Skip to main content

Advertisement

Log in

Molecular Genetics and Pathogenic Mechanisms for the Severe Ciliopathies: Insights into Neurodevelopment and Pathogenesis of Neural Tube Defects

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Meckel–Gruber syndrome (MKS) is a severe autosomal recessively inherited disorder characterized by developmental defects of the central nervous system that comprise neural tube defects that most commonly present as occipital encephalocele. MKS is considered to be the most common syndromic form of neural tube defect. MKS is genetically heterogeneous with six known disease genes: MKS1, MKS2/TMEM216, MKS3/TMEM67, RPGRIP1L, CEP290, and CC2D2A with the encoded proteins all implicated in the correct function of primary cilia. Primary cilia are microtubule-based organelles that project from the apical surface of most epithelial cell types. Recent progress has implicated the involvement of cilia in the Wnt and Shh signaling pathways and has led to an understanding of their role in normal mammalian neurodevelopment. The aim of this review is to provide an overview of the molecular genetics of the human disorder, and to assess recent insights into the etiology and molecular cell biology of severe ciliopathies from mammalian animal models of MKS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Badano JL et al (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148

    Article  CAS  PubMed  Google Scholar 

  2. Adams M et al (2008) Recent advances in the molecular pathology, cell biology and genetics of ciliopathies. J Med Genet 45(5):257–267

    Article  CAS  PubMed  Google Scholar 

  3. Simpson JL et al (1991) Genetic heterogeneity in neural tube defects. Ann Génét 34(3–4):279–286

    CAS  PubMed  Google Scholar 

  4. Doherty D et al (2005) Prenatal diagnosis in pregnancies at risk for Joubert syndrome by ultrasound and MRI. Prenat Diagn 25(6):442–447

    Article  PubMed  Google Scholar 

  5. Khaddour R et al (2007) Spectrum of MKS1 and MKS3 mutations in Meckel syndrome: a genotype–phenotype correlation. Mutation in brief #960. Online. Hum Mutat 28(5):523–524

    Article  PubMed  Google Scholar 

  6. Huangfu D et al (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426(6962):83–87

    Article  CAS  PubMed  Google Scholar 

  7. Schneider L et al (2005) PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol 15(20):1861–1866

    Article  CAS  PubMed  Google Scholar 

  8. Gerdes JM et al (2007) Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat Genet 39(11):1350–1360

    Article  CAS  PubMed  Google Scholar 

  9. Krahe C (1684) Description of a monstrous child, born Friday the 29th of February 1684 at a village called Heisagger, distant about 4 English miles from Hattersleban, a town in South-Jutland, under the King of Denmark’s dominion. Phil Trans Roy Soc 14:599–600

    Article  Google Scholar 

  10. Kompanje EJ (2003) Features described and illustrated in 1684 suggesting Meckel–Gruber syndrome. Pediatr Dev Pathol 6(6):595–598

    Article  PubMed  Google Scholar 

  11. Meckel JF (1822) Beschreibung zweier, durch sehr ahnliche Bildungsabweichhungen entstellter Geschwister. Dtsch Arch Physiol 7:99–172

    Google Scholar 

  12. Gruber GB (1934) Beitrage zur Frage ‘gekoppelter’ Missbildungen. (Akrocephalo-Syndaktylie und Dysencephalia). Beitr Pathol Anat 93:459–476

    Google Scholar 

  13. Howe JJ, Opitz JM (1969) The Meckel syndrome (dysencephalia splancnocystica, the Gruber syndrome). Birth Defects OAS 5:167–179

    Google Scholar 

  14. Fraser FC, Lytwyn A (1981) Spectrum of anomalies in the Meckel syndrome, or: “Maybe there is a malformation syndrome with at least one constant anomaly”. Am J Med Genet 9(1):67–73

    Article  CAS  PubMed  Google Scholar 

  15. Wright C et al (1994) Meckel syndrome: what are the minimum diagnostic criteria? J Med Genet 31(6):482–485

    Article  CAS  PubMed  Google Scholar 

  16. Baala L et al (2007) Pleiotropic effects of CEP290 (NPHP6) mutations extend to Meckel syndrome. Am J Hum Genet 81(1):170–179

    Article  CAS  PubMed  Google Scholar 

  17. Delous M et al (2007) The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat Genet 39(7):875–881

    Article  CAS  PubMed  Google Scholar 

  18. Valente EM et al (2010) Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat Genet 42(7):619–625

    Google Scholar 

  19. Salonen R, Norio R (1984) The Meckel syndrome in Finland: epidemiologic and genetic aspects. Am J Med Genet 18(4):691–698

