Skip to main content

Genetic Syndromes of Hypothalamic Dysfunction

  • Chapter
  • First Online:
The Human Hypothalamus

Part of the book series: Contemporary Endocrinology ((COE))

  • 956 Accesses

Abstract

The hypothalamus, only 0.4% of total central nervous system volume, is well positioned for its role as a neuroendocrine control center to monitor and initiate signaling for physical growth and development, social interaction, and response to environmental challenges for survival. Mendelian Inheritance in Man human gene database search reveals 113 clinical synopses entries with hypothalamic dysfunction. Genetic syndromes of hypothalamic dysfunction can result from gene mutations or alterations leading to (1) lack of spatiotemporal required levels of gene transcription control factors resulting in lack of required developmental molecular events, (2) uncontrolled gene expression and growth of tumors, (3) uncontrolled or absent neuronal networks or neuronal degeneration resulting in aberrant behavior and memory loss, (4) aberrant or uncontrolled neuroendocrine signaling, (5) uncontrolled water/electrolyte homeostasis, (6) aberrant or uncontrolled appetite and energy utilization homeostasis, and (7) uncontrolled aging and shortened survival. Key roles for the hypothalamus are demonstrated in genetic syndromes: Pallister-Hall, hypothalamic hamartomas; familial neurohypophyseal diabetes insipidus; Prader-Willi, gene imprinting, dysfunctional physical and mental development, and obesity; Wolfram, dysfunctional cellular autophagy “housekeeping” with progressive neural degeneration; Bardet-Biedl, dysfunctional cell networking due to ciliopathy; and leptin/leptin receptor, dysfunctional appetite and energy homeostasis. Animal models and digital databases are rapidly adding to our understanding of hypothalamic function, dysfunction, and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Giustina A, Frara S, Spina A, Mortini P. Chapter 9, the hypothalamus. In: Melmed S, editor. The pituitary. 4th ed. London: Academic Press imprint of Elsevier Inc; 2017. p. 291–327. ISBN: 978-0-12-804169-7.

    Google Scholar 

  2. Jameson JL, Kopp P. Chapter 4, applications of genetics in endocrinology. In: Jameson JL, De Groot LJ, de Kretser DM, Giudice LC, Grossman AB, Melmed S, Potts Jr. JT, Weir GC, editors. Endocrinology: adult & pediatric. 7th ed. Philadelphia: Saunders imprint of Elsevier Inc.; 2016. p. 41–68. ISBN: 978-0-323-18907-1.

    Google Scholar 

  3. Zaidi SK, Young DW, Montecino M, Lian JB, van Wijnen AJ, Stein JL, Stein GS. Mitotic bookmarking of genes: a novel dimension to epigenetic control. Nat Rev Genet. 2010;11:583–9. https://doi.org/10.1038/nrg2827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8. https://doi.org/10.1038/nature08467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hill MA. Embryology: endocrine – hypothalamus development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Endocrine_-_Hypothalamus_Development. Accessed via Google Chrome 12 Mar 2020.

  6. Sasai N, Toriyama M, Kondo T. Hedgehog signal and genetic disorders. Front Genet (Open Access). 2019;10:1103. https://doi.org/10.3389/fgene.2019.01103.

    Article  CAS  Google Scholar 

  7. Nikolopoulou E, Galea GL, Rolo A, Greene NDE, Copp AJ. Neural tube closure: cellular, molecular and biochemical mechanisms. Development. 2017;144:552–66. https://doi.org/10.1242/dev.145904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mulligan KA, Cheyette BNR. Wnt signaling in vertebrate neural development and function. J Neuroimmune Pharmacol. 2012;7:774–87. https://doi.org/10.1007/s11481-012-9404-x.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Logan CV, Abdel-Hamed Z, Johnson CA. Molecular genetics and pathogenic mechanisms for the severe ciliopathies: insights into neurodevelopment and pathogenesis of neural tube defects. Mol Neurobiol. 2011;43:12–26. https://doi.org/10.1007/s12035-010-8154-0.

    Article  CAS  PubMed  Google Scholar 

  10. Münke M. Clinical, cytogenetic, and molecular approaches to the genetic heterogeneity of holoprosencephaly. Am J Med Genet. 1989;34:237–45. https://doi.org/10.1002/ajmg.1320340222.

    Article  PubMed  Google Scholar 

  11. Paulussen ADC, Schrander-Stumpel CT, Tserpelis DCJ, Spee MKM, Stegmann APA, Mancini GM, Brooks AS, Collée M, Maat-Kievit A, Simon MEH, van Bever Y, Stolte-Dijkstra I, Kerstjens-Frederikse WS, Herkert JC, van Essen AJ, Lichtenbelt KD, van Haeringen A, Kwee ML, Lachmeijer AMA, Tan-Sindhunata GMB, van Maarle MC, Arens YHJM, Smeets EEJGL, de Die-Smulders CE, Engelen JJM, Smeets HJ, Herbergs J. The unfolding clinical spectrum of holoprosencephaly due to mutations in SHH, ZIC2, SIX3 and TGIF genes. Eur J Hum Genet. 2010;18:999–1005. https://doi.org/10.1038/ejhg.2010.70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mercier S, Dubourg C, Garcelon N, Campillo-Gimenez B, Gicquel I, Belleguic M, Ratié L, Pasquier L, Loget P, Bendavid C, Jaillard S, Rochard L, Quélin C, Dupé V, David V, Odent S. New findings for phenotype-genotype correlations in a large European series of holoprosencephaly cases. J Med Genet. 2011;48:752–60. https://doi.org/10.1136/jmedgenet-2011-100339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seltzer LE, Paciorkowski AR. Genetic disorders associated with postnatal microcephaly. Am J Med Genet C Semin Med Genet. 2014;166:140–55. https://doi.org/10.1002/ajmg.c.31400.

    Article  CAS  Google Scholar 

  14. Biran J, Tahor M, Wircer E, Levkowitz G. Role of developmental factors in hypothalamic function. Front Neuroanat (Open Access). 2015;9:47. https://doi.org/10.3389/fnana.2015.00047; Lemaire J-J, Nezzar H, Sakka L, Boirie Y, Fontaine D, Coste A, Coll G, Sontheimer A, Sarret C, Gabrillargues J, De Sallcs A. Maps of the adult human hypothalamus. Surg Neurol Int. 2013;4:156–63. https://doi.org/10.4103/2152-7806.110667.

  15. Fu T, Pearson C, Towers M, Placzek M. Development of the basal hypothalamus through anisotropic growth. J Neurol. 2019;31:e12727. https://doi.org/10.1111/jne.12727.

    Article  CAS  Google Scholar 

  16. McCabe MJ, Dattani MT. Chapter 1, genetic aspects of hypothalamic and pituitary gland development. In: Fliers E, Korbonits M, Romijn JA, editors. Handbook of clinical neurology. Vol. 124 (3rd series) Clinical neuroendocrinology. London: Elsevier B.V.; 2014. p. 3–15. https://doi.org/10.1016/B978-0-444-59602-4.00001-0.

  17. Webb EA, AlMutair A, Kelberman D, Bacchelli C, Chanudet E, Lescai F, Andoniadou CL, Banyan A, Alsawaid A, Alrifai MT, Alahmesh MA, Balwi M, Mousavy-Gharavy SN, Lukovic B, Burke D, McCabe MJ, Kasia T, Kleta R, Stupka E, Beales PL, Thompson DA, Chong WK, Alkuraya FS, Martinez-Barbera J-P, Sowden JC, Dattani MT. ARNT2 mutation causes hypopituitarism, post-natal microcephaly, visual and renal anomalies. Brain. 2013;136:3096–105. https://doi.org/10.1093/brain/aw1218.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ratié L, Ware M, Barloy-Hubler F, Romé H, Gicquel I, Dubourg C, David V, Dupé V. Novel genes upregulated when NOTCH signaling is disrupted during hypothalamic development. Neural Dev. 2013;8:25. https://doi.org/10.1186/1749-8104-8-25. Open Accessed 3/2020 at http://www.neuraldevelopment.com/content/8/1/25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fleischman A, Brue C, Poussaint TY, Kieran M, Pomeroy SL, Goumnerova L, Scott RM, Cohen LE. Diencephalic syndrome: a cause of failure to thrive and a model of partial growth hormone resistance. Pediatrics. 2005;115:e742–8. https://doi.org/10.1542/peds.2004-2237.

    Article  PubMed  Google Scholar 

  20. Online Mendelian Inheritance in Man (OMIM). An online catalog of human genes and genetic disorders search on “hypothalamus – clinical synopsis”. Accessed 3/2020 at https://www.omim.org/search/?index=entry&search=hypothalamus&sort=score+desc%2C+prefix_sort+desc&start=1&limit=10&retrieve=clinicalSynopsis&cs_exists=true.

  21. Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 2011;12:683–91. https://doi.org/10.1038/nrg3051.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Qiu C, Cui Q. A large-scale analysis of the relationship of synonymous SNPs changing microRNA regulation with functionality and disease. Int J Mol Sci. 2015;16:23545–55. https://doi.org/10.3390/ijms161023545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dattani MT, Martinez-Barbera JP, Thomas PQ, Brickman JM, Gupta R, Mårtensson IL, Toresson H, Fox M, Wales JK, Hindmarsh PC, Krauss S, Beddington RS, Robinson IC. Mutations in the homeobox gene HESX1 / Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet. 1998;19:125–33. https://doi.org/10.1038/477.

    Article  CAS  PubMed  Google Scholar 

  24. Coutinho E, Brandão CM, Lemos MC. Combined pituitary hormone deficiency caused by a synonymous HESX1 gene mutation. J Clin Endocrinol Metab. 2019;104:2851–4. https://doi.org/10.1210/jc.2019-00081.

    Article  PubMed  Google Scholar 

  25. Birkebæk NH, Patel L, Wright NB, Grigg JR, Sinha S, Hall CM, Price DA, Lloyd IC, Clayton PE. Endocrine status in patients with optic nerve hypoplasia: relationship to midline central nervous system abnormalities and appearance of the hypothalamic-pituitary axis on magnetic resonance imaging. J Clin Endocrinol Metab. 2003;88:5281–6. https://doi.org/10.1210/jc.2003-030527.

    Article  CAS  PubMed  Google Scholar 

  26. Lima Cunha D, Arno G, Corton M, Moosajee M. The spectrum of PAX6 mutations and genotype-phenotype correlations in the eye. Genes (Basel). 2019;10:1050. https://doi.org/10.3390/genes10121050. Open accessed 3/2020 at https://www.mdpi.com/2073-4425/10/12/1050.

