2011;286:29913–21. https://doi.org/10.1074/jbc.M111.226423. M111.226423 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Chauhan S, et al. TRIMs and galectins globally cooperate and TRIM16 and galectin-3 Co-direct autophagy in endomembrane damage homeostasis. Dev Cell. 2016;39:13–27. https://doi.org/10.1016/j.devcel.2016.08.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Collins PM, Bum-Erdene K, Yu X, Blanchard H. Galectin-3 interactions with glycosphingolipids. J Mol Biol. 2014;426:1439–51. https://doi.org/10.1016/j.jmb.2013.12.004.

    Article  PubMed  CAS  Google Scholar 

  96. Dagher SF, Wang JL, Patterson RJ. Identification of galectin-3 as a factor in pre-mRNA splicing. Proc Natl Acad Sci U S A. 1995;92:1213–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Inohara H, Akahani S, Raz A. Galectin-3 stimulates cell proliferation. Exp Cell Res. 1998;245:294–302. https://doi.org/10.1006/excr.1998.4253. S0014-4827(98)94253-7 [pii].

    Article  PubMed  CAS  Google Scholar 

  98. Henderson NC, et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A. 2006;103:5060–5. https://doi.org/10.1073/pnas.0511167103. 0511167103 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Henderson NC, et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol. 2008;172:288–98. https://doi.org/10.2353/ajpath.2008.070726. S0002-9440(10)61796-8 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Calvier L, et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol. 2013;33:67–75. https://doi.org/10.1161/ATVBAHA.112.300569.

    Article  PubMed  CAS  Google Scholar 

  101. Yu LG. Circulating galectin-3 in the bloodstream: an emerging promoter of cancer metastasis. World J Gastrointest Oncol. 2010;2:177–80. https://doi.org/10.4251/wjgo.v2.i4.177.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Iurisci I, et al. Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin Cancer Res. 2000;6:1389–93.

    PubMed  CAS  Google Scholar 

  103. Papaspyridonos M, et al. Galectin-3 is an amplifier of inflammation in atherosclerotic plaque progression through macrophage activation and monocyte chemoattraction. Arterioscler Thromb Vasc Biol. 2008;28:433–40. https://doi.org/10.1161/ATVBAHA.107.159160.

    Article  PubMed  CAS  Google Scholar 

  104. Neidhart M, et al. Galectin-3 is induced in rheumatoid arthritis synovial fibroblasts after adhesion to cartilage oligomeric matrix protein. Ann Rheum Dis. 2005;64:419–24. https://doi.org/10.1136/ard.2004.023135. ard.2004.023135 [pii].

    Article  PubMed  CAS  Google Scholar 

  105. Harrison SA, et al. Randomised clinical study: GR-MD-02, a galectin-3 inhibitor, vs. placebo in patients having non-alcoholic steatohepatitis with advanced fibrosis. Aliment Pharmacol Ther. 2016;44:1183–98. https://doi.org/10.1111/apt.13816.

    Article  PubMed  CAS  Google Scholar 

  106. Traber PG, et al. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One. 2013;8:e75361. https://doi.org/10.1371/journal.pone.0075361. PONE-D-13-22440 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Traber PG, Zomer E. Therapy of experimental NASH and fibrosis with galectin inhibitors. PLoS One. 2013;8:e83481. https://doi.org/10.1371/journal.pone.0083481. PONE-D-13-37100 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Song X, et al. Protein kinase C promotes cardiac fibrosis and heart failure by modulating galectin-3 expression. Biochim Biophys Acta. 2015;1853:513–21. https://doi.org/10.1016/j.bbamcr.2014.12.001.

    Article  PubMed  CAS  Google Scholar 

  109. Nishi Y, et al. Role of galectin-3 in human pulmonary fibrosis. Allergol Int. 2007;56:57–65. https://doi.org/10.2332/allergolint.O-06-449.

    Article  PubMed  CAS  Google Scholar 

  110. Lajoie P, et al. Plasma membrane domain organization regulates EGFR signaling in tumor cells. J Cell Biol. 2007;179:341–56. https://doi.org/10.1083/jcb.200611106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Vlassara H, et al. Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE): a new member of the AGE-receptor complex. Mol Med. 1995;1:634–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Pricci F, et al. Role of galectin-3 as a receptor for advanced glycosylation end products. Kidney Int Suppl. 2000;77:S31–9.

