Skip to main content

Concept of Artificial Intelligence and Its Applications in Groundwater Spatial Studies

  • Chapter
  • First Online:
Geostatistics and Geospatial Technologies for Groundwater Resources in India

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

  • 345 Accesses

Abstract

As a computational method with impressive performance over traditional methods, Artificial Intelligence (AI) has recently gained great attention. It is a consortium of different soft-computational methodologies including artificial neural networks (ANNs), Fuzzy Logic (FL), Wavelet Transformation (WT) and so forth. AI recently begun to explain complex and non-linear problems in geoscience and hydrology in a clear and satisfactory manner. The combination of one and more approaches has created, rather than applying one approach, new categories such as Neuro-Fuzzy (NF), which are more effective than distinct approaches. Considering the recognition and huge application and promotion of AI procedures in geoscience and hydrology since last few years, it would be an vital chore to deduce the distinctive new use of the AI techniques in groundwater investigation. It was therefore our goal to exhibit the use of AI to take care of the perplexing and nonlinear issues in the field of groundwater research. In this chapter we have attempted to emphasize the learning of individual and hybrid AI techniques in groundwater studies, introduce and apply them. We mainly described different individual and combined soft-computing tools like Fuzzy logic, Sugeno fuzzy logic, Neurofuzzy, Gradient-based groundwater model, Artificial Neural Network, Support Vector Machine, and Wavelet transform to assess and monitor groundwater resources. Long-term applications and advancement of AI procedure for precise appraisal of groundwater assets is additionally proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamowski, J. (2008). River flow forecasting using wavelet and cross-wavelet transform models. Hydrological Processes, 22, 4877–4891.

    Article  Google Scholar 

  • Adamowski, J., Chan, H. F. (2011) A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1–4), 28–40.

    Google Scholar 

  • Adhikary, P. P., Sena, D. R., Dash, C. J., Mandal, U., Nanda, S., Madhu, M., et al. (2019). Effect of calibration and validation decisions on streamflow modeling for a heterogeneous and low runoff-producing river basin in India. Journal of Hydrologic Engineering, 24(7), 05019015.

    Article  Google Scholar 

  • Alagha, J.S., Md Azlin, Md Said, & Mogheir, Y. Artificial intelligence-based modelling of hydrological processes. In The 4th International Engineering Conference—Towards Engineering of 21st Century (pp. 1–13).

    Google Scholar 

  • Alagha, J. S., Md Azlin, Md, & Said, Mogheir Y. (2013). Improving the accuracy of artificial intelligence—Based groundwater quality models using clustering technique—A case study. American Journal of Environmental Engineering, 3(2), 100–106.

    Google Scholar 

  • Aller, L., Bennett, T., Lehr, J. H., Petty, R. J., & Hackett, G. (1987). DRASTIC: a standardized 14 system for evaluating ground water pollution potential using hydrogeologic settings, EPA 15 600/2-87-035. Ada, Oklahoma: U.S. Environmental Protection Agency.

    Google Scholar 

  • Behzad, M., Asghari, K., & Coppola, E. (2010). Comparative study of SVMs and ANNs in aquifer water level prediction. Journal of Computing in Civil Engineering, ASCE, 24(5), 408–413.

    Article  Google Scholar 

  • Burggräf, P., Wagner, J., & Koke, B. (2018). Artificial intelligence in production management. In International Conference on Information Management and Processing (pp. 82–88). Available at: file:///C:/Users/HP/Downloads/ICIMP_Paper_Extract.pdf

    Google Scholar 

  • Chen, S. H., Jakeman, A. J., & Norton, J. P. (2008). Artificial intelligence techniques: An introduction to their use for modelling environmental systems. Mathematics and Computers in Simulation, 78(2), 379–400.

    Google Scholar 

  • Coppola, E., Szidarovszky, F., Poulton, M., & Charls, E. (2003). Artificial neural network approach for predicting transient water levels in multilayered groundwater system under variable state, pumping, and climate conditions. Journal of Hydrologic Engineering, 8, 348–380.