    Article  CAS  Google Scholar 

  27. Kelberman D, Rizzoti K, Avilion A, Bitner-Glindzicz M, Cianfarani S, Collins J, Chong WK, Kirk JMW, Achermann JC, Ross R, Carmignac D, Lovell-Badge R, Robinson LCAF, Dattani MT. Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J Clin Invest. 2006;116:2442–55. https://doi.org/10.1172/JCI28658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ohira R, Zhang YH, Guo W, Dipple K, Shih SL, Doerr J, Huang BL, Fu LJ, Abu-Khalil A, Geschwind D, McCabe ER. Human ARX gene: genomic characterization and expression. Mol Genet Metab. 2002;77:179–88. https://doi.org/10.1016/s1096-7192(02)00126-9.

    Article  CAS  PubMed  Google Scholar 

  29. Fulp CT, Cho G, Marsh ED, Nasrallah IM, Labosky PA, Golden JA. Identification of Arx transcriptional targets in the developing basal forebrain. Hum Mol Genet. 2008;17:3740–60. https://doi.org/10.1093/hmg/ddn271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shoubridge C, Fullston T, Gécz J. ARX spectrum disorders: making inroads into the molecular pathology. Hum Mutat. 2010;31:889–900. https://doi.org/10.1002/humu.21288.

    Article  CAS  PubMed  Google Scholar 

  31. Dobyns WB, Berry-Kravis E, Havernick NJ, Holden KR, Viskochil D. X-linked lissencephaly with absent corpus callosum and ambiguous genitalia. Am J Med Genet. 1999;86:331–7. PMID: 10494089.

    Google Scholar 

  32. Ogata T, Matsuo N, Hiraoka N, Hata J. X-linked lissencephaly with ambiguous genitalia: delineation of further case. (Letter). Am J Med Genet. 2000;94:174–6. https://doi.org/10.1002/1096-8628(20000911)94:2<174::aid-ajmg11>3.0.co;2-o.

    Article  CAS  PubMed  Google Scholar 

  33. Ming JE, Muenke M. Multiple hits during early embryonic development: digenic diseases and holoprosencephaly. Am J Hum Genet. 2002;71:1017–32. https://doi.org/10.1086/344412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lacbawan F, Solomon BD, Roessler E, El-Jaick K, Domené S, Vélez JI, Zhou N, Hadley D, Balog JZ, Long R, Fryer A, Smith W, Omar S, McLean SD, Clarkson K, Lichty A, Clegg NJ, Delgado MR, Levey E, Stashinko E, Potocki L, VanAllen MI, Clayton-Smith J, Donnai D, Bianchi DW, Juliusson PB, Njølstad PR, Brunner HG, Carey JC, Hehr U, Müsebeck J, Wieacker PF, Postra A, Hennekam RCM, van den Boogaard M-JH, van Haeringen A, Paulussen A, Herbergs J, Schrander-Stumpel CTRM, Janecke AR, Chitayat D, Hahn J, McDonald-McGinn DM, Zackai EH, Dobyns WB, Muenke M. Clinical spectrum of SIX3-associated mutations in holoprosencephaly: correlation between genotype, phenotype and function. J Med Genet. 2009;46:389–98. https://doi.org/10.1136/jmg.2008.063818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xin G, Speirs C, Lagutin O, Inbal A, Liu W, Solnica-Krezel L, Jeong Y, Epstein DJ, Oliver G. Haploinsufficiency of Six3 fails to activate sonic hedgehog expression in the ventral forebrain and causes holoprosencephaly. Dev Cell. 2008;15:236–47. https://doi.org/10.1016/j.devcel.2008.07.003.

    Article  CAS  Google Scholar 

  36. Thorwarth A, Schnittert-Hübener S, Schrumpf P, Müller I, Jyrch S, Dame C, Biebermann H, Kleinau G, Katchanov J, Schuelke M, Ebert G, Steininger A, Bönnemann C, Brockmann K, Christian H-J, Crock P, de Zegher F, Griese M, Hewitt J, Ivarsson S, Hübner C, Kapelari K, Plecko B, Rating D, Stoeva I, Ropers H-H, Grüters A, Ullmann R, Krude H. Comprehensive genotyping and clinical characterization reveal 27 novel NKX2-1 mutations and expand the phenotypic spectrum. J Med Genet. 2014;51:375–87. https://doi.org/10.1136/jmedgenet-2013-102248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Simmen T, Aslan JE, Blagoveshchenskaya AD, Thomas L, Wan L, Xiang Y, Feliciangeli SF, Hung C-H, Crump CM, Thomas G. PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J. 2005;24:717–29. https://doi.org/10.1038/sj.emboj.7600559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Olson HE, Jean-Marçais N, Yang E, Heron D, Tatton-Brown K, van der Zwaag PA, Bijlsma EK, Krock BL, Backer E, Kamsteeg E-J, Sinnema M, Reijnders MRF, Bearden D, Begtrup A, Telegraɦ A, Lunsing RJ, Burglen L, Lesca G, Cho MT, Smith LA, Sheidley BR, El Achkar CM, Pearl PL, Poduri A, Skraban CM, Tarpinian J, Nesbitt AI, van de Putte DEF, Ruivenkamp CAL, Rump P, Chatron N. A recurrent de novo PACS2 heterozygous missense variant causes neonatal-onset developmental epileptic encephalopathy, facial dysmorphism, and cerebellar dysgenesis. Am J Hum Genet. 2018;102:995–1007. https://doi.org/10.1016/j.ajhg.2018.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Mori R, Severino M, Mancardi MM, Anello D, Tardivo S, Biagini T, Capra V, Casella A, Cereda C, Copeland BR, Gagliardi S, Gamucci A, Ginevrino M, Illi B, Lorefice E, Musaev D, Stanley V, Micalizzi A, Gleeson JG, Mazza T, Rossi A, Valente EM. Agenesis of the putamen and globus pallidus caused by recessive mutations in the homeobox gene GSX2. Brain. 2019;142:2965–78. https://doi.org/10.1093/brain/awz247.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tsukahara M, Imaizumi K, Fujita K, Tateishi H, Uchida M. Familial del(18p) syndrome. Am J Med Genet. 2001;99:67–9. https://doi.org/10.1002/1096-8628(20010215)99:1<67::aid-ajmg1118>3.0.co;2-v.

    Article  CAS  PubMed  Google Scholar 

  41. Lee JE, Gleeson JG. Cilia in the nervous system: linking cilia function and neurodevelopmental disorders. Curr Opin Neurol. 2011;24:98–105. https://doi.org/10.1097/WCO.0b013e3283444d05.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huber C, Cormier-Daire V. Ciliary disorder of the skeleton. Am J Med Genet C Semin Med Genet. 2012;160C:165–74. https://doi.org/10.1002/ajmg.c.31336.

    Article  CAS  PubMed  Google Scholar 

  43. Sattar S, Gleeson JG. The ciliopathies in neuronal development: a clinical approach to investigation of Joubert syndrome and Joubert syndrome-related disorders. Dev Med Child Neurol. 2011;53:793–8. https://doi.org/10.1111/j.1469-8749.2011.04021.x.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schäffer AA. Digenic inheritance in medical genetics. J Med Genet. 2013;50:641–52. https://doi.org/10.1136/jmedgenet-2013-101713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Scheidecker S, Etard C, Pierce NW, Geoffroy V, Schaefer E, Muller J, Chennen K, Flori E, Pelletier V, Poch O, Marion V, Stoetzel C, Strähle U, Nachury MV, Dollfus H. Exome sequencing of Bardet-Biedl syndrome patient identifies a null mutation in the BBSome subunit BBlP1 (BBS18). J Med Genet. 2014;51:132–6. https://doi.org/10.1136/jmedgenet-2013-101785.

    Article  PubMed  Google Scholar 

  46. Bialas NJ, Inglis PN, Li C, Robinson JF, Parker JDK, Healey MP, Davis EE, Inglis CD, Toivonen T, Cottell DC, Blacque OE, Quarmby LM, Katsanis N, Leroux MR. Functional interactions between the ciliopathy-associated Meckel syndrome 1 (MKS1) protein and two novel MKS1-related (MKSR) proteins. J Cell Sci. 2009;122:611–24. https://doi.org/10.1242/jcs.028621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Valente EM, Logan CV, Mougou-Zerelli S, Lee JH, Silhavy JL, Brancati F, Iannicelli M, Travaglini L, Romani S, Illi B, Adams M, Szymanska K, Mazzotta A, Lee JE, Tolentino JC, Swistun D, Salpietro CD, Fede C, Gabriel S, Russ C, Cibulskis K, Sougnez C, Hildebrandt F, Otto EA, Held S, Diplas BH, Davis E, Mikula M, Strom CM, Ben-Ze’ev B, Lev D, Sagie TL, Michelson M, Yaron Y, Krause A, Boltshauser E, Elkhartoufi N, Roume J, Shalev S, Munnich A, Saunier S, Inglehearn C, Saad A, Alkindy A, Thomas S, Vekemans M, Dallapiccola B, Katsanis N, Jophnson CA, Attié-Bitach T, Gleeson JG. Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat Genet. 2010;42:619–25. https://doi.org/10.1038/ng.594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Giustina A, Braunstein GD. Chapter 10, hypothalamic syndromes. In: Jameson JL, De Groot LJ, de Kretser DM, Giudice LC, Grossman AB, Melmed S, Potts Jr. JT, Weir GC, editors. Endocrinology: adult & pediatric. 7th ed. Philadelphia: Saunders imprint of Elsevier Inc.; 2016. p. 174–87. ISBN: 978-0-323-18907-1.

    Google Scholar 

  49. Ntali G, Karavitaki N. Chapter 17, childhood hypothalamic and pituitary tumors. In: Jameson JL, De Groot LJ, de Kretser DM, Giudice LC, Grossman AB, Melmed S, Potts Jr. JT, Weir GC, editors. Endocrinology: adult & pediatric. 7th ed. Philadelphia: Saunders imprint of Elsevier Inc.; 2016. p. 291–7. ISBN: 978-0-323-18907-1.

    Google Scholar 

  50. Yu R. Chapter 150, neuroendocrine tumor syndromes. In: Jameson JL, De Groot LJ, de Kretser DM, Giudice LC, Grossman AB, Melmed S, Potts Jr. JT, Weir GC, editors. Endocrinology: adult & pediatric. 7th ed. Philadelphia: Saunders imprint of Elsevier Inc.; 2016. p. 2606–14. ISBN: 978-0-323-18907-1.

