Skip to main content

Infective Endocarditis and Cardiovascular Implantable Electronic Device Infection

  • Chapter
  • First Online:
Radionuclide Imaging of Infection and Inflammation

Abstract

Cardiovascular infections are associated with high morbidity and mortality. Early diagnosis is crucial for adequate patient’s management, as early treatment improves the prognosis. Cardiovascular infections are difficult to diagnose on the basis of a single symptom, sign, or diagnostic test. Rather, the diagnosis requires a multidisciplinary discussion in addition to the integration of clinical signs, microbiology data, and imaging data. The application of multimodality imaging, including molecular imaging techniques, has improved the sensitivity to detect infections involving heart valves and vessels and implanted cardiovascular devices, while also allowing for early detection of septic emboli and metastatic infections before these become clinically apparent. This chapter describes the main epidemiological, clinical, and diagnostic challenges in infective endocarditis and infections associated with cardiovascular implantable electronic devices, with particular regard to the role of WBC SPECT/CT and [18F]FDG PET/CT in each diagnostic algorithm. In addition, the needs of proper hybrid equipment, dedicated imaging acquisition protocols, specific expertise for imaging reading and imaging interpretations in this field are discussed, emphasizing the need of a specific reference framework within a cardiovascular multidisciplinary team approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kollef MH, Sharpless L, Vlasnik J, Pasque C, Murphy D, Fraser VJ. The impact of nosocomial infections on patient outcomes following cardiac surgery. Chest. 1997;112(3):666–75.

    Article  CAS  PubMed  Google Scholar 

  2. Brown PP, Kugelmass AD, Cohen DJ, Reynolds MR, Culler SD, Dee AD, et al. The frequency and cost of complications associated with coronary artery bypass grafting surgery: results from the United States Medicare program. Ann Thorac Surg. 2008;85(6):1980–6.

    Article  PubMed  Google Scholar 

  3. Edwards JR, Peterson KD, Mu Y, Banerjee S, Allen-Bridson K, Morrell G, et al. National Healthcare Safety Network (NHSN) report: data summary for 2006 through 2008, issued December 2009. Am J Infect Control. 2009;37(10):783–805.

    Article  PubMed  Google Scholar 

  4. Dudeck MA, Weiner LM, Allen-Bridson K, Malpiedi PJ, Peterson KD, Pollock DA, et al. National Healthcare Safety Network (NHSN) report, data summary for 2012, Device-associated module. Am J Infect Control. 2013;41(12):1148–66.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gelijns AC, Moskowitz AJ, Acker MA, Argenziano M, Geller NL, Puskas JD, et al. Management practices and major infections after cardiac surgery. J Am Coll Cardiol. 2014;64(4):372–81.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis. 2001;7(2):277–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zimmerli W, Sendi P. Pathogenesis of implant-associated infection: the role of the host. Semin Immunopathol. 2011;33(3):295–306.

    Article  CAS  PubMed  Google Scholar 

  8. Habib G, Hoen B, Tornos P, Thuny F, Prendergast B, Vilacosta I, et al. Guidelines on the prevention, diagnosis, and treatment of infective endocarditis (new version 2009): the Task Force on the Prevention, Diagnosis, and Treatment of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the International Society of Chemotherapy (ISC) for Infection and Cancer. Eur Heart J. 2009;30(19):2369–413.

    Article  PubMed  Google Scholar 

  9. Hoen B, Alla F, Selton-Suty C, Béguinot I, Bouvet A, Briançon S, et al. Changing profile of infective endocarditis: results of a 1-year survey in France. JAMA. 2002;288(1):75–81.

    Article  PubMed  Google Scholar 

  10. Selton-Suty C, Célard M, Le Moing V, Doco-Lecompte T, Chirouze C, Iung B, et al. Preeminence of Staphylococcus aureus in infective endocarditis: a 1-year population-based survey. Clin Infect Dis. 2012;54(9):1230–9.

    Article  PubMed  Google Scholar 

  11. Habib G, Erba PA, Iung B, Donal E, Cosyns B, Laroche C, et al. Clinical presentation, aetiology and outcome of infective endocarditis. Results of the ESC-EORP EURO-ENDO (European infective endocarditis) registry: a prospective cohort study. Eur Heart J. 2019;40(39):3222–32.

    Article  PubMed  CAS  Google Scholar 

  12. Murdoch DR, Corey GR, Hoen B, Miró JM, Fowler VG, Bayer AS, et al. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the International Collaboration on Endocarditis-Prospective Cohort Study. Arch Intern Med. 2009;169(5):463–73.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tornos P, Iung B, Permanyer-Miralda G, Baron G, Delahaye F, Gohlke-Bärwolf C, et al. Infective endocarditis in Europe: lessons from the Euro heart survey. Heart. 2005;91(5):571–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tornos P, Gonzalez-Alujas T, Thuny F, Habib G. Infective endocarditis: the European viewpoint. Curr Probl Cardiol. 2011;36(5):175–222.

    Article  PubMed  Google Scholar 

  15. Nkomo VT. Epidemiology and prevention of valvular heart diseases and infective endocarditis in Africa. Heart. 2007;93(12):1510–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Letaief A, Boughzala E, Kaabia N, Ernez S, Abid F, Ben Chaabane T, et al. Epidemiology of infective endocarditis in Tunisia: a 10-year multicenter retrospective study. Int J Infect Dis. 2007;11(5):430–3.

    Article  PubMed  Google Scholar 

  17. Steckelberg JM, Wilson WR. Risk factors for infective endocarditis. Infect Dis Clin N Am. 1993;7(1):9–19.

    Article  CAS  Google Scholar 

  18. Grover FL, Cohen DJ, Oprian C, Henderson WG, Sethi G, Hammermeister KE. Determinants of the occurrence of and survival from prosthetic valve endocarditis. Experience of the veterans affairs cooperative study on valvular heart disease. J Thorac Cardiovasc Surg. 1994;108(2):207–14.

    Article  CAS  PubMed  Google Scholar 

  19. Graves MK, Soto L. Left-sided endocarditis in parenteral drug abusers: recent experience at a large community hospital. South Med J. 1992;85(4):378–80.

    Article  CAS  PubMed  Google Scholar 

  20. Cabell CH, Jollis JG, Peterson GE, Corey GR, Anderson DJ, Sexton DJ, et al. Changing patient characteristics and the effect on mortality in endocarditis. Arch Intern Med. 2002;162(1):90–4.

    Article  PubMed  Google Scholar 

  21. Bayer AS, Bolger AF, Taubert KA, Wilson W, Steckelberg J, Karchmer AW, et al. Diagnosis and management of infective endocarditis and its complications. Circulation. 1998;98(25):2936–48.

    Article  CAS  PubMed  Google Scholar 

  22. Pérez de Isla L, Zamorano J, Lennie V, Vázquez J, Ribera JM, Macaya C. Negative blood culture infective endocarditis in the elderly: long-term follow-up. Gerontology. 2007;53(5):245–9.

    Article  PubMed  Google Scholar 

  23. Thuny F, Di Salvo G, Disalvo G, Belliard O, Avierinos JF, Pergola V, et al. Risk of embolism and death in infective endocarditis: prognