Skip to main content

Recent Trends in GIS and Geostatistical Approaches to Analyze Groundwater Resource in India

  • Chapter
  • First Online:
Geostatistics and Geospatial Technologies for Groundwater Resources in India

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

  • 329 Accesses

Abstract

India is the largest user of groundwater in the world using an estimated 250 km3 of groundwater per annum. In India, groundwater contributes 62% in agriculture sector. In rural India, 85% and in urban India, 45% of water consumption has been met from groundwater. However, this precious water resource is under increasing pressure due to intensification of human activities along with climate change. In India about 36% of groundwater blocks are semi-critical, critical, or overexploited and the situation is deteriorating rapidly. Not only groundwater depletion is unprecedented, its quality is also deteriorating in an alarming rate throughout India. Therefore, groundwater dependent water supply system is expected to hit adversely in the future. In this context, Geographic Information System (GIS) along with geo-statistics play an important role in depicting the spatio-temporal variation of water level and water quality. In this chapter work done by various researchers on GIS and geostatistics in groundwater is highlighted, which will help the policy makers and managers to implement proper regulations for sustainability of this precious resource in India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adhikary, P. P., Chandrasekharan, H., Chakraborty, D., & Kamble, K. (2010). Assessment of groundwater pollution in west Delhi, India using geostatistical approach. Environmental Monitoring Assessment, 167, 599–615.

    Article  Google Scholar 

  • Adhikary, P. P., & Dash, Ch J. (2017). Comparison of deterministic and stochastic methods to predict spatial variation of groundwater depth. Applied Water Sciences, 7(1), 339–348.

    Article  Google Scholar 

  • Adhikary, P. P., Dash, Ch J, Chandrasekharan, H., & Bej, R. (2011). Indicator and probability kriging methods for delineating Cu, Fe, and Mn contamination in groundwater of Najafgarh Block, Delhi, India. Journal of Environmental Monitoring and Assessment, 176, 663–676.

    Article  Google Scholar 

  • Ahmed, S. (2002). Groundwater monitoring network design: Application of Geostatistics with a few Case studies from a granitic aquifer in a semiarid region. In M.M. Sherif, V.P. Singh, & M. Al-Rashed (Eds.), Groundwater hydrology (Vol. 2). Balkema, Tokyo, Japan, 2, pp 37–57

    Google Scholar 

  • Ahmed, S. (2007). Application of geostatistics in hydrosciences. In M. Thangarajan (Ed.), Groundwater (pp. 78–111). Amsterdam: Springer.

    Chapter  Google Scholar 

  • Ali, S., Fakhri, Y., Golbini, N., Thakur, S. K., Alinejad, A., Parseh, I., Shekhar, S. & Bhattacharya, P. (2019). Concentration of fluoride in groundwater of India: A systematic review, meta-analysis and risk assessment. Groundwater for Sustainable Development,9, 100224.

    Google Scholar 

  • Aneja, R. (2017). Ground water level in Haryana: A challenge for sustainability. International Journal of Research and Analytical Reviews, 4(3), 43–48.

    Google Scholar 

  • Barca, E., Porcu, E., Bruno, D., & Passarella, G. (2017). An automated decision support system for aided assessment of variogram models. Journal of Environmental Modelling and Software, 87, 72–83.

    Article  Google Scholar 

  • Baweja, S., Aggarwal, R. & Brar, M. (2017). Groundwater depletion in Punjab, India. Encyclopedia of soil science (3rd edn, Vol. 3). https://doi.org/10.1081/e-ess3-120052901

  • Bhalla, P. (2017). Impact of declining groundwater levels on acreage allocation in Haryana. Economic and Political Weekly, 42(26), 2701–2707.

    Google Scholar 

  • Bohling, G. (2005). Introduction to geostatistics and variogram analysis (pp. 1–20). Lawrence: Kansas Geological Survey.

    Google Scholar 

  • Bourgault, G., & Marcotte, D. (1991). Multivariable variogram and its application to the linear model of coregionalization. Mathematical Geology, 23(7), 899–900.

    Article  Google Scholar 

  • Central Ground Water Board. (2019). National compilation on dynamic ground water resources of India, 2017. Government of India: Ministry of Jal Shakti.

    Google Scholar 

  • Chowdhury, A. (2016). Assessment of spatial groundwater level variations using geostatistics and GIS in Haringhata block, Nadia district, West Bengal. International Journal of Research in Engineering and Technology, 5(5), 276–280.

    Article  Google Scholar 

  • Dahiya, I. S., Anlauf, R., Hooda, P. S. & Richter, J. (1986). Geostatistical analysis of groundwater depth data in a arid region of Haryana, India: Spatial variability. In: Proceeding of international seminar on water management in arid and semi-arid zones, Hissar, Haryana, India, pp 44–64.

    Google Scholar 

  • Dash, J. P., Sarangi, A., & Singh, D. K. (2010). Spatial variability of groundwater depth and quality parameters in the National Capital Territory of Delhi. Environmental Management, 45(3), 640–650.

    Article  Google Scholar 

  • Deutsch, C. & Journel, A. (1997). GSLIB: geostatistical software library and user's guide, 2nd Ed.: Oxford University Press, New York, 369 p.

    Google Scholar 

  • FAO. (2010). FAOSTAT. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/default.aspx

  • Fehmida, F. S., & Bindu, A. G. (2018). Evaluation of groundwater quality at Eloor, Ernakulam district, Kerala using GIS. International Journal of Engineering and Advanced Technology, 8(4), 20–24.

    Google Scholar 

  • Foster, S. S. D., & Chilton, P. J. (2003). Groundwater: the processes and global significance of aquifer degradation. Philosophical Transactions of the Royal Society B Biological Sciences, 358, 1957–1972.

    Article  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resource evaluation. New York, USA: Oxford University Press.

    Google Scholar 

  • Gorai, A. K., & Kumar, S. (2013). Spatial distribution analysis of groundwater quality index using GIS: A case study of Ranchi Municipal Corporation (RMC) Area. Geoinformatics and Geostatistic: An Overview, 1(2), 1–11.

    Google Scholar 

  • Hebbar, A., & Janardhana, M. (2016). Arsenic contamination in groundwater of the areas surrounding Ingaldhal, Chitradurga district, Karnataka state. International Journal of Geology, Earth & Environmental Sciences, 6(3), 1–7.

    Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatistics. New York: Oxford University Press.

    Google Scholar 

  • Jasrotia, A. S., Kumar, A., & Singh, R. (2016). Integrated remote sensing and GIS approach for delineation of groundwater potential zones using aquifer parameters in Devak and Rui watershed of Jammu and Kashmir, India. Arabian Journal of Geosciences, 9, 304.

    Article  Google Scholar 

  • Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. New York: Academic Press.

    Google Scholar 

  • Kaur, L., & Rishi, M. S. (2018). Integrated geospatial, geostatistical, and remote-sensing approach to estimate groundwater level in North-Western, India. Environmental Earth Sciences, 77, 786.

    Article  Google Scholar 

  • Kumar, V. (2007). Optimal contour mapping of groundwater levels using universal kriging—A case study. Hydrological Sciences Journal, 52(5), 1038–1050.

    Article  Google Scholar 

  • Kumar, D., & Ahmed, S. (2003). Seasonal behaviour of spatial variability of groundwater level in a granitic aquifer in monsoon climate. Current Science, 84(2), 188–196.

    Google Scholar 

  • Kumar, V., & Ramadevi, (2006). Kriging of groundwater levels-a case study. Journal of Spatial Hydrology, 6(1), 81–94.

    Google Scholar 

  • Machiwal, D., Mishra, A., Jha, M. K., Sharma, A., & Sisodia, S. S. (2012). Modeling short-term spatial and temporal variability of groundwater level using geostatistics and GIS. Natural Resource Research, 21(1), 177–136.

    Article  Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Elango, L. (2016). Occurrence and distribution of fluoride in the groundwater of the Tamiraparani River basin, South India: a geostatistical modeling approach. Environmental Earth Sciences, 75, 1483.