    Google Scholar 

  51. Williams VC, Lucas J, Babcock MA, Gutmann DH, Korf B, Maria BL. Neurofibromatosis type 1 revisited. Pediatrics. 2009;123:124–33. https://doi.org/10.1542/peds.2007-3204.

    Article  PubMed  Google Scholar 

  52. Campen CJ, Gutmann DH. Optic pathway gliomas in neurofibromatosis type 1. J Child Neurol. 2018;33:73–81. https://doi.org/10.1177/0883073817739509.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kuenzie C, Weissert M, Roulet E, Bode H, Schefer S, Huisman T, Landau K, Boltshauser E. Follow-up of optic pathway gliomas in children with neurofibromatosis type 1. Neuropediatrics. 1994;25:295–300. https://doi.org/10.1055/s-2008-1073043.

    Article  Google Scholar 

  54. Habiby R, Silverman B, Listernick R, Charrow J. Precocious puberty in children with neurofibromatosis type 1. J Pediatr. 1995;126:364–7. https://doi.org/10.1016/s0022-3476(95)70449-3.

    Article  CAS  PubMed  Google Scholar 

  55. Cakir M, Dworakowska D, Grossman A. Somatostatin receptor biology in neuroendocrine and pituitary tumours: part 2 – clinical implications. J Cell Mol Med. 2010;14:2585–91. https://doi.org/10.1111/j.1582-4934.2010.01125_1.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Breder CD, Yamada Y, Yasuda K, Seino S, Saper CB, Bell GI. Differential expression of somatostatin receptor subtypes in brain. J Neurosci. 1992;12:3920–34. https://doi.org/10.1523/JNEUROSCI.12-10-03920.1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kerrigan JF, Parsons A, Tsang C, Simeone K, Coons S, Jie W. Hypothalamic hamartoma: neuropathology and epileptogenesis. Epilepsia. 2017;58(Suppl. 2):22–31. https://doi.org/10.1111/epi.13752.

    Article  CAS  PubMed  Google Scholar 

  58. Craig DW, Itty A, Panganiban C, Szelinger S, Kruer MC, Sekar A, Reiman D, Narayanan V, Stephan DA, Kerrigan JF. Identification of somatic chromosomal abnormalities in hypothalamic hamartoma tissue at the GLI3 locus. Am J Hum Genet. 2008;82:366–74. https://doi.org/10.1016/j.ajhg.2007.10.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Verloes A, Gillerot Y, Langhendries JP, Fryns JP, Koulischer L. Variability versus heterogeneity in syndromal hypothalamic hamartoblastoma and related disorders: review and delineation of the cerebro-acro-visceral early lethality (CAVE) multiplex syndrome. Am J Med Genet. 1992;43:669–77. https://doi.org/10.1002/ajmg.1320430404.

    Article  CAS  PubMed  Google Scholar 

  60. Parisi MA. The molecular genetics of Joubert syndrome and related ciliopathies: the challenges of genetic and phenotypic heterogeneity. Transl Sci Rare Dis. 2019;4:25–49. https://doi.org/10.3233/TRD-190041.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Orloff MS, Eng C. Genetic and phenotypic heterogeneity in the PTEN hamartoma tumour syndrome. Oncogene. 2008;27:5387–97. https://doi.org/10.1038/onc.2008.237.

    Article  CAS  PubMed  Google Scholar 

  62. Simonis N, Migeotte I, Lambert N, Perazzolo C, de Silva DC, Dimitrov B, Heinrichs C, Janssens S, Kerr B, Mortier G, Van Vliet G, Lepage P, Casimir G, Abramowicz M, Smits G, Vilain C. FGFR1 mutations cause Hartsfield syndrome, the unique association of holoprosencephaly and ectrodactyly. J Med Genet. 2013;50:585–92. https://doi.org/10.1136/jmedgenet-2013-101603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bieser S, Reis M, Guzman M, Gauvain K, Elbabaa S, Braddock SR, Abdel-Baki MS. Grade II pilocytic astrocytoma in a 3-month-old patient with encephalocraniocutaneous lipomatosis (ECCL): case report and literature review of low grade gliomas in ECCL. Am J Med Genet A. 2015;167A:878–81. https://doi.org/10.1002/ajmg.a.37017.

    Article  CAS  PubMed  Google Scholar 

  64. Shimon I, Melmed S. Genetic basis of endocrine disease: pituitary tumor pathogenesis. J Clin Endocrinol Metab. 1997;82:1675–81. https://doi.org/10.1210/jcem.82.6.3987.

    Article  CAS  PubMed  Google Scholar 

  65. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Südhof TC, Wemig M. Induction of human neuronal cells by defined transcription factors. Nature. 2012;476:220–3. https://doi.org/10.1038/nature10202.

    Article  CAS  Google Scholar 

  66. Li X, Zuo X, Jing J, Ma Y, Wang J, Liu D, Zhu J, Du X, Xiong L, Du Y, Xu J, Xiao X, Wang J, Chai Z, Zhao Y, Deng H. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell. 2015;17:195–203. https://doi.org/10.1016/j.stem.2015.06.003.

    Article  CAS  PubMed  Google Scholar 

  67. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature. 2012;476:228–31. https://doi.org/10.1038/nature10323.

    Article  CAS  Google Scholar 

  68. Ebrahimi A, Keske E, Mehdipour A, Ebrahimi-Kalan A, Ghorbani M. Somatic cell reprogramming as a tool for neurodegenerative diseases. Biomed Pharmacother. 2019;112:108663. https://doi.org/10.1016/j.biopha.2019.108663.

    Article  CAS  PubMed  Google Scholar 

  69. Mall M, Kareta MS, Chanda S, Ahlenius H, Perotti N, Zhou B, Grieder SD, Ge X, Drake S, EuongAng C, Walker BM, Vierbuchen T, Fuentes DR, Brennecke P, Nitta KR, Jolma A, Steinmetz LM, Taipale J, Südhof TC, Wernig M. MYT1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature. 2017;544:245–9. https://doi.org/10.1038/nature21722.

    Article  CAS  PubMed  Google Scholar 

  70. Blanchet P, Bebin M, Bruet S, Cooper GM, Thompson ML, Duban-Bedu B, Gerard B, Piton A, Suckno S, Deshpande C, Clowes V, Vogt J, Turnpenny P, Williamson MP, Alembik Y, Clinical Sequencing Exploratory Research Study Consortium, Deciphering Developmental Disorders Consortium, Glasgow E, McNeill A. MYT1L mutations cause intellectual disability and variable obesity by dysregulating gene expression and development of the neuroendocrine hypothalamus. PLoS Genet. 2017;13:e1006957. https://doi.org/10.1371/jounal.pgen.1006957.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tacer KF, Potts PR. Cellular and disease functions of the Prader-Willi syndrome gene MAGEL2. Biochem J. 2018;474:2177–90. https://doi.org/10.1042/BCJ20160616.

    Article  CAS  Google Scholar 

  72. Lee S, Walker CL, Karten B, Kuny SL, Tennese AA, O’Neill MA, Wevrick R. Essential role for the Prader-Willi syndrome protein necdin in axonal outgrowth. Hum Mol Genet. 2005;14:627–37. https://doi.org/10.1093/hmg/ddi059.

    Article  CAS  PubMed  Google Scholar 

  73. Schaaf CP, Gonzalez-Garay ML, Xia F, Potocki L, Gripp KW, Zhang B, Peters BA, McElwain MA, Drmanac R, Beaudet AL, Caskey T, Ynag Y. Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nat Genet. 2013;45:1405–8. https://doi.org/10.1038/ng.2776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fountain MD, Schaaf CP. Prader-Willi syndrome and Schaaf-Yang syndrome: neurodevelopmental diseases intersecting at the MAGEL2 gene. Diseases. 2016;4:2. https://doi.org/10.3390/diseases4010002.

    Article  CAS  PubMed Central  Google Scholar 

  75. Kozlov SV, Bogenpohl JW, Howell MP, Wevrick R, Panda S, Hogenesch JB, Muglia LJ, Van Gelder RN, Herzog ED, Stewart CL. The imprinted gene MAGEL2 regulates normal circadian output. Nat Genet. 2007;39:1266–72. https://doi.org/10.1038/ng2114.

    Article  CAS  PubMed  Google Scholar 

  76. Esposito A, Falace A, Wagner M, Gal M, Mei D, Conti V, Pisano T, Aprile D, Cerullo MS, De Fusco A, Giovedi S, Seibt A, Magen D, Poister T, Eran A, Stenton SL, Fiorillo C, Ravid S, Mayatepek E, Hafner H, Wortmann S, Levanon EY, Marini C, Mandel H, Benfenati F, Distelmaier F, Fassio A, Guerrini R. Biallelic DMXL2 mutations impair autophagy and cause Ohtahara syndrome with progressive course. Brain. 2019;142:3876–91. https://doi.org/10.1093/brain/awz326.

    Article  PubMed  Google Scholar 

  77. Brooke T, Huijbregts L, Jacquier S, Csaba Z, Genin E, Meyer V, Leka S, Dupont J, Charles P, Chevenne D, Carel J-C, Léger J, de Roux N. Haploinsufficiency of Dmxl2, encoding a synaptic protein, causes infertility associated with a loss of GnRH neurons in mouse. PLoS Biol. 2014;12:e1001952. https://doi.org/10.1371/journal.pbio.1001952.

    Article  CAS  Google Scholar 

  78. Amiel J, Laudier B, Attié-Bitach T, Trang H, de Pontual L, Gener B, Trochet D, Etchevers H, Ray P, Simonneau M, Vekemans M, Munnich A, Gaultier C, Lyonnet S. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet. 2003;33:459–61. https://doi.org/10.1038/ng1130.

    Article  CAS  PubMed  Google Scholar 

  79. Trochet D, O’Brien LM, Gozal D, Trang H, Nordenskjöld A, Laudier B, Svensson P-J, Uhrig S, Cole T, Munnich A, Gaultier C, Lyonnet S, Amiel J. PHOX2B genotype allows for prediction of tumor risk in congenital central hypoventilation syndrome. Am J Hum Genet. 2005;76:421–6. https://doi.org/10.1086/428366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wajne M, Vargas CR, Funayama C, Fernandez A, Elias ML, Goodman SI, Jakobs C, van der Knaap MS. D-2-Hydroxyglutaric aciduria in a patient with a severe clinical phenotype and unusual MRI findings. J Inherit Metab Dis. 2002;25:28–34. https://doi.org/10.1023/a:1015165212965.