    Article  PubMed  CAS  Google Scholar 

  113. Dalton P, Christian HC, Redman CW, Sargent IL, Boyd CA. Membrane trafficking of CD98 and its ligand galectin 3 in BeWo cells – implication for placental cell fusion. FEBS J. 2007;274:2715–27. https://doi.org/10.1111/j.1742-4658.2007.05806.x.

  114. Dong S, Hughes RC. Macrophage surface glycoproteins binding to galectin-3 (Mac-2-antigen). Glycoconj J. 1997;14:267–74.

    Article  PubMed  CAS  Google Scholar 

  115. Xue J, et al. Regulation of galectin-3-induced apoptosis of Jurkat cells by both O-glycans and N-glycans on CD45. FEBS Lett. 2013;587:3986–94. https://doi.org/10.1016/j.febslet.2013.10.034.

    Article  PubMed  CAS  Google Scholar 

  116. Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential. Expert Rev Mol Med. 2008;10:e17. https://doi.org/10.1017/s1462399408000719.

    Article  PubMed  Google Scholar 

  117. Margadant C, van den Bout I, van Boxtel AL, Thijssen VL, Sonnenberg A. Epigenetic regulation of galectin-3 expression by beta1 integrins promotes cell adhesion and migration. J Biol Chem. 2012;287:44684–93. https://doi.org/10.1074/jbc.M112.426445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Piccolo E, et al. LGALS3BP, lectin galactoside-binding soluble 3 binding protein, induces vascular endothelial growth factor in human breast cancer cells and promotes angiogenesis. J Mol Med (Berl). 2013;91:83–94. https://doi.org/10.1007/s00109-012-0936-6.

    Article  CAS  Google Scholar 

  119. Inohara H, Akahani S, Koths K, Raz A. Interactions between galectin-3 and Mac-2-binding protein mediate cell-cell adhesion. Cancer Res. 1996;56:4530–4.

    PubMed  CAS  Google Scholar 

  120. Loimaranta V, Hepojoki J, Laaksoaho O, Pulliainen AT. Galectin-3-binding protein: a multitask glycoprotein with innate immunity functions in viral and bacterial infections. J Leukoc Biol. 2018;104:777–86. https://doi.org/10.1002/jlb.3vmr0118-036r.

    Article  PubMed  CAS  Google Scholar 

  121. Muller SA, et al. Domain organization of Mac-2 binding protein and its oligomerization to linear and ring-like structures. J Mol Biol. 1999;291:801–13. https://doi.org/10.1006/jmbi.1999.2996.

    Article  PubMed  CAS  Google Scholar 

  122. Haudek KC, Voss PG, Locascio LE, Wang JL, Patterson RJ. A mechanism for incorporation of galectin-3 into the spliceosome through its association with U1 snRNP. Biochemistry. 2009;48:7705–12. https://doi.org/10.1021/bi900071b.

    Article  PubMed  CAS  Google Scholar 

  123. Seczynska M, Dikic I. Removing the waste bags: how p97 drives autophagy of lysosomes. EMBO J. 2017;36:129–31. https://doi.org/10.15252/embj.201695950.

    Article  PubMed  CAS  Google Scholar 

  124. Aits S, et al. Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay. Autophagy. 2015;11:1408–24. https://doi.org/10.1080/15548627.2015.1063871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Pascua-Maestro R, Diez-Hermano S, Lillo C, Ganfornina MD, Sanchez D. Protecting cells by protecting their vulnerable lysosomes: identification of a new mechanism for preserving lysosomal functional integrity upon oxidative stress. PLoS Genet. 2017;13:e1006603. https://doi.org/10.1371/journal.pgen.1006603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140:871–82. https://doi.org/10.1016/j.cell.2010.02.029.