    Article  Google Scholar 

  • Demirci, M., Üneş, F., & Körlü, S. (2019). Modeling of groundwater level using artificial intelligence techniques: A case study of Reyhanlı region in Turkey. Applied Ecology and Environmental Research, 17(2), 2651–2663.

    Article  Google Scholar 

  • Dixon, B. (2005). Application of neuro-fuzzy techniques in predicting groundwater vulnerability: A GIS based sensitivity analyses. Journal of hydrology, 309(1–4), 17–38.

    Google Scholar 

  • Djurovic, N., Domazet, M., Stricevic, R., Pocuca, V., Spalevic, V., Pivic, R., Gregoric, E., et al. (2015). Comparison of groundwater level models based on artificial neural networks and ANFIS. The Scientific World Journal, 13. Article ID 742138. http://dx.doi.org/10.1155/2015/742138

  • Emamgholizadeh, S., Moslemi, K., & Karami, G. (2014): Prediction the groundwater level of Bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Water Resources Management, 28(15), 5433–5446.

    Google Scholar 

  • Fallah-Mehdipour, F., Haddad, O. B., & Mariño, M. A. (2014). Genetic programming in groundwater modeling. Journal of Hydrologic Engineering, 19(12).

    Google Scholar 

  • Fijani, E., Nadiri, A. A., Moghaddam, A. A., Tsai, F. T. C., & Dixo, B. (2013). Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh-Bonab Plain Aquifer, Iran. Journal of Hydrology. doi: http://dx.doi.org/10.1016/j.jhydrol.

  • Galelli, S., Humphrey, G. B., Maier, H. R., Castelletti, A., Dandy, G. C., & Gibbs, M. S. (2014). An evaluation framework for input variable selection algorithms for environmental data-driven models. Environmental Modelling & Software, 62, 33–51.

    Article  Google Scholar 

  • Govindaraju, R. S., & Rao, A. R. (2000). Artificial neural networks in hydrology. Water Science and Technology Library (Vol. 36). Dordrecht, The Netherlands: Springer.

    Book  Google Scholar 

  • Guzman, S. M., Paz, J. O., Tagert, M. L. M., & Mercer, A. (2015). Artificial neural networks and support vector machines: Contrast study for groundwater level prediction—2015 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, St. Joseph, MI, p. 1

    Google Scholar 

  • Harbaugh, A. W. (2005). Modflow-2005, The U.S. Geological Survey modular ground-water model–the ground-water flow process. Techniques and Methods Book 6-A16, U. S. Geol. Survey, Denver, CO Available at: http://pubs.usgs.gov/tm/2005/tm6A16/PDF/TM6A16.pdf

  • Heesung, Y., Jun, S. C., Yunjung, H., Bae, G. O., & Kang, K. L. (2011). A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology, 396, 128–138.

    Article  Google Scholar 

  • Jiao, S., Yu, J., Milas, A. S., Li, X. J., & Liu, L. M. (2017). Assessing the impact of building volume on land subsidence in the central Business District of Beijing with SAR tomography. Canadian Journal of Remote Sensing, 43(2), 177–193.

    Article  Google Scholar 

  • Junping, L., Mingqi, C., & Xiaoyan, M. A. (2009). Groundwater quality assessment based on support vector machine, paper funded by global environment fund (GEF) integral water resource and environment management of Haihe River basin (MWR-9-2-1). “111” Introducing Intelligence Project (B08039).

    Google Scholar 

  • Kenda, K., Čerin, M., Bogataj, M., Senožetnik, M., Klemen, K., Pergar, P., Laspidou, C., & Mladenić, D. (2018). Groundwater modeling with machine learning techniques: Ljubljana polje Aquifer. Proceedings (Vol. 2, p. 697). https://doi.org/10.3390/proceedings2110697

  • Khaki, M., Yusoff, I., & Islami, N. (2015). Simulation of groundwater level through artificial intelligence system. Environmental Earth Sciences, 73(12), 8357–8367.