    Article  CAS  PubMed  Google Scholar 

  20. Shen-Schwarz S, Dave H (1988) Meckel syndrome with polysplenia: case report and review of the literature. Am J Med Genet 31(2):349–355

    Article  CAS  PubMed  Google Scholar 

  21. Hori A et al (1980) CNS dysplasia in dysencephalia splanchnocystica (Gruber’s syndrome). A case report. Acta Neuropathol 51(2):93–97

    Article  CAS  PubMed  Google Scholar 

  22. Ahdab-Barmada M, Claassen D (1990) A distinctive triad of malformations of the central nervous system in the Meckel–Gruber syndrome. J Neuropathol Exp Neurol 49(6):610–620

    Article  CAS  PubMed  Google Scholar 

  23. Herriot R, Hallam LA, Gray ES (1991) Dandy–Walker malformation in the Meckel syndrome. Am J Med Genet 39(2):207–210

    Article  CAS  PubMed  Google Scholar 

  24. Baala L et al (2007) The Meckel–Gruber syndrome gene, MKS3, is mutated in Joubert syndrome. Am J Hum Genet 80(1):186–194

    Article  CAS  PubMed  Google Scholar 

  25. Maria BL et al (1999) Molar tooth sign in Joubert syndrome: clinical, radiologic, and pathologic significance. J Child Neurol 14(6):368–376

    Article  CAS  PubMed  Google Scholar 

  26. Holmes LB, Driscoll SG, Atkins L (1976) Etiologic heterogeneity of neural-tube defects. N Engl J Med 294(7):365–369

    Article  CAS  PubMed  Google Scholar 

  27. Seller MJ (1978) Meckel syndrome and the prenatal diagnosis of neural tube defects. J Med Genet 15(6):462–465

    Article  CAS  PubMed  Google Scholar 

  28. Karmous-Benailly H et al (2005) Antenatal presentation of Bardet–Biedl syndrome may mimic Meckel syndrome. Am J Hum Genet 76(3):493–504

    Article  CAS  PubMed  Google Scholar 

  29. Leitch CC et al (2008) Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet–Biedl syndrome. Nat Genet 40(4):443–448

    Article  CAS  PubMed  Google Scholar 

  30. Pazour GJ, Bloodgood RA (2008) Targeting proteins to the ciliary membrane. Curr Top Dev Biol 85:115–149

    Article  CAS  PubMed  Google Scholar 

  31. Craige B et al (2010) CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol 190(5):927–940

    Article  CAS  PubMed  Google Scholar 

  32. Simons M, Mlodzik M (2008) Planar cell polarity signaling: from fly development to human disease. Annu Rev Genet 42:517–540

    Article  CAS  PubMed  Google Scholar 

  33. Eggenschwiler JT, Anderson KV (2007) Cilia and developmental signaling. Annu Rev Cell Dev Biol 23:345–373

    Article  CAS  PubMed  Google Scholar 

  34. Haycraft CJ et al (2005) Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1(4):e53

    Article  PubMed  CAS  Google Scholar 

  35. Shah AS et al (2009) Motile cilia of human airway epithelia are chemosensory. Science 325(5944):1131–1134

    Article  CAS  PubMed  Google Scholar 

  36. Hirokawa N et al (2006) Nodal flow and the generation of left–right asymmetry. Cell 125(1):33–45

    Article  CAS  PubMed  Google Scholar 

  37. Basu B, Brueckner M (2008) Cilia multifunctional organelles at the center of vertebrate left–right asymmetry. Curr Top Dev Biol 85:151–174

    Article  CAS  PubMed  Google Scholar 

  38. Marszalek JR, Goldstein LS (2000) Understanding the functions of kinesin-II. Biochim Biophys Acta 1496(1):142–150

    Article  CAS  PubMed  Google Scholar 

  39. Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3(11):813–825

    Article  CAS  PubMed  Google Scholar 

  40. Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279(5350):519–526

    Article  CAS  PubMed  Google Scholar 

  41. Binder LI, Dentler WL, Rosenbaum JL (1975) Assembly of chick brain tubulin onto flagellar microtubules from Chlamydomonas and sea urchin sperm. Proc Natl Acad Sci USA 72(3):1122–1126

    Article  CAS  PubMed  Google Scholar 

  42. Huang B, Rifkin MR, Luck DJ (1977) Temperature-sensitive mutations affecting flagellar assembly and function in Chlamydomonas reinhardtii. J Cell Biol 72(1):67–85

    Article  CAS  PubMed  Google Scholar 

  43. Pazour GJ, Wilkerson CG, Witman GB (1998) A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J Cell Biol 141(4):979–992