    Article  CAS  PubMed  Google Scholar 

  81. Struys EA, Salomons GS, Achouri Y, Schaftingen V, Grosso S, Craigen WJ, Verhoeven NM, Jakobs C. Mutations in the D-2-hydroxyglutarate dehydrogenase gene cause D-2-hydroxyglutaric aciduria. Am J Hum Genet. 2005;76:358–60. https://doi.org/10.1086/427890.

    Article  CAS  PubMed  Google Scholar 

  82. Osman AA, Saito M, Makepeace C, Permutt A, Schlesinger P, Mueckler M. Wolframin expression induces novel ion channel activity in endoplasmic reticulum membranes and increases intracellular calcium. J Biol Chem. 2003;26:52755–62. https://doi.org/10.1074/jbc.M310331200.

    Article  CAS  Google Scholar 

  83. Albin RL, Tagle DA. Genetics and molecular biology of Huntington’s disease. Trends Neurosci. 1995;18:11–4. https://doi.org/10.1016/0166-2236(95)93943-r.

    Article  CAS  PubMed  Google Scholar 

  84. Petersén Å, Gil J, Maat-Schieman MLC, Björkqvist M, Tanila H, Araújo IM, Smith R, Popovic N, Wierup N, Nortén P, Li J-Y, Roos RAC, Sundler F, Mulder H, Brundin P. Orexin loss in Huntington’s disease. Hum Mol Genet. 2005;14:39–47. https://doi.org/10.1093/hmg/ddi004.

    Article  CAS  PubMed  Google Scholar 

  85. Cepeda C, Murphy KPS, Parent M, Levine MS. The role of dopamine in Huntington’s disease. Prog Brain Res. 2014;211:235–54. https://doi.org/10.1016/B978-0-444-63425-2.00010-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cacabelos R. Parkinson’s disease: from pathogenesis to pharmacogenomics. Int J Mol Sci. 2017;18:551. https://doi.org/10.3390/ijms18030551.

    Article  CAS  PubMed Central  Google Scholar 

  87. Giasson BI, Duda JE, Murray IVJ, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM-Y. Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science. 2000;290:985–9. https://doi.org/10.1126/science.290.5493.985.

    Article  CAS  PubMed  Google Scholar 

  88. Siegel JM. Narcolepsy: a key role for hypocretins (orexins). Cell. 1999;98:409–12. https://doi.org/10.1016/s0092-8674(00)81969-8.

    Article  CAS  PubMed  Google Scholar 

  89. Mignot E, Lin L, Rogers W, Honda Y, Qiu X, Lin X, Okun M, Hohjoh H, Miki T, Hsu SH, Leffell MS, Grumet FC, Fernandez-Vina M, Honda M, Risch N. Complex HLA-DR and –DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am J Hum Genet. 2001;68:686–99. https://doi.org/10.1086/318799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes S, Benham CD, Taylor SG, Routledge C, Hemmati P, Munton RP, Ashmeade TE, Shah AS, Hatcher JP, Hatcher PD, Jones DNC, Smith MI, Piper DC, Hunter AJ, Porter RA, Upton N. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci. 1999;96:10911–6. https://doi.org/10.1073/pnas.96.19.10911.

    Article  CAS  PubMed  Google Scholar 

  91. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27:469–74. https://doi.org/10.1016/s0896-6273(00)00058-1.

    Article  CAS  PubMed  Google Scholar 

  92. Hirano A, Hsu P-K, Zhang L, Xing L, McMahon T, Yamazaki M, PtáČek LJ, Fu Y-H. DEC2 modulates orexin expression and regulates sleep. Proc Natl Acad Sci U S A. 2018;115:3434–9. https://doi.org/10.1073/pnas.1801693115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Barbosa DAN, de Oliveira-Souza R, Santo FM, de Oliveira Faria AC, Gorgulho AA, De Salles AAF. The hypothalamus at the crossroads of psychopathology and neurosurgery. Neurosurg Focus. 2017;43:E15. https://doi.org/10.3171/2017.6.FOCUS17256.

    Article  PubMed  Google Scholar 

  94. LeVay S. A difference in hypothalamic structure between heterosexual and homosexual men. Science. 1991;253:1034–7. https://doi.org/10.1126/science.1887219.

    Article  CAS  PubMed  Google Scholar 

  95. Allen LS, Gorski RA. Sexual orientation and the size of the anterior commissure in the human brain. Proc Natl Acad Sci U S A. 1992;89:7199–202. https://doi.org/10.1073/pnas.89.15.7199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cunningham RL, Lumia AR, McGinnis MY. Androgen receptors, sex behavior, and aggression. Neurobiology. 2012;96:131–40. https://doi.org/10.1159/000337663.

    Article  CAS  Google Scholar 

  97. Lee DK, Chang C. Endocrine mechanisms of disease: expression and degradation of androgen receptor: mechanism and clinical implication. J Clin Endocrinol Metab. 2003;88:4043–54. https://doi.org/10.1210/jc.2003-030261.

    Article  CAS  PubMed  Google Scholar 

  98. Mongan NP, Tadokoro-Cuccaro R, Bunch T, Hughes IA. Androgen insensitivity syndrome. Best Pract Res Clin Endocrinol Metab. 2015;29:569–80. https://doi.org/10.1016/j.beem.2015.04.005.

    Article  CAS  PubMed  Google Scholar 

  99. Liu X, Zhu M, Li X, Tang J. Clinical manifestations and AR gene mutations in Kennedy’s disease. Funct Integr Genomics. 2019;19:533–9. https://doi.org/10.1007/s10142-018-0651-7.

    Article  CAS  PubMed  Google Scholar 

  100. Bortolato M, Floris G, Shih JC. From aggression to autism: new perspectives on the behavioral sequelae of monoamine oxidase deficiency. J Neural Transm (Vienna). 2018;125:1589–99. https://doi.org/10.1007/s00702-018-1888-y.

    Article  CAS  Google Scholar 

  101. Bruder GE, Keilp JG, Xu H, Shikhman M, Schori E, Gorman JM, Gilliam TC. Catechol-O-methyltransferase (COMT) genotypes and working memory: associations with differing cognitive operations. Biol Psychiatry. 2005;58:901–7. https://doi.org/10.1016/j.biopsych.2005.05.010.

    Article  CAS  PubMed  Google Scholar 

  102. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science. 1993;262:578–80. https://doi.org/10.1126/science.8211186.

    Article  CAS  PubMed  Google Scholar 

  103. Meyer-Lindenberg A, Buckholtz JW, Kolachana B, Hairi AR, Pezawas L, Blasi G, Wabnitz A, Honea R, Verchinski B, Callicott JH, Egan M, Mattay V, Weinberger DR. Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci U S A. 2006;103:6269–74. https://doi.org/10.1073/pnas.0511311103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schumacher J, Kristensen AS, Wendland JR, Nöthen MM, Mors O, McMahon FJ. The genetics of panic disorder. J Med Genet. 2011;48:361–8. https://doi.org/10.1136/jmg.2010.086876.

    Article  CAS  PubMed  Google Scholar 

  105. Johnson PL, Truitt W, Fitz SD, Minick PE, Dietrich A, Sanghani S, Träskman-Bendz L, Goddard AW, Brundin L, Shekhar A. A key role for orexin in panic anxiety. Nat Med. 2010;16:111–5. https://doi.org/10.1038/nm.2075.

    Article  CAS  PubMed  Google Scholar 

  106. Pleil KE, Skelly MJ. CRF modulation of central monoaminergic function: implications for sex differences in alcohol drinking and anxiety. Alcohol. 2018;72:33–47. https://doi.org/10.1016/j.alcohol.2018.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fekete C, Lechan RM. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev. 2014;35:159–94. https://doi.org/10.1210/er.2013-1087.

    Article  CAS  PubMed  Google Scholar 

  108. Sugisawa C, Takamizawa T, Abe K, Hasegawa SK, Sugawara H, Ohsugi K, Muroya K, Asakua Y, Adachi M, Daitsu T, Numakura C, Koike A, Tsubaki J, Kitsuda K, Matsuura N, Taniyama M, Ishii S, Satoh T, Yamada M, Narumi S. Genetics of congenital isolated TSH deficiency: mutation screening of the known causative genes and a literature review. J Clin Endocrinol Metab. 2019;104:6229–37. https://doi.org/10.1210/jc.2019-00657.

    Article  PubMed  Google Scholar 

  109. Tajima T, Nakamura A, Oguma M, Yamazaki M. Recent advances in research on isolated congenital central hypothyroidism. Clin Pediatr Endocrinol. 2019;28:69–70. https://doi.org/10.1297/cpe.28.69.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Shibahara S, Morimoto Y, Furutani Y, Notake M, Takahashi H, Shimizu S, Horikawa S, Numa S. Isolation and sequence analysis of the human corticotropin-releasing factor precursor gene. EMBO J. 1983;2:775–9. PMCID: PMC 555184.

    Article  CAS  Google Scholar 

  111. Itoi K, Seasholtz AF, Watson SJ. Cellular and extracellular regulatory mechanisms of hypothalamic corticotropin-releasing hormone neurons. Endocr J. 1998;45:13–33. https://doi.org/10.1507/endocrj.45.13.

    Article  CAS  PubMed  Google Scholar 

  112. Dedic N, Chen A, Deussing JM. The CRF family of neuropeptides and their receptors-mediators of the central stress response. Curr Mol Pharmacol. 2018;11:4–31. https://doi.org/10.2174/1874467210666170302104053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kovács LA, Berta G, Csernus V, Ujvàri B, Füredi N, Gaszner B. Corticotropin-releasing factor-producing cells in the paraventricular nucleus of the hypothalamus and extended amygdala show age-dependent FOS and FOSB/DeltaFOSB immunoreactivity in acute and chronic stress models in the rat. Front Aging Neurosci. 2019;11:274. https://doi.org/10.3389/fnagi.2019.00274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jokinen J, Boström AE, Dadfar A, Ciuculete DM, Chatzittofis A, Åsberg M, Schiöth HB. Epigenetic changes in the CRH gene are related to severity of suicide attempt and a general psychiatric risk score in adolescents. EBioMedicine. 2018;27:123–33. https://doi.org/10.1016/jebiom.2017.12.018.