    Article  Google Scholar 

  • Khalil, M. I., Rasul, G., Majumder, R. K., Kabir, M. Z., Deeba, F., Islam, F., Karmaker, S., Jalal Uddin Rumi, K. M., Siddique, R. (2015). Erratum to: Geo-electrical soundings and analysis to investigate groundwater aquifers at Khulna City, coastal area of Bangladesh. Arabian Journal of Geosciences, 8(8), 5335–5335.

    Google Scholar 

  • Kisi, O. (2010). Daily suspended sediment estimation using neuro-wavelet models. International Journal of Earth Sciences, 99, 1471–1482.

    Article  Google Scholar 

  • Kouziokas, G. N., Chatzigeorgiou, A., & Perakis, K. (2017). Artificial intelligence and regression analysis in predicting ground water levels in public administration. European Water, 57, 361–366.

    Google Scholar 

  • Kouziokas, G. N. (2016). Artificial intelligence and crime prediction in public management of transportation safety in urban environment. In Proceedings of the 3rd conference on sustainable urban mobility (pp. 534–539). Volos: University of Thessaly Greece.

    Google Scholar 

  • Lee, C. (1990) Fuzzy logic in control systems: Fuzzy logic controller, Parts I and II. IEEE Transactions on systems, man, and cybernetics, 20, 404–435.

    Google Scholar 

  • Li, J., Wang, H. O., Bushnell, L., Hong, Y., Tanaka, K. (2000). A fuzzy logic approach to optimal control of nonlinear systems. International Journal of Fuzzy Systems, 2(3), 153–163.

    Google Scholar 

  • Lohani, A. K., Goel, N. K., Bhatia, K. K. (2006). Takagi-Sugeno fuzzy inference system form modeling stage-discharge relasionship. Journal of Hydrology, 331, 146–160.

    Google Scholar 

  • Lohani, A. K., & Krishan, G. (2015). Application of artificial neural network for groundwater level simulation in Amritsar and Gurdaspur Districts of Punjab, India. Journal of Earth Science and Climatic Change, 6(4), 1–5.

    Google Scholar 

  • Mallat, S. G. (1998). A Wavelet Tour of Signal Processing (2nd ed.). San Diego: Academic Press.

    Google Scholar 

  • McCulloch, W. (1984). A logical calculus of the ideas immanent in nervous activity (Vol. 5). Bulletin of Mathematical Biophysics.

    Google Scholar 

  • Millington, I. (2006). Artificial intelligence for games. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

    Google Scholar 

  • Mohanty, S., Jha, M. K., Kumar, A., & Sudheer, K. P. (2010). Artificial neural network modelling for groundwater level forecasting in a river is land of eastern India. Water Resources Management, 24(9), 1845–1865.

    Article  Google Scholar 

  • Nauck, D., & Kruse, R. (1999). Neuro-fuzzy systems for function approximation. Fuzzy Sets and Systems, 101, 261–271.

    Article  Google Scholar 

  • Nayak, P. C., Sudheer, K. P., Rangan, D. M., & Ramasastri, K. S. (2004). A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291, 52–66.

    Article  Google Scholar 

  • Nourani, V., Baghanam, A. H., Adamowski, J., & Kisi, O. (2014). Applications of hybrid wavelet–Artificial intelligence models in hydrology: A review. Journal of Hydrology, 514, 358–377.

    Article  Google Scholar 

  • Nourani, V., Alami, M. T., & Vousoughi, F. D. (2015). Wavelet-entropy data preprocessing approach for ANN-based groundwater level modeling. Journal of Hydrology, 524, 255–269.

    Google Scholar 

  • Pang, B., Lee, L. (2004). A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd annual meeting of the association for computational linguistics, 271–278.

    Google Scholar 

  • Quilty, J., Adamowski, J., Khalil, B., & Rathinasamy, M. (2016). Bootstrap rank-ordered conditional mutual information (broCMI): A nonlinear input variable selection method for water resources modelling. Water Resources Research

    Google Scholar 

  • Rahman, A. (2008). A GIS based model for assessing groundwater vulnerability in shallow 11 aquifer in Aligarh, India. Applied Geography, 28, 32–53.