    Article  CAS  PubMed  Google Scholar 

  44. Nachury MV et al (2007) A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129(6):1201–1213

    Article  CAS  PubMed  Google Scholar 

  45. Gillingham AK, Munro S (2007) The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol 23:579–611

    Article  CAS  PubMed  Google Scholar 

  46. Lancaster MA, Gleeson JG (2009) The primary cilium as a cellular signaling center: lessons from disease. Curr Opin Genet Dev 19(3):220–229

    Article  CAS  PubMed  Google Scholar 

  47. Berbari NF et al (2009) The primary cilium as a complex signaling center. Curr Biol 19(13):R526–R535

    Article  CAS  PubMed  Google Scholar 

  48. Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184(1):71–79

    Article  CAS  PubMed  Google Scholar 

  49. Nauli SM et al (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33(2):129–137

    Article  CAS  PubMed  Google Scholar 

  50. Simons M et al (2005) Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 37(5):537–543

    Article  CAS  PubMed  Google Scholar 

  51. Benzing T, Simons M, Walz G (2007) Wnt signaling in polycystic kidney disease. J Am Soc Nephrol 18(5):1389–1398

    Article  CAS  PubMed  Google Scholar 

  52. Garcia-Gonzalez MA et al (2007) Genetic interaction studies link autosomal dominant and recessive polycystic kidney disease in a common pathway. Hum Mol Genet 16(16):1940–1950

    Article  CAS  PubMed  Google Scholar 

  53. Huan Y, van Adelsberg J (1999) Polycystin-1, the PKD1 gene product, is in a complex containing E-cadherin and the catenins. J Clin Invest 104(10):1459–1468

    Article  CAS  PubMed  Google Scholar 

  54. Roitbak T et al (2004) A polycystin-1 multiprotein complex is disrupted in polycystic kidney disease cells. Mol Biol Cell 15(3):1334–1346

    Article  CAS  PubMed  Google Scholar 

  55. Boca M et al (2007) Polycystin-1 induces cell migration by regulating phosphatidylinositol 3-kinase-dependent cytoskeletal rearrangements and GSK3beta-dependent cell cell mechanical adhesion. Mol Biol Cell 18(10):4050–4061

    Article  CAS  PubMed  Google Scholar 

  56. Rivard N (2009) Phosphatidylinositol 3-kinase: a key regulator in adherens junction formation and function. Front Biosci 14:510–522

    Article  CAS  PubMed  Google Scholar 

  57. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  58. Bovolenta P et al (2008) Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 121(Pt 6):737–746

    Article  CAS  PubMed  Google Scholar 

  59. Lin F et al (2003) Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci USA 100(9):5286–5291

    Article  CAS  PubMed  Google Scholar 

  60. Cano DA et al (2004) Orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization. Development 131(14):3457–3467

    Article  CAS  PubMed  Google Scholar 

  61. Wilson NF, Lefebvre PA (2004) Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii. Eukaryot Cell 3(5):1307–1319

    Article  CAS  PubMed  Google Scholar 

  62. Corbit KC et al (2008) Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 10(1):70–76

    Article  CAS  PubMed  Google Scholar 

  63. Dawe HR et al (2009) Nesprin-2 interacts with meckelin and mediates ciliogenesis via remodelling of the actin cytoskeleton. J Cell Sci 122(Pt 15):2716–2726

    Article  CAS  PubMed  Google Scholar 

  64. Kibar Z et al (2001) Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat Genet 28(3):251–255

    Article  CAS  PubMed  Google Scholar 

  65. Ross AJ et al (2005) Disruption of Bardet–Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet 37(10):1135–1140

    Article  CAS  PubMed  Google Scholar 

  66. Goodrich LV, Scott MP (1998) Hedgehog and patched in neural development and disease. Neuron 21(6):1243–1257

    Article  CAS  PubMed  Google Scholar 

  67. Dessaud E, McMahon AP, Briscoe J (2008) Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135(15):2489–2503

    Article  CAS  PubMed  Google Scholar 

  68. Wong SY, Reiter JF (2008) The primary cilium at the crossroads of mammalian hedgehog signaling. Curr Top Dev Biol 85:225–260