    Article  PubMed  CAS  Google Scholar 

  127. Sato S, et al. Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J Immunol. 2002;168:1813–22.

    Article  PubMed  CAS  Google Scholar 

  128. Fermino ML, et al. LPS-induced galectin-3 oligomerization results in enhancement of neutrophil activation. PLoS One. 2011;6:e26004. https://doi.org/10.1371/journal.pone.0026004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Park AM, Hagiwara S, Hsu DK, Liu FT, Yoshie O. Galectin-3 plays an important role in innate immunity to gastric infection by Helicobacter pylori. Infect Immun. 2016;84:1184–93. https://doi.org/10.1128/iai.01299-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. da Silva AA, et al. Galectin-3: a friend but not a foe during Trypanosoma cruzi experimental infection. Front Cell Infect Microbiol. 2017;7:463. https://doi.org/10.3389/fcimb.2017.00463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Diaz-Alvarez L, Ortega E. The many roles of galectin-3, a multifaceted molecule, in innate immune responses against pathogens. Mediat Inflamm. 2017;2017:9247574. https://doi.org/10.1155/2017/9247574.

    Article  CAS  Google Scholar 

  132. Hsu DK, Hammes SR, Kuwabara I, Greene WC, Liu FT. Human T lymphotropic virus-I infection of human T lymphocytes induces expression of the beta-galactoside-binding lectin, galectin-3. Am J Pathol. 1996;148:1661–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  133. Frigeri LG, Zuberi RI, Liu FT. Epsilon BP, a beta-galactoside-binding animal lectin, recognizes IgE receptor (Fc epsilon RI) and activates mast cells. Biochemistry. 1993;32:7644–9.

    Article  PubMed  CAS  Google Scholar 

  134. Sano H, et al. Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol. 2000;165:2156–64. https://doi.org/10.4049/jimmunol.165.4.2156.

    Article  PubMed  CAS  Google Scholar 

  135. Yamaoka A, Kuwabara I, Frigeri LG, Liu FT. A human lectin, galectin-3 (epsilon bp/Mac-2), stimulates superoxide production by neutrophils. J Immunol. 1995;154:3479–87.

    Article  PubMed  CAS  Google Scholar 

  136. MacKinnon AC, et al. Regulation of alternative macrophage activation by galectin-3. J Immunol. 2008;180:2650–8.

    Article  PubMed  CAS  Google Scholar 

  137. Sano H, et al. Critical role of galectin-3 in phagocytosis by macrophages. J Clin Invest. 2003;112:389–97. https://doi.org/10.1172/JCI17592.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Feeley EM, et al. Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. Proc Natl Acad Sci U S A. 2017;114:E1698–e1706. https://doi.org/10.1073/pnas.1615771114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Nita-Lazar M, et al. Desialylation of airway epithelial cells during influenza virus infection enhances pneumococcal adhesion via galectin binding. Mol Immunol. 2015;65:1–16. https://doi.org/10.1016/j.molimm.2014.12.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Sciacchitano S, et al. Galectin-3: one molecule for an alphabet of diseases, from A to Z. Int J Mol Sci. 2018;19(2):379. https://doi.org/10.3390/ijms19020379.

    Article  PubMed Central  CAS  Google Scholar 

  141. Kasper M, Hughes RC. Immunocytochemical evidence for a modulation of galectin 3 (Mac-2), a carbohydrate binding protein, in pulmonary fibrosis. J Pathol. 1996;179:309–16. https://doi.org/10.1002/(sici)1096-9896(199607)179:3<309::Aid-path572>3.0.Co;2-d.

    Article  PubMed  CAS  Google Scholar 

  142. Bennett GA, Smith FJ. Pulmonary hypertension in rats living under compressed air conditions. J Exp Med. 1934;59:181–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Calvier L, et al. Galectin-3 and aldosterone as potential tandem biomarkers in pulmonary arterial hypertension. Heart. 2016;102:390–6. https://doi.org/10.1136/heartjnl-2015-308365.

    Article  PubMed  CAS  Google Scholar 

  144. Wang X, et al. Galectin-3 contributes to vascular fibrosis in monocrotaline-induced pulmonary arterial hypertension rat model. J Biochem Mol Toxicol. 2017;31:5. https://doi.org/10.1002/jbt.21879.

    Article  CAS  Google Scholar 

  145. Parry EH, Abrahams DG. The function of the heart in endomyocardial fibrosis of the right ventricle. Br Heart J. 1963;25:619–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Lopez-Andres N, et al. Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: insights from the CARE-HF (cardiac resynchronization in heart failure) trial. Eur J Heart Fail. 2012;14:74–81. https://doi.org/10.1093/eurjhf/hfr151.