    Article  PubMed  Google Scholar 

  115. Guran T, Buonocore F, Saka N, Ozbek MN, Aycan Z, Bereket A, Bas F, Darcan S, Bideci A, Guven A, Demir K, Akinci A, Buyukinan M, Aydin BK, Turan S, Agladioglu SY, Atay Z, Abali ZY, Tarim O, Catli G, Yuksel B, Akcay T, Yildiz M, Ozen S, Doger E, Demirbilek H, Ucar A, Isik E, Ozhan B, Bolu S, Ozgen IT, Suntharalingham JP, Achermann JC. Rare causes of primary adrenal insufficiency: genetic and clinical characterization of a large nationwide cohort. J Clin Endocrinol Metab. 2016;101:284–92. https://doi.org/10.1210/jc.2015-3250.

    Article  CAS  PubMed  Google Scholar 

  116. Muscatelli F, Strom TM, Walker AP, Zanaria E, Récan D, Meindl A, Bardoni B, Guioli S, Zehetner G, Rabl W. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenital and hypogonadotropic hypogonadism. Nature. 1994;372:672–6. https://doi.org/10.1038/372672a0.

    Article  CAS  PubMed  Google Scholar 

  117. Salvi R, Gomez F, Fiaux M, Schorderet D, Jameson JL, Achermann JC, Gaillard RC, Pralong FP. Progressive onset of adrenal insufficiency and hypogonadism of pituitary origin caused by a complex genetic rearrangement within DAX-1. J Clin Endocrinol Metab. 2002;87:4094–100. https://doi.org/10.1210/jc.2001-011930.

    Article  CAS  PubMed  Google Scholar 

  118. Charmandari E, Kino T, Ichijo T, Chrousos GP. Generalized glucocorticoid resistance: clinical aspects, molecular mechanisms, and implications of a rare genetic disorder. J Clin Endocrinol Metab. 2008;93:1563–72. https://doi.org/10.1210/jc.2008-0040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Alatzoglou KS, Webb EA, Le Tissier P, Dattani MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev. 2014;35:376–432. https://doi.org/10.1210/er.2013-1067.

    Article  CAS  PubMed  Google Scholar 

  120. Mullis PE. Genetics of isolated growth hormone deficiency. J Clin Res Pediatr Endocrinol. 2010;2:52–62. https://doi.org/10.4274/jcrpe.v212.52.

    Article  PubMed  Google Scholar 

  121. Daly AF, Lysy PA, Desfilles C, Rostomyan L, Mohamed A, Caberg J-H, Raverot V, Castermans E, Marbaix E, Maiter D, Brunelle C, Trivellin G, Stratakis CA, Bours V, Raftopoulos C, Beauloye V, Barlier A, Beckers A. GHRH excess and blockade in X-LAG syndrome. Endocr Relat Cancer. 2016;23:161–70. https://doi.org/10.1530/ERC.15-0478.

    Article  CAS  PubMed  Google Scholar 

  122. Farello G, Altieri C, Cutini M, Pozzobon G, Verrotti A. Review of the literature on current changes in the timing of pubertal development and the incomplete forms of early puberty. Front Pediatr. 2019;7:147. https://doi.org/10.3389/fped.2019.00147.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Cuttler L, Misra M, Koontz M. Chapter 22, somatic growth and maturation. In: Jameson JL, De Groot LJ, de Kretser DM, Giudice LC, Grossman AB, Melmed S, Potts Jr. JT, Weir GC, editors. Endocrinology: adult & pediatric. 7th ed. Philadelphia: Saunders imprint of Elsevier Inc.; 2016. p. 382–417. ISBN: 978-0-323-18907-1.

    Google Scholar 

  124. Skorupskaite K, George JT, Anderson RA. The kisspeptin-GnRH pathway in human reproductive health and disease. Hum Reprod Update. 2014;20:485–500. https://doi.org/10.1093/humupd/dmu009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Uenoyama Y, Tomikawa J, Inoue N, Goto T, Minabe S, Ieda N, Nakamura S, Watanabe Y, Ikegami K, Matsuda F, Ohkura S, Maeda K-I, Tsukamura H. Molecular and epigenetic mechanism regulating hypothalamic Kiss1 gene expression in mammals. Neuroendocrinology. 2016;103:640–9. https://doi.org/10.1159/000445207.

    Article  CAS  PubMed  Google Scholar 

  126. Silveira LG, Noel SD, Silveira-Neto AP, Abreu AP, Brito VN, Santos MG, Bianco SDC, Kuohung W, Xu S, Gryngarten M, Escobar ME, Arnhold IJP, Mendonca BB, Kaiser UB, Latronico AC. Mutations of the KISS1 gene in disorders of puberty. J Clin Endocrinol Metab. 2010;95:2276–80. https://doi.org/10.1210/jc.2009-2421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bianco SDC, Kaiser UB. The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism. Nat Rev Endocrinol. 2009;5:569–76. https://doi.org/10.1038/nrendo.2009.177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Topaloglu AK, Tello JA, Kotan LD, Oxbek MN, Yilmaz MB, Erdogan S, Gurbuz F, Temiz F, Millar RP, Yuksel B. Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N Engl J Med. 2012;366:629–35. https://doi.org/10.1056/NEJMoa1111184.

    Article  CAS  PubMed  Google Scholar 

  129. Haddad NG, Eugster EA. Chapter 121, precocious puberty. In: Jameson JL, De Groot LJ, de Kretser DM, Giudice LC, Grossman AB, Melmed S, Potts Jr. JT, Weir GC, editors. Endocrinology: adult & pediatric. 7th ed. Philadelphia: Saunders imprint of Elsevier Inc.; 2016. p. 2130–41. ISBN: 978-0-323-18907-1.

    Google Scholar 

  130. Lee DK, Nguyen T, O’Neill GP, Cheng R, Liu Y, Howard AD, Coulombe N, Tan CP, Tang-Nguyen A-T, George SR, O’Dowd BF. Discovery of a receptor related to the galanin receptors. FEBS Lett. 1999;446:103–7. https://doi.org/10.1016/s0014-5793(99)00009-5.

    Article  CAS  PubMed  Google Scholar 

  131. Koemeter-Cox AI, Sherwood TW, Green JA, Steiner RA, Berbari NF, Yoder BK, Kauffman AS, Monsma PC, Brown A, Askwith CC, Mykytyn K. Primary cilia enhance kisspeptin receptor signaling on gonadotropin-releasing hormone neurons. Proc Natl Acad Sci U S A. 2014;111:10335–40. https://doi.org/10.1073/pnas.1403286111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Teles MG, Bianco SDC, Brito VN, Trarbach EB, Kuohung W, Xu S, Seminara SB, Mendonca BB, Kaiser UB, Latronico AC. A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med. 2008;358:709–15. https://doi.org/10.1056/NEJMoa073443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ojeda SR, Dubay C, Lomniczi A, Kaidar G, Matagne V, Sandau US, Dissen GA. Gene networks and the neuroendocrine regulation of puberty. Mol Cell Endocrinol. 2010;324:3–11. https://doi.org/10.1016/j.mce.2009.12.003.

    Article  CAS  PubMed  Google Scholar 

  134. Abreu AP, Dauber A, Macedo DB, Noel SD, Brito VN, Gill JC, Cukier P, Thompson IR, Navarro VM, Gagliardi PC, Rodrigues T, Kochi C, Longui CA, Beckers D, de Zegher F, Montenegro LR, Mendonca BB, Carroll RS, Hirschhorn JN, Latronico AC, Kaiser UB. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med. 2013;368:2467–75. https://doi.org/10.1056/NEJMoa1302160.

    Article  CAS  PubMed  Google Scholar 

  135. Chan Y-M, de Guillebon A, Lang-Muritano M, Plummer L, Cerrato F, Tsiaras S, Gaspert A, Lavoie HB, Wu C-H, Crowley WF Jr, Amory JK, Pitteloud N, Seminara SB. GNRH1 mutations in patients with idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci U S A. 2009;106:11703–8. https://doi.org/10.1073/pnas.0903449106.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Chan Y-M. A needle in a haystack: mutations in GNRH1 as a rare cause of isolated GnRH deficiency. Mol Cell Endocrinol. 2011;346:51–6. https://doi.org/10.1016/j.mce.2011.06.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Carboni A, Pimpinelli F, Colamarino S, Zaninetti R, Piccolella M, Rumio C, Piva F, El R, Maggi R. The product of X-linked Kallmann’s syndrome gene (KAL1) affects the migratory activity of gonadotropin-releasing hormone (GnRH)-producing neurons. Hum Mol Genet. 2004;13:2781–91. https://doi.org/10.1093/hmg/ddh309.

    Article  Google Scholar 

  138. Tobet SA, Schwarting GA. Minireview: recent progress in gonadotropin-releasing hormone neuronal migration. Endocrinology. 2006;147:1159–65. https://doi.org/10.1210/en.2005-1275.

    Article  CAS  PubMed  Google Scholar 

  139. Amato LGL, Latronico AC, Silveira LFG. Molecular and genetic aspects of congenital isolated hypogonadotropic hypogonadism. Endocrinol Metab Clin North Am. 2017;46:283–303. https://doi.org/10.1016/j.ecl.2017.01.010.

    Article  Google Scholar 

  140. Petteloud N, Acierno JS Jr, Meysing A, Eliseenkova AV, Ma J, Ibrahimi OA, Metzger DL, Hayes FJ, Dwyer AA, Hughes VA, Yialamas M, Hall JE, Grant E, Mohammadi M, Crowley WF Jr. Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci U S A. 2006;103:6281–6. https://doi.org/10.1073/pnas.0600962103.

    Article  CAS  Google Scholar 

  141. Trarbach EB, Abreu AP, Silveira LFG, Garmes HM, Baptista MTM, Teles MG, Costa EMF, Mohammadi M, Pitteloud N, Mendonca BB, Latronico AC. Nonsense mutations in FGF8 gene causing different degrees of human gonadotropin-releasing deficiency. J Clin Endocrinol Metab. 2010;95:3491–6. https://doi.org/10.1210/jc.2010-0176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Xu N, Kim H-G, Bhagavath B, Cho S-G, Lee JH, Ha K, Meliciani I, Wenzel W, Podolsky RH, Chorich LP, Stackhouse KA, Grove AMH, Odom LN, Ozata M, Bick DP, Sherins RJ, Kim S-H, Cameron RS, Layman LC. Nasal embryonic LHRH factor (NELF) mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil Steril. 2011;95:1613–20. https://doi.org/10.1016/j.fertnstert.2011.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sarfati J, Dodé C, Young J. Kallmann syndrome caused by mutations in the PROK2 and PROKR2 genes: pathophysiology and genotype-phenotype correlations. Front Horm Res. 2010;39:121–32. https://doi.org/10.1159/000312698.