    Article  CAS  PubMed  Google Scholar 

  69. Corbit KC et al (2005) Vertebrate Smoothened functions at the primary cilium. Nature 437(7061):1018–1021

    Article  CAS  PubMed  Google Scholar 

  70. Huangfu D, Anderson KV (2005) Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA 102(32):11325–11330

    Article  CAS  PubMed  Google Scholar 

  71. Tran PV et al (2008) THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nat Genet 40(4):403–410

    Article  CAS  PubMed  Google Scholar 

  72. Liu A, Wang B, Niswander LA (2005) Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 132(13):3103–3111

    Article  CAS  PubMed  Google Scholar 

  73. Wigley WC et al (1999) Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 145(3):481–490

    Article  CAS  PubMed  Google Scholar 

  74. Wen X et al (2010) Kinetics of hedgehog-dependent full-length Gli3 accumulation in primary cilia and subsequent degradation. Mol Cell Biol 30(8):1910–1922

    Article  CAS  PubMed  Google Scholar 

  75. Vierkotten J et al (2007) Ftm is a novel basal body protein of cilia involved in Shh signalling. Development 134(14):2569–2577

    Article  CAS  PubMed  Google Scholar 

  76. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945

    Article  CAS  PubMed  Google Scholar 

  77. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484

    Article  CAS  PubMed  Google Scholar 

  78. Shillingford JM et al (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci USA 103(14):5466–5471

    Article  CAS  PubMed  Google Scholar 

  79. Brown JH et al (2005) Missense mutation in sterile alpha motif of novel protein SamCystin is associated with polycystic kidney disease in (cy/+) rat. J Am Soc Nephrol 16(12):3517–3526

    Article  CAS  PubMed  Google Scholar 

  80. Tao Y et al (2005) Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol 16(1):46–51

    Article  CAS  PubMed  Google Scholar 

  81. Wahl PR et al (2006) Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transplant 21(3):598–604

    Article  CAS  PubMed  Google Scholar 

  82. Bielas SL et al (2009) Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat Genet 41(9):1032–1036

    Article  CAS  PubMed  Google Scholar 

  83. Jacoby M et al (2009) INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat Genet 41(9):1027–1031

    Article  CAS  PubMed  Google Scholar 

  84. Moyer JH et al (1994) Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science 264(5163):1329–1333

    Article  CAS  PubMed  Google Scholar 

  85. Pazour GJ et al (2002) The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J Cell Biol 157(1):103–113

    Article  CAS  PubMed  Google Scholar 

  86. Ansley SJ et al (2003) Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome. Nature 425(6958):628–633

    Article  CAS  PubMed  Google Scholar 

  87. Zaghloul NA, Katsanis N (2009) Mechanistic insights into Bardet–Biedl syndrome, a model ciliopathy. J Clin Invest 119(3):428–437

    Article  CAS  PubMed  Google Scholar 

  88. Weatherbee SD, Niswander LA, Anderson KV (2009) A mouse model for Meckel syndrome reveals Mks1 is required for ciliogenesis and Hedgehog signaling. Hum Mol Genet 18(23):4565–4575

    Article  CAS  PubMed  Google Scholar 

  89. Khanna H et al (2009) A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat Genet 41(6):739–745

    Article  CAS  PubMed  Google Scholar 

  90. Louie CM et al (2010) AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat Genet 42(2):175–180

    Article  CAS  PubMed  Google Scholar 

  91. Bergmann C et al (2008) Loss of nephrocystin-3 function can cause embryonic lethality, Meckel–Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet 82(4):959–970

    Article  CAS  PubMed  Google Scholar 

  92. Paavola P et al (1995) The locus for Meckel syndrome with multiple congenital anomalies maps to chromosome 17q21-q24. Nat Genet 11(2):213–215

    Article  CAS  PubMed  Google Scholar 

  93. Kyttala M et al (2006) MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome. Nat Genet 38(2):155–157

    Article  PubMed  CAS  Google Scholar 

  94. Dawe HR et al (2007) The Meckel–Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Hum Mol Genet 16(2):173–186

    Article  CAS  PubMed  Google Scholar 

  95. Bialas NJ et al (2009) Functional interactions between the ciliopathy-associated Meckel syndrome 1 (MKS1) protein and two novel MKS1-related (MKSR) proteins. J Cell Sci 122(Pt 5):611–624

    Article  CAS  PubMed  Google Scholar 

  96. Roume J et al (1998) A gene for Meckel syndrome maps to chromosome 11q13. Am J Hum Genet 63(4):1095–1101

    Article  CAS  PubMed  Google Scholar 

  97. Pan J et al (2007) RhoA-mediated apical actin enrichment is required for ciliogenesis and promoted by Foxj1. J Cell Sci 120(Pt 11):1868–1876

    Article  CAS  PubMed  Google Scholar 

  98. Park TJ et al (2008) Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat Genet 40(7):871–879

    Article  CAS  PubMed  Google Scholar 

  99. Veeman MT, Axelrod JD, Moon RT (2003) A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 5(3):367–377

    Article  CAS  PubMed  Google Scholar 

  100. Winter CG et al (2001) Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell 105(1):81–91

    Article  CAS  PubMed  Google Scholar 

  101. Junge HJ et al (2009) TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/beta-catenin signaling. Cell 139(2):299–311