    Article  Google Scholar 

  • Mallick, J., Singh, C. K., Al-Wadi, H., Ahmed, M., Rahman, A., Shashtri, S., et al. (2014). Geospatial and geostatistical approach for groundwater potential zone delineation. Hydrological Processes, 29(3), 395–418.

    Article  Google Scholar 

  • Margat, J., van der Gun, J. (2013). Groundwater around the world. Balkema: CRC Press.

    Google Scholar 

  • Mazumder, D. G., & Dasgupta, U. B. (2011). Chronic arsenic toxicity: Studies in West Bengal, India. The Kaohsiung Journal of Medical Sciences, 27(9), 360–370.

    Article  Google Scholar 

  • Mini, P. K., Singh, D. K., & Sarangi, A. (2014). Spatio-temporal variability analysis of groundwater level in coastal aquifers using geostatistics. International Journal of Environmental Research and Development, 4(4), 329–336.

    Google Scholar 

  • Mukherjee, A., Ray, R. K., Tewari, D., Ingle, V. K., Sahoo, B. K., & Khan, M. W. Y. (2014). Revisiting the stratigraphy of the Mesoproterozoic Chhattisgarh Supergroup, Bastar craton, India based on subsurface litho information. Journal of Earth System Science, 123(3), 617–632.

    Article  Google Scholar 

  • Panda, D. K., Mishra, A., & Kumar, A. (2012). Quantification of trends in groundwater levels of Gujarat in western India. Hydrological Sciences Journal, 57(7), 1325–1336.

    Article  Google Scholar 

  • Prakash, M. R., & Singh, V. S. (2000). Network design for groundwater monitoring—A case study. Environmental Geology, 39, 628–632.

    Article  Google Scholar 

  • Rajasekhar, M., Raju, S. G., Bramaiah, C., Deepthi, P., Amaravathi, Y., & Sidd, R. R. (2018). Delineation of groundwater potential zones of semi arid region of YSR Kadapa district, Andhra Pradesh, India using RS, GIS and analytic hierarchy process. Remote Sensing of Land, 2(2), 76–86.

    Google Scholar 

  • Rawat, K. S., Mishra, A. K., & Sehgal, V. K. (2012). Identification of geospatial variability of fluoride contamination in groundwater of Mathura district, Uttar Pradesh, India. Journal of Applied and Natural Science, 4(1), 117–122.

    Article  Google Scholar 

  • Sahoo, S., & Jha, M. K. (2014). Analysis of spatial variation of groundwater depths using geostatistical modeling. International Journal of Applied Engineering Research, 9(3), 317–322.

    Google Scholar 

  • Sankhla, M. S., & Kumar, R. (2018). Fluoride contamination of water in India and its impact on public health. ARC Journal of Forensic Science, 3(2), 10–15.

    Google Scholar 

  • Seiler, K. P., & Gat, J. (2007). Groundwater recharge from run-off, infiltration and percolation. Water Science and Technology Library (Vol. 55). The Netherland: Springer.

    Google Scholar 

  • Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Doll, P., et al. (2010). Groundwater use for irrigation—A global inventory. Hydrology and Earth Systems Science, 14, 1863–1880.

    Article  Google Scholar 

  • Sharma, P.K., Vijay, R. & Punia, M.P. (2015). Geostatistical evaluation of groundwater quality distribution of Tonk district, Rajasthan. International Journal of Geomatics and Geosciences, 6 (2), 1474–1485.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Jyotiprava Dash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jyotiprava Dash, C., Adhikary, P.P. (2021). Recent Trends in GIS and Geostatistical Approaches to Analyze Groundwater Resource in India. In: Adhikary, P.P., Shit, P.K., Santra, P., Bhunia, G.S., Tiwari, A.K., Chaudhary, B.S. (eds) Geostatistics and Geospatial Technologies for Groundwater Resources in India. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-030-62397-5_2

Download citation

Publish with us

Policies and ethics