    Article  CAS  PubMed  Google Scholar 

  144. Cole LW, Sidis Y, Zhang CK, Quinton R, Plummer L, Pignatelli D, Hughes VA, Dwyer AA, Raivio T, Hayes FJ, Seminara SB, Huot C, Alos N, Speiser P, Takeshita A, VanVliet G, Pearce S, Crowley WF Jr, Zhou Q-Y, Pitteloud N. Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum. J Clin Endocrinol Metab. 2008;93:3551–9. https://doi.org/10.1210/jc.2007-2654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Raivio T, Falardeau J, Dwyer A, Quinton R, Hayes FJ, Hughes VA, Cole LW, Pearce SH, Lee H, Boepple P, Crowley WF Jr, Pitteloud N. Reversal of idiopathic hypogonadotropic hypogonadism. N Engl J Med. 2007;357:863–73. https://doi.org/10.1056/NEJMoa066494.

    Article  CAS  PubMed  Google Scholar 

  146. Marin O, Yaron A, Bagri A, Tessier-Lavigne M, Rubenstein JLR. Sorting of striatal and cortical interneurons regulated by semaphoring-neuropilin interactions. Science. 2001;293:872–5. https://doi.org/10.1126/science.1061891.

    Article  CAS  PubMed  Google Scholar 

  147. Young J, Metay C, Bouligand J, Tou B, Francou B, Maione L, Tosca L, Sarfati J, Brioude F, Esteva B, Briand-Suleau A, Brisset S, Goossens M, Tachdjian G, Guiochon-Mantel A. SEMA3A deletion in a family with Kallmann syndrome validates the role of semaphorin 3A in human puberty and olfactory system development. Hum Reprod. 2012;27:1460–5. https://doi.org/10.1093/humrep/des022.

    Article  CAS  PubMed  Google Scholar 

  148. Aligianis IA, Morgan NV, Mione M, Johnson CA, Rosser E, Hennekam RC, Adams G, Trembath RC, Pilz DT, Stoodley N, Moore AT, Wilson S, Maher ER. Mutation in Rab3 GTPase-activating protein (RAB3GAP) noncatalytic subunit in a kindred with Martsolf syndrome. Am J Hum Genet. 2006;78:702–7. https://doi.org/10.1086/502681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zentner GE, Hurd EA, Schnetz MP, Handoko L, Wang C, Wang Z, Wei C, Tesar PJ, Hatzoglou M, Martin DM, Scacheri PC. CHD7 functions in the nucleolus as a positive regulator of ribosomal RNA biogenesis. Hum Mol Genet. 2010;19:3491–501. https://doi.org/10.1093/hmg/ddq265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kim H-G, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, Kang GB, Rosenberger G, Tekin M, Ozata M, Blick DP, Sherins RJ, Walker SL, Shi Y, Gusella JF, Layman LC. Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet. 2008;83:511–9. https://doi.org/10.1016/j.ajhg.2008.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, Serin A, Mungan NO, Cook JR, Imamoglu S, Akalin NS, Yuksel B, O’Rahilly S, Semple RK. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for neurokinin B in the central control of reproduction. Nat Genet. 2009;41:354–8. https://doi.org/10.1038/ng.306.

    Article  CAS  PubMed  Google Scholar 

  152. Kim Y-J, Osborn DPS, Lee J-Y, Araki M, Araki K, Mohun T, Känsäkoski J, Brandstack N, Kim H-T, Miralles F, Kim C-H, Brown NA, Kim H-G, Martinez-Barbera JP, Ataliotis P, Raivio T, Layman LC, Kim S-H. WDR11-mediated hedgehog signaling defects underlie a new ciliopathy related to Kallmann syndrome. EMBO Rep. 2018;19:269–89. https://doi.org/10.15252/embr.201744632.

    Article  CAS  PubMed  Google Scholar 

  153. Tornberg J, Sykiotis GP, Keefe K, Plummer L, Hoang X, Hall JE, Quinton R, Seminara SB, Hughes V, Van Vliet G, Van Uum S, Crowley WF, Habuchi H, Kimata K, Pitteloud N, Bülow HE. Heparin sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism. Proc Natl Acad Sci U S A. 2011;108:11524–9. https://doi.org/10.1073/pnas.1102284108.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Miraoui H, Dwyer AA, Sykiotis GP, Plummer L, Chung W, Feng B, Beenken A, Clarke J, Pers TH, Dworzynski P, Keefe K, Niedziela M, Raivio T, Crowley WF Jr, Seminara SB, Quinton R, Hughes VA, Kumanov P, Young J, Yialamas MA, Hall JE, Van Vliet G, Chanoine J-P, Rubenstein J, Mohammadi M, Tsai P-S, Sidis Y, Lage K, Pitteloud N. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism. Am J Hum Genet. 2013;92:725–43. https://doi.org/10.1016/j.ajhg.2013.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kotan LD, Hutchins BI, Ozkan Y, Demirel F, Stoner H, Cheng PJ, Esen I, Gurbuz F, Bicakci YK, Mengen E, Yuksel B, Wray S, Topaloglu AK. Mutations in FEZF1 cause Kallmann syndrome. Am J Hum Genet. 2014;95:326–31. https://doi.org/10.1016/j.ajhg.2014.08.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Synofzik M, Gonzalez MA, Lourenco CM, Coutelier M, Haack TB, Rebelo A, Hannequin D, Strom TM, Prokisch H, Kernstock C, Durr A, Schöls L, Lima-Martinez MM, Farooq A, Schüle R, Stevanin G, Marques W Jr, Züchner S. PNPLA6 mutations cause Boucher-Neuhäuser and Gordon Holmes syndromes as part of a broad neurodegenerative spectrum. Brain. 2014;137:69–77. https://doi.org/10.1093/brain/awt1326.

    Article  PubMed  Google Scholar 

  157. Topaloglu AK, Lominiczi A, Kretzschmar D, Dissen GA, Kotan LD, McArdle CA, Koc AF, Hamel BC, Guclu M, Papatya ED, Eren E, Mengen E, Gurbuz F, Cook M, Castellano JM, Kekil MB, Mungan NO, Yuksel B, Ojeda SR. Loss-of-function mutations in PNPLA6 encoding neuropathy target esterase underlie pubertal failure and neurological deficits in Gordon Holmes syndrome. J Clin Endocrinol Metab. 2014;99:E2067–75. https://doi.org/10.1210/jc.2014-1836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Alazami AM, Al-Saif A, Al-Semari A, Bohlega S, Zlitni S, Alzahrani F, Bavi P, Kaya N, Colak D, Khalak H, Baltus A, Peterlin B, Danda S, Bhatia KP, Schneider SA, Sakati N, Walsh CA, Al-Mohanna F, Meyer B, Alkuraya FS. Mutations in C2orf37, encoding a nucleolar protein, cause hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome. Am J Hum Genet. 2008;83:684–91. https://doi.org/10.1016/j.ajhg.2008.10.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bichet D. Chapter 8, the posterior pituitary. In: Melmed S, editor. The pituitary. 4th ed. London: Academic Press imprint of Elsevier Inc; 2017. p. 251–88. ISBN: 978-0-12-804169-7.

    Google Scholar 

  160. Ito M, Jameson JL, Ito M. Molecular basis of autosomal dominant neurohypophyseal diabetes insipidus. J Clin Invest. 1997;99:1897–905. https://doi.org/10.1172/JCI119357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wahlstrom JT, Fowler MJ, Nicholson WF, Kovacs WJ. A novel mutation in the preprovasopressin gene identified in a kindred with autosomal dominant neurohypophyseal diabetes insipidus. J Clin Endocrinol Metab. 2004;89:1963–8. https://doi.org/10.1210/jc.2003-031542.

    Article  CAS  PubMed  Google Scholar 

  162. Bernard C. Lecons de physiologie experimentale appliqués á là medicine. Paris: Baillere et Fils; 1854. Cited in: Schwartz MW, Porte Jr D. Diabetes, obesity, and the brain. Science. 2005;307:375–9. https://doi.org/10.1126/science.1104344.

  163. Lam TKT, Gutierrez-Juarez R, Pocai A, Rossetti L. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science. 2005;309:943–7. https://doi.org/10.1126/science.1112085.

    Article  CAS  PubMed  Google Scholar 

  164. Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science. 2004;305:99–103. https://doi.org/10.1126/science.1096485.

    Article  CAS  PubMed  Google Scholar 

  165. Kubota N, Terauchi Y, Tobe K, Yano W, Suzuki R, Ueki K, Takamoto I, Satoh H, Maki T, Kubota T, Moroi M, Okada-Iwabu M, Ezaki O, Nagai R, Ueta Y, Kadowaki T, Noda T. Insulin receptor substrate 2 plays a crucial role in β cells and the hypothalamus. J Clin Invest. 2004;114:917–27. https://doi.org/10.1172/JCI200421484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Stefan N, Kovacs P, Stumvoll M, Hanson RL, Lehn-Stefan A, Permana PA, Baier LJ, Tataranni A, Silver K, Bogardus C. Metabolic effects of the Gly1057Asp polymorphism in IRS-2 and interactions with obesity. Diabetes. 2003;52:1544–50. https://doi.org/10.2337/diabetes.52.6.1544.

    Article  CAS  PubMed  Google Scholar 

  167. Ranadive SA, Vaisse C. Lessons from extreme human obesity: monogenic disorders. Endocrinol Metab Clin North Am. 2008;37:733–51. https://doi.org/10.1016/j.ecl.2008.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Farooqi IS, O’Rahilly S. 20 years of leptin: human disorders of leptin action. J Endocrinol. 2014;223:T63–70. https://doi.org/10.1530/JOE-14-0480.

    Article  CAS  PubMed  Google Scholar 

  169. Andermann ML, Lowell BB. Towards a wiring-diagram understanding of appetite control. Neuron. 2017;95:757–78. https://doi.org/10.1016/j.neuron.2017.06.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Clément K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougnères P, Lebouc Y, Froguel P, Guy-Grand B. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998;392:398–401. https://doi.org/10.1038/32911.