    Article  CAS  PubMed  Google Scholar 

  102. Morgan NV et al (2002) A novel locus for Meckel–Gruber syndrome, MKS3, maps to chromosome 8q24. Hum Genet 111(4–5):456–461

    Article  CAS  PubMed  Google Scholar 

  103. Smith UM et al (2006) The transmembrane protein meckelin (MKS3) is mutated in Meckel–Gruber syndrome and the wpk rat. Nat Genet 38(2):191–196

    Article  CAS  PubMed  Google Scholar 

  104. Xu YK, Nusse R (1998) The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr Biol 8(12):R405–R406

    Article  CAS  PubMed  Google Scholar 

  105. Cadigan KM, Nusse R (1997) Wnt signaling: a common theme in animal development. Genes Dev 11(24):3286–3305

    Article  CAS  PubMed  Google Scholar 

  106. Tammachote R et al (2009) Ciliary and centrosomal defects associated with mutation and depletion of the Meckel syndrome genes MKS1 and MKS3. Hum Mol Genet 18(17):3311–3323

    Article  CAS  PubMed  Google Scholar 

  107. Williams CL, Masyukova SV, Yoder BK (2010) Normal ciliogenesis requires synergy between the cystic kidney disease genes MKS-3 and NPHP-4. J Am Soc Nephrol 21(5):782–793

    Article  CAS  PubMed  Google Scholar 

  108. Sayer JA et al (2006) The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet 38(6):674–681

    Article  CAS  PubMed  Google Scholar 

  109. den Hollander AI et al (2006) Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 79(3):556–561

    Article  Google Scholar 

  110. Moradi P et al (2010) Focus on molecules: Centrosomal protein 290 (CEP290). Exp Eye Res. doi:10.1016/j.exer.2010.05.009

  111. Chang B et al (2006) In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum Mol Genet 15(11):1847–1857

    Article  CAS  PubMed  Google Scholar 

  112. Kim J, Krishnaswami SR, Gleeson JG (2008) CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum Mol Genet 17(23):3796–3805

    Article  CAS  PubMed  Google Scholar 

  113. Roepman R et al (2005) Interaction of nephrocystin-4 and RPGRIP1 is disrupted by nephronophthisis or Leber congenital amaurosis-associated mutations. Proc Natl Acad Sci USA 102(51):18520–18525

    Article  CAS  PubMed  Google Scholar 

  114. Tallila J et al (2008) Identification of CC2D2A as a Meckel syndrome gene adds an important piece to the ciliopathy puzzle. Am J Hum Genet 82(6):1361–1367

    Article  CAS  PubMed  Google Scholar 

  115. Mougou-Zerelli S et al (2009) CC2D2A mutations in Meckel and Joubert syndromes indicate a genotype–phenotype correlation. Hum Mutat 30(11):1574–1582

    Article  CAS  PubMed  Google Scholar 

  116. Shen X et al (2005) Scanning the human proteome for calmodulin-binding proteins. Proc Natl Acad Sci USA 102(17):5969–5974

    Article  CAS  PubMed  Google Scholar 

  117. Town T et al (2008) The stumpy gene is required for mammalian ciliogenesis. Proc Natl Acad Sci USA 105(8):2853–2858

    Article  CAS  PubMed  Google Scholar 

  118. Cook SA et al (2009) A mouse model for Meckel syndrome type 3. J Am Soc Nephrol 20(4):753–764

    Article  CAS  PubMed  Google Scholar 

  119. Anselme I et al (2007) Defects in brain patterning and head morphogenesis in the mouse mutant Fused toes. Dev Biol 304(1):208–220

    Article  CAS  PubMed  Google Scholar 

  120. Chapman ER (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3(7):498–508

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the Medical Research Council (project grant G0700073; CAJ), an Egyptian Government Scholarship (ZA) and the Sir Jules Thorn Charitable Trust (09/JTA). We thank Tamara Caspary, Jeremy Reiter, and Joe Gleeson for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin A. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logan, C.V., Abdel-Hamed, Z. & Johnson, C.A. Molecular Genetics and Pathogenic Mechanisms for the Severe Ciliopathies: Insights into Neurodevelopment and Pathogenesis of Neural Tube Defects. Mol Neurobiol 43, 12–26 (2011). https://doi.org/10.1007/s12035-010-8154-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-010-8154-0

Keywords

Navigation