    Article  PubMed  CAS  Google Scholar 

  147. Ho JE, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60:1249–56. https://doi.org/10.1016/j.jacc.2012.04.053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Yu L, et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Clirc Heart Fail. 2013;6:107–17. https://doi.org/10.1161/CIRCHEARTFAILURE.112.971168. CIRCHEARTFAILURE.112.971168 [pii].

    Article  CAS  Google Scholar 

  149. Sharma UC, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121–8. https://doi.org/10.1161/01.CIR.0000147181.65298.4D.

    Article  PubMed  CAS  Google Scholar 

  150. Waldenstrom A, Martinussen HJ, Gerdin B, Hallgren R. Accumulation of hyaluronan and tissue edema in experimental myocardial infarction. J Clin Invest. 1991;88:1622–8. https://doi.org/10.1172/JCI115475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Huebener P, et al. CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response. J Immunol. 2008;180:2625–33.

    Article  PubMed  CAS  Google Scholar 

  152. Mazurek JA, Horne BD, Saeed W, Sardar MR, Zolty R. Galectin-3 levels are elevated and predictive of mortality in pulmonary hypertension. Heart Lung Circ. 2017;26:1208–15. https://doi.org/10.1016/j.hlc.2016.12.012.

    Article  PubMed  Google Scholar 

  153. Agoston-Coldea L, Lupu S, Petrovai D, Mocan T, Mousseaux E. Correlations between echocardiographic parameters of right ventricular dysfunction and Galectin-3 in patients with chronic obstructive pulmonary disease and pulmonary hypertension. Med Ultrason. 2015;17:487–95. https://doi.org/10.11152/mu.2013.2066.174.ech.

    Article  PubMed  Google Scholar 

  154. Beltrami M, et al. Additional value of Galectin-3 to BNP in acute heart failure patients with preserved ejection fraction. Clin Chim Acta Int J Clin Chem. 2016;457:99–105. https://doi.org/10.1016/j.cca.2016.04.007.

    Article  CAS  Google Scholar 

  155. French B, et al. Prognostic value of galectin-3 for adverse outcomes in chronic heart failure. J Card Fail. 2016;22:256–62. https://doi.org/10.1016/j.cardfail.2015.10.022.

    Article  PubMed  CAS  Google Scholar 

  156. Luo H, et al. Galectin-3 mediates pulmonary vascular remodeling in hypoxia-induced pulmonary arterial hypertension. J Am Soc Hypertens. 2017;11:673–683 e673. https://doi.org/10.1016/j.jash.2017.07.009.

    Article  PubMed  CAS  Google Scholar 

  157. Barman SA, et al. Galectin-3 promotes vascular remodeling and contributes to pulmonary hypertension. Am J Respir Crit Care Med. 2018;197:1488–92. https://doi.org/10.1164/rccm.201711-2308LE.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Hao M, Li M, Li W. Galectin-3 inhibition ameliorates hypoxia-induced pulmonary artery hypertension. Mol Med Rep. 2017;15:160–8. https://doi.org/10.3892/mmr.2016.6020.

    Article  PubMed  CAS  Google Scholar 

  159. Kay JM, Harris P, Heath D. Pulmonary hypertension produced in rats by ingestion of Crotalaria spectabilis seeds. Thorax. 1967;22:176–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Wilson DW, et al. Mechanisms and pathology of monocrotaline pulmonary toxicity. Crit Rev Toxicol. 1992;22:307–25. https://doi.org/10.3109/10408449209146311.

    Article  PubMed  CAS  Google Scholar 

  161. Taraseviciene-Stewart L, et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J. 2001;15:427–38. https://doi.org/10.1096/fj.00-0343com. 15/2/427 [pii].

    Article  PubMed  CAS  Google Scholar 

  162. Perillo NL, Marcus ME, Baum LG. Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J Mol Med (Berl). 1998;76:402–12.

    Article  CAS  Google Scholar 

  163. Wang Y, et al. Galectin-3 regulates p21 stability in human prostate cancer cells. Oncogene. 2013;32:5058–65. https://doi.org/10.1038/onc.2012.528.

    Article  PubMed  CAS  Google Scholar 

  164. Ramasamy S, et al. The MUC1 and galectin-3 oncoproteins function in a microRNA-dependent regulatory loop. Mol Cell. 2007;27:992–1004. https://doi.org/10.1016/j.molcel.2007.07.031. S1097-2765(07)00563-1 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Guo S, Feng Z. Galectin-3 mediates the effect of PDGF on pulmonary arterial hypertension. Int J Clin Exp Med. 2015;8:15302–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  166. Karlsson A, Follin P, Leffler H, Dahlgren C. Galectin-3 activates the NADPH-oxidase in exudated but not peripheral blood neutrophils. Blood. 1998;91:3430–8.