    Article  PubMed  Google Scholar 

  171. Farooqi IS, Wangensteen T, Collins S, Kimber W, Matarese G, Keogh JM, Lank E, Bottomley B, Lopez-Fernandez J, Ferraz-Amaro I, Dattani MT, Ercan O, Myhre AG, Retterstol L, Stanhope R, Edge JA, McKenzie S, Lessan N, Ghodsi M, De Rosa V, Perna F, Fontana S, Barroso I, Undlien DE, O’Rahilly S. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med. 2007;356:237–47. https://doi.org/10.1056/NEJMoa063988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ramos-Molina B, Martin MG, Lindberg I. PCSK1 variants and human obesity. Prog Mol Biol Transl Sci. 2016;140:47–74. https://doi.org/10.1016/bs.pmbts.2015.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Grüters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19:155–7. https://doi.org/10.1038/509.

    Article  CAS  PubMed  Google Scholar 

  174. Koch M, Varela L, Kim JG, Kim JD, Hernandez F, Simonds SE, Castorena CM, Vianna CR, Elmquist JK, Morozov YM, Rakic P, Bechmann I, Cowley MA, Szigeti-Buck K, Dietrich MO, Gao X-B, Diano S, Horvath TL. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature. 2015;519:45–50. https://doi.org/10.1038/nature14260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Farooqi IS, Yeo GSH, Keogh JM, Aminian S, Jebb SA, Butler G, Cheetham T, O’Rahilly S. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest. 2000;106:271–9. https://doi.org/10.1172/JCI9397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Milbank E, Lόpez M. Orexins/hypocretins: key regulators of energy homeostasis. Front Endocrinol. 2019;10:830. https://doi.org/10.3389/fendo.2019.00830.

    Article  Google Scholar 

  177. Striano S, Striano P. Clinical features and evolution of the gelastic seizures-hypothalamic hamartoma syndrome. Epilepsia. 2017;58(Suppl. 2):12–5. https://doi.org/10.1111/epi.13753.

    Article  PubMed  Google Scholar 

  178. Biesecker LG, Graham J Jr. Pallister-Hall syndrome. J Med Genet. 1996;33:585–9. https://doi.org/10.1136/jmg.33.7.585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Mullatti N. Hypothalamic hamartoma in adults. Epileptic Disord. 2003;5:201–4. PMID: 14975788.

    Google Scholar 

  180. Prigatano GP. Cognitive and behavioral dysfunction in children with hypothalamic hamartoma and epilepsy. Semin Pediatr Neurol. 2007;14:65–72. https://doi.org/10.1016/j.spen.2007.03.004.

    Article  PubMed  Google Scholar 

  181. Ramos CO, Latronico AC, Cukier P, Macedo DB, Bessa DS, Cunha-Silva M, Arnhold IJ, Mendonca BB, Brito VN. Long-term outcomes of patients with central precocious puberty due to hypothalamic hamartoma after GnRHa treatment: anthropometric, metabolic, and reproductive aspects. Neuroendocrinology. 2018;106:203–10. https://doi.org/10.1159/000477584.

    Article  CAS  PubMed  Google Scholar 

  182. Freeman JL, Harvey AS, Rosenfeld JV, et al. Generalized epilepsy in hypothalamic hamartoma: evolution and postoperative resolution. Neurology. 2003;60:762–7. https://doi.org/10.1212/01.wnl.0000049457.05670.7d.

    Article  CAS  PubMed  Google Scholar 

  183. Rutishauser J, Beuret N, Prescianotto-Baschong C, Spiess M. Chapter 14, hereditary neurohypophyseal diabetes insipidus. In: Igaz P, Patόcs A, editors. Genetics of endocrine diseases and syndromes. Experientia Supplementum 111. Cham: Springer Nature Switzerland AG; 2019, p. 299–315. https://doi.org/10.1007/978-3-030-25905-1_14.

  184. Lacombe LU. De la polydipsie. L’Experience. 1841;203e208:305e91.

    Google Scholar 

  185. Yang H, Yan K, Wang L, Gong F, Jin Z, Zhu H. Autosomal dominant familial neurohypophyseal diabetes insipidus caused by a novel nonsense mutation in AVP-NPII gene. Exp Ther Med. 2019;18(2):1309–14. https://doi.org/10.3892/etm.2019.7645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Willcutts MD, Felner E, White PC. Autosomal recessive familial neurohypophyseal diabetes insipidus with continued secretion of mutant weakly active vasopressin. Hum Mol Genet. 1999;8:1303–7. https://doi.org/10.1093/hmg/8.7.1303.

    Article  CAS  PubMed  Google Scholar 

  187. Christensen JH, Kvistgaard H, Knudsen J, et al. A novel deletion partly removing the AVP gene causes autosomal recessive inheritance of early-onset neurohypophyseal diabetes insipidus. Clin Genet. 2013;83:44–52. https://doi.org/10.1111/j.1399-0004.2011.01833.x.

    Article  CAS  PubMed  Google Scholar 

  188. Habiby R, Robertson GL, Kaplowitz PB, et al. A novel X-linked form of familial neurohypophyseal diabetes insipidus [abstract]. J Invest Med. 1996;44:388A.

    Google Scholar 

  189. Angulo MA, Butler MG, Cataletto ME. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Invest. 2015;38(12):1249–63. https://doi.org/10.1007/s40618-015-0312-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hurren BJ, Flack NAMS. Prader-Willi syndrome: a spectrum of anatomical and clinical features. Clin Anat. 2016;29:590–605. https://doi.org/10.1002/ca.22686.

    Article  PubMed  Google Scholar 

  191. Gunay-Aygun M, Schwartz S, Heeger S, O’Riordan MA, Cassidy SB. The changing purpose of Prader-Willi syndrome clinical diagnostic criteria and proposed revised criteria. Pediatrics. 2001;108(5):E92. https://doi.org/10.1542/peds.108.5.e92.

    Article  CAS  PubMed  Google Scholar 

  192. Sedky K, Bennett DS, Pumariega A. Prader-Willi syndrome and obstructive sleep apnea: co-occurrence in the pediatric population. J Clin Sleep Med. 2014;10(4):403–9. https://doi.org/10.5664/jcsm.3616.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Meyer SL, Splaingard M, Repaske DR, Zipf W, Atkins J, Jatana K. Outcomes of adenotonsillectomy in patients with Prader-Willi syndrome. Arch Otolaryngol Head Neck Surg. 2012;138(11):1047–51. https://doi.org/10.1001/2013.jamaoto.64.

    Article  PubMed  Google Scholar 

  194. Coupaye M, Lorenzini F, Llore-Linares C, et al. Growth hormone therapy for children and adolescents with Prader-Willi syndrome is associated with improved body composition and metabolic status in adulthood. J Clin Endocrinol Metab. 2013;98:E328–35. https://doi.org/10.1210/jc.2012-2881.

    Article  CAS  PubMed  Google Scholar 

  195. Feigerlova E, Diene G, Oliver I, Gennero I, Salles JP, Arnaud C, Tauber M. Elevated insulin-like growth factor-I values in children with Prader-Willi syndrome compared with growth hormone (GH) deficiency children over two years of GH treatment. J Clin Endocrinol Metab. 2010;95(10):4600–8. https://doi.org/10.1210/jc.2009-1831.

    Article  CAS  PubMed  Google Scholar 

  196. Odent T, Accadbled F, Koureas G, Cournot M, Moine A, Diene G, Molinas C, Pinto G, Tauber M, Gomes B, de Gauzy JS, Glorion C. Scoliosis in patients with Prader-Willi-Syndrome. Pediatrics. 2008;122(2):e499–503. https://doi.org/10.1542/peds.2007-3487.

    Article  PubMed  Google Scholar 

  197. Schmidt H, Schwarz PS. Premature adrenarche, increased growth velocity and accelerated bone age in male patients with Prader-Labhart-Willi syndrome. Eur J Pediatr. 2001;160:69–70. https://doi.org/10.1007/s004310000633.

    Article  CAS  PubMed  Google Scholar 

  198. Chandra SR, Daryappa MM, Mudabbir MAM, Pooja M, Arivazhagan A. Pallister-Hall syndrome. J Pediatr Neurosci. 2017;12:276–9. https://doi.org/10.4103/jpn.JPN_101_17.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Wallace RH, Freeman JL, Shouri MR, Izzillo PA, Rosenfeld JV, Mulley JC, Harvey AS, Berkovic SF. Somatic mutations in GLI3 can cause hypothalamic hamartoma and gelastic seizures. Neurology. 2008;70:653–5. https://doi.org/10.1212/01.wnl.0000284607.12906.c5.

    Article  CAS  PubMed  Google Scholar 

  200. Radhakrishna U, Bornholdt D, Scott HS, Patel UC, Rossier C, Engel H, Bottani A, Chandal D, Blouin JL, Solanki JV, Grzeschik KH, Antonarakis SE. The phenotypic spectrum of GLI3 morphopathies includes autosomal dominant preaxial polydactyly type-IV and postaxial polydactyly type- A/B; no phenotype prediction from the position of GLI3 mutations. Am J Hum Genet. 1999;65:645–55. https://doi.org/10.1086/302557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Boudreau EA, Liow K, Frattali CM, Wiggs E, Turner JT, Feuillan P, Sato S, Patsalides A, Patronas N, Biesecker LG, Theodore WH. Hypothalamic hamartomas and seizures: distinct natural history of isolated and Pallister-Hall syndrome cases. Epilepsia. 2005;46:42–7. https://doi.org/10.1111/j.0013-9580.2005.68303.x.

    Article  PubMed  Google Scholar 

  202. Blake J, Hu D, Cain JE, Rosenblum ND. Urogenital development in Pallister-Hall syndrome is disrupted in a cell-lineage-specific manner by constitutive expression of GLI3 repressor. Hum Mol Genet. 2016;25:437–47. https://doi.org/10.1093/hmg/ddv483.

    Article  CAS  PubMed  Google Scholar 

  203. Urano F. Wolfram syndrome: diagnosis, management, and treatment. Curr Diab Rep. 2016;16:6 Open Access. https://doi.org/10.1007/s11892-015-0702-6.

  204. Kinsley BT, Swift M, Dumont RH, et al. Morbidity and mortality in the Wolfram syndrome. Diabetes Care. 1995;18(12):1566–70. https://doi.org/10.2337/diacare.18.12.1566.