    Article  Google Scholar 

  • Reinecke, R., Foglia, L., Mehl, S., Trautmann, T., Cáceres, D., & Döll, P. (2019). Challenges in developing a global gradient-based groundwater model (G3M v1.0) for the integration into a global hydrological model. Geoscientific Model Development, 12, 2401–2418. https://doi.org/10.5194/gmd-12-2401-2019.

  • Sadeghfam, S., Hassanzadeh, Y., Khatibi, R., Nadiri, A. A., & Moazamnia, M. (2019). Groundwater remediation through pump-treat-inject technology using optimum control by artificial intelligence (OCAI). Water Resources Management, 33(3), 1123–1145.

    Article  Google Scholar 

  • Sang, Y. F. (2012). A practical guide to discrete wavelet decomposition of hydrologic time series. Water Resources Management, 26(11), 3345–3365.

    Article  Google Scholar 

  • Schmidt, F., Wainwright, H. M., Faybishenko, B., Denham, M., & Eddy-Dilek, C. (2018). In situ monitoring of groundwater contamination using the Kalman filter. Environmental Science and Technology, 52(13), 7418–7425.

    Article  Google Scholar 

  • Singh, K. P., Basant, A., Malik, A., & Jain, G. (2009). Artificial neural network modeling of the river water quality—A case study. Ecological Modelling, 220, 888–895.

    Article  Google Scholar 

  • Srinivasulu, S., & Jain, A. (2006). A comparative analysis of training methods for artificial neural network rainfall–runoff models. Applied Soft Computing, 6, 295–306.

    Article  Google Scholar 

  • Suykens, J. A., Vandewalle, J. P., & de Moor, B. L. (2012). Artificial neural networks for modelling and control of non-linear systems. Springer Science & Business Media.

    Google Scholar 

  • Taiyuan, F., Shaozhong, K., Zailin, H., Shaqiun, C., & Xiaomin, M. (2007). Neural networks to simulate regional ground water levels affected by human activities. Groundwater, 46, 80–90.

    Google Scholar 

  • Umamaheswari, G. R., & Kalamani, D. (2014). Fuzzy logic model for the prediction of groundwater level in Amaravathi River Minor Basin. International Journal of Mathematics Trends and Technology, 11(1), 46–50.

    Article  Google Scholar 

  • Wang, J., Narain, D., Hosseini, E. A., Jazayeri, M. (2018). Flexible timing by temporal scaling of cortical responses. Nature Neuroscience, 21(1), 102–110.

    Google Scholar 

  • Yarar, A., Onucyıldız, M., & Copty, N. K. (2009). Modelling level change in lakes using neuro-fuzzy and artificial neural networks. Journal of Hydrology, 365, 329–334.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353

    Google Scholar 

  • Zare, M., & Koch, M. (2018). Groundwater level fluctuations simulation and prediction by ANFIS-and hybrid Wavelet-ANFIS/Fuzzy C-Means (FCM) clustering models: application to the Miandarband plain. Journal of Hydro-Environment Research, 18, 6376.

    Google Scholar 

  • Zhang, W. J., Gao, L., Jiao, X., Yu, J., Su, X. S., & Du, S. H. (2014). Occurrence assessment of earth fissure based on genetic algorithms and artificial neural networks in Su-xi-Chang land subsidence area, China. Journal of Geosciences, 18(4), 485–493.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gouri Sankar Bhunia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhunia, G.S., Shit, P.K., Adhikary, P.P. (2021). Concept of Artificial Intelligence and Its Applications in Groundwater Spatial Studies. In: Adhikary, P.P., Shit, P.K., Santra, P., Bhunia, G.S., Tiwari, A.K., Chaudhary, B.S. (eds) Geostatistics and Geospatial Technologies for Groundwater Resources in India. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-030-62397-5_3

Download citation

Publish with us

Policies and ethics