    Article  PubMed  CAS  Google Scholar 

  167. Liu FT, et al. Expression and function of galectin-3, a beta-galactoside-binding lectin, in human monocytes and macrophages. Am J Pathol. 1995;147:1016–28.

    PubMed  PubMed Central  CAS  Google Scholar 

  168. Suzuki Y, Inoue T, Yoshimaru T, Ra C. Galectin-3 but not galectin-1 induces mast cell death by oxidative stress and mitochondrial permeability transition. Biochim Biophys Acta. 2008;1783:924–34. https://doi.org/10.1016/j.bbamcr.2008.01.025.

    Article  PubMed  CAS  Google Scholar 

  169. Fort-Gallifa I, et al. Galectin-3 in peripheral artery disease. Relationships with markers of oxidative stress and inflammation. Int J Mol Sci. 2017;18:973. https://doi.org/10.3390/ijms18050973.

    Article  PubMed Central  CAS  Google Scholar 

  170. Madrigal-Matute J, et al. Galectin-3, a biomarker linking oxidative stress and inflammation with the clinical outcomes of patients with atherothrombosis. J Am Heart Assoc. 2014;3:e000785. https://doi.org/10.1161/JAHA.114.000785.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. He J, et al. Galectin-3 mediates the pulmonary arterial hypertension-induced right ventricular remodeling through interacting with NADPH oxidase 4. J Am Soc Hypertens. 2017;11:275–289.e272. https://doi.org/10.1016/j.jash.2017.03.008.

    Article  PubMed  CAS  Google Scholar 

  172. Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res. 2006;99:675–91. https://doi.org/10.1161/01.RES.0000243584.45145.3f.

    Article  PubMed  CAS  Google Scholar 

  173. Tuder RM, Groves B, Badesch DB, Voelkel NF. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol. 1994;144:275–85.

    PubMed  PubMed Central  CAS  Google Scholar 

  174. Frid MG, et al. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol. 2006;168:659–69. https://doi.org/10.2353/ajpath.2006.050599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Gan CT, et al. Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest. 2007;132:1906–12. https://doi.org/10.1378/chest.07-1246. chest.07-1246 [pii].

    Article  PubMed  Google Scholar 

  176. Wang Z, Chesler NC. Pulmonary vascular wall stiffness: an important contributor to the increased right ventricular afterload with pulmonary hypertension. Pulm Circ. 2011;1:212–23. https://doi.org/10.4103/2045-8932.83453. PC-1-212 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  177. Li M, et al. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. J Immunol. 2011;187:2711–22. https://doi.org/10.4049/jimmunol.1100479. jimmunol.1100479 [pii].

    Article  PubMed  CAS  Google Scholar 

  178. Nachtigal M, Ghaffar A, Mayer EP. Galectin-3 gene inactivation reduces atherosclerotic lesions and adventitial inflammation in ApoE-deficient mice. Am J Pathol. 2008;172:247–55. https://doi.org/10.2353/ajpath.2008.070348.

    Article  PubMed  PubMed Central  Google Scholar 

  179. MacKinnon AC, et al. Inhibition of galectin-3 reduces atherosclerosis in apolipoprotein E-deficient mice. Glycobiology. 2013;23:654–63. https://doi.org/10.1093/glycob/cwt006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Sitbon O, Gaine S. Beyond a single pathway: combination therapy in pulmonary arterial hypertension. Eur Respir Rev. 2016;25:408–17. https://doi.org/10.1183/16000617.0085-2016.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Barman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barman, S.A., Bordan, Z., Batori, R., Haigh, S., Fulton, D.J.R. (2021). Galectin-3 Promotes ROS, Inflammation, and Vascular Fibrosis in Pulmonary Arterial Hypertension. In: Wang, YX. (eds) Lung Inflammation in Health and Disease, Volume I. Advances in Experimental Medicine and Biology, vol 1303. Springer, Cham. https://doi.org/10.1007/978-3-030-63046-1_2

Download citation

Publish with us

Policies and ethics