    Article  CAS  PubMed  Google Scholar 

  205. Pallotta MT, Tascini G, Crispoldi R, Orabona C, Mondanelli G, Grohmann U, Esposito S. Wolfram syndrome, a rare neurodegenerative disease: from pathogenesis to future treatment perspectives. J Transl Med. 2019;17(1):238. https://doi.org/10.1186/s12967-019-1993-1.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Rigoli L, Bramanti P, Di Bella C, Filippo DL. Genetic and clinical aspects of Wolfram syndrome 1, a severe neurodegenerative disease. Pediatr Res. 2018;83:921–9. https://doi.org/10.1038/pr.2018.17.

    Article  CAS  PubMed  Google Scholar 

  207. Hoekel J, Chisholm SA, Al-Lozi A, et al. Ophthalmologic correlates of disease severity in children and adolescents with Wolfram syndrome. J AAPOS. 2014;18(5):461–5. https://doi.org/10.1016/j.jaapos.2014.07.162.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Bababeygy SR, Wang MY, Khaderi KR, et al. Visual improvement with the use of idebenone in the treatment of Wolfram syndrome. J Neuroophthalmol. 2012;32(4):386–9. https://doi.org/10.1097/WNO.0b013e318273c102.

    Article  PubMed  Google Scholar 

  209. Lesperance MM, Hall JW 3rd, San Agustin TB, et al. Mutations in the Wolfram syndrome type 1 gene (WFS1) define a clinical entity of dominant low-frequency sensorineural hearing loss. Arch Otolaryngol Head Neck Surg. 2003;129(4):411–20. https://doi.org/10.1001/archotol.129.4.411.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Forsythe E, Kenny J, Bacchelli C, Beales PL. Managing Bardet-Biedl syndrome-now and in the future. Front Pediatr. 2018;6:23. https://doi.org/10.3389/ped.2018.00023.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA. New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J Med Genet. 1999;36:437–46. PMCID: PMC1734378.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Khan SA, Muhammad N, Khan MA, Kamal A, Rehman ZU, Khan S. Genetics of human Bardet-Biedl syndrome, and updates. Clin Genet. 2016;90:3–15. https://doi.org/10.1111/cge.12737.

    Article  CAS  PubMed  Google Scholar 

  213. M’hamdi O, Ouertani I, Chaabouni-Bouhamed H. Update on the genetics of Bardet-Biedl syndrome. Mol Syndromol. 2014;5:51–6. https://doi.org/10.1159/000357054.

    Article  CAS  PubMed  Google Scholar 

  214. Tsang SH, Aycinena ARP, Sharma T. Ciliopathy: Bardet-Biedl syndrome. Adv Exp Med Biol. 2018;1085:171–4. https://doi.org/10.1007/978-3-319-95046-4_33.

    Article  PubMed  Google Scholar 

  215. Wingfield JL, Lechtrek K-F, Lorentzen E. Trafficking of ciliary membrane proteins by the intraflagellar transport/BBSome machinery. Essays Biochem. 2018;62:753–63. https://doi.org/10.1042/EBC20180030.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Tobin JL, Beales PL. Bardet-Biedl syndrome: beyond the cilium. Pediatr Nephrol. 2007;22:926–36. https://doi.org/10.1007/s00467-007-0435-0.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Putoux A, Attie-Bitach T, Martinovic J, Gubler MC. Phenotypic variability of Bardet-Biedl syndrome: focusing on the kidney. Pediatr Nephrol. 2012;27(1):7–15. https://doi.org/10.1007/s00467-010-1751-3.

    Article  PubMed  Google Scholar 

  218. Hamel CP. Cone rod dystrophies. Orphanet J Rare Dis. 2007;2:7. https://doi.org/10.1186/1750-1172-2-7.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Zhang C, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32. https://doi.org/10.1038/372425a0.

    Article  CAS  PubMed  Google Scholar 

  220. Münzberg H, Morrison CD. Structure, production and signaling of leptin. Metabolism. 2015;64:13–23. https://doi.org/10.1016/j.metabol.2014.09.010.

    Article  CAS  PubMed  Google Scholar 

  221. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, Sanna V, Jebb SA, Perna F, Fontana S, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Investig. 2002;110:1093–103. https://doi.org/10.1172/JCI200215693.

    Article  CAS  PubMed  Google Scholar 

  222. Ozata M, Ozdemir IC, Licinio J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metabol. 1999;84:3686–95. https://doi.org/10.1210/jcem.84.10.5999.

    Article  CAS  Google Scholar 

  223. Licinio J, Caglayan S, Ozata M, Yildiz BO, de Miranda PB, O’Kirwan F, Whitby R, Liang L, Cohen P, Bhasin S, et al. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci U S A. 2004;101:4531–6. https://doi.org/10.1073/pnas.0308767101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Kim K, Choe HK. Role of hypothalamus in aging and its underlying cellular mechanisms. Mech Ageing Dev. 2019;177:74–9. https://doi.org/10.1016/j.mad.2018.04.008.

    Article  CAS  PubMed  Google Scholar 

  225. Hildrum B, Mykletun A, Hole T, Midthjell K, Dahl AA. Age-specific prevalence of the metabolic syndrome defined by the International Diabetes Federation and the National Cholesterol Education Program: the Norwegian HUNT 2 study. BMC Public Health. 2007;7:220. https://doi.org/10.1186/1471-2458-7-220.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Lim S, Kim JH, Yoon JW, Kang SM, Choi SH, Park YJ, Kim KW, Lim JY, Park KS, Jang HC. Sarcopenic obesity: prevalence and association with metabolic syndrome in the Korean longitudinal study on health and aging (KLoSHA). Diabetes Care. 2010;33:1652–4. https://doi.org/10.2337/dc10-0107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Wolden-Hanson T, Marck BT, Matsumoto AM. Blunted hypothalamic neuropeptide gene expression in response to fasting, but preservation of feeding responses to AgRP in aging male brown Norway rats. Am J Physiol Regul Integr Comp Physiol. 2004;287:R138–46. https://doi.org/10.1152/ajpregu.00465.2003.

    Article  CAS  PubMed  Google Scholar 

  228. Cavadas C, Aveleira CA, Souza GFP, Velloso LA. The pathophysiology of defective proteostasis in the hypothalamus – from obesity to ageing. Nat Rev Endocrinol. 2016;12:723–33. https://doi.org/10.1038/nrendo.2016.107.

    Article  CAS  PubMed  Google Scholar 

  229. Rudman D, Feller AG, Nagraj HS, Gergans GA, Lalitha PY, Goldberg AF, Schlenker RA, Cohn L, Rudman IW, Mattson DE. Effects of human growth hormone in men over 60 years old. N Engl J Med. 1990;323:1–6. https://doi.org/10.1056/NEJM199007053230101.

    Article  CAS  PubMed  Google Scholar 

  230. Bartke A. Can growth hormone (GH) accelerate aging? Evidence from GH-transgenic mice. Neuroendocrinology. 2003;78:210–6. https://doi.org/10.1159/000073704.

    Article  CAS  PubMed  Google Scholar 

  231. Flurkey K, Papaconstantinou J, Miller RA, Harrison DE. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci U S A. 2001;98:6736–41. https://doi.org/10.1073/pnas.111158898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Morimoto N, Kawakami F, Makino S, Chihara K, Hasegawa M, Ibata Y. Age-related changes in growth hormone releasing factor and somatostatin in the rat hypothalamus. Neuroendocrinology. 1988;47:459–64. https://doi.org/10.1159/000124950.

    Article  CAS  PubMed  Google Scholar 

  233. Yang S-B, Tien A-C, Boddupalli G, Xu AW, Jan YN, Jan LY. Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron. 2012;75:425–36. https://doi.org/10.1016/j.neuron.2012.03.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Mori H, Inoki K, Münzberg H, Opland D, Faouzi M, Villanueva EC, Ikenoue T, Kwiatkowski D, MacDougald OA, Myers MG Jr, Guan K-L. Critical role for hypothalamic mTOR activity in energy balance. Cell Metab. 2009;9:362–74. https://doi.org/10.1016/j.cmet.2009.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Blagosklonny MV. Answering the ultimate question “What is the proximal cause of aging?”. Aging (Albany NY). 2012;4:861–77. https://doi.org/10.18632/aging.100525.

    Article  Google Scholar 

  236. Zhang G, Li J, Purkayastha S, Tang Y, Zhang H, Yin Y, Li B, Liu G, Cai D. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature. 2013;497:211–6. https://doi.org/10.1038/nature12143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Zhang Y, Kim MS, Jia B, Yan J, Zuniga-Hertz JP, Han C, Cai D. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature. 2017;548:52–7. https://doi.org/10.1038/nature23282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kaushik S, Arias E, Kwon H, Lopez NM, Athonvarangkul D, Sahu S, Schwartz GJ, Pessin JE, Singh R. Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep. 2012;13:258–65. https://doi.org/10.1038/embor.2011.260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Chang H-C, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell. 2013;153:1448–60. https://doi.org/10.1016/j.cell.2013.05.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445–62. https://doi.org/10.1146/annurev-neuro-060909-153128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Mattis J, Sehgal A. Circadian rhythms, sleep, and disorders of aging. Trends Endocrinol Metab. 2016;27:192–203. https://doi.org/10.1016/j.tem.2016.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Wu Y-H, Zhou J-N, Heerikhuize JV, Jockers R, Swaab DF. Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease. Neurobiol Aging. 2007;28:1239–47. https://doi.org/10.1016/j.neurobiolaging.2006.06.002.

    Article  CAS  PubMed  Google Scholar 

  243. Kunimura Y, Iwata K, Ishigami A, Ozawa H. Age-related alterations in hypothalamic kisspeptin, neurokinin B, and dynorphin neurons and in pulsatile LH release in female and male rats. Neurobiol Aging. 2017;50:30–8. https://doi.org/10.1016/j.neurobiolaging.2016.10.018.

    Article  CAS  PubMed  Google Scholar 

  244. Satoh A, Brace CS, Rensing N, Clifton P, Wozniak DF, Herzog ED, Yamada KA, Imai S-i. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013;18:416–30. https://doi.org/10.1016/j.cmet.2013.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moll, G.W., Garla, V. (2021). Genetic Syndromes of Hypothalamic Dysfunction. In: Uwaifo, G.I. (eds) The Human Hypothalamus. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-62187-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62187-2_14

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-62186-5

  • Online ISBN: 978-3-030-62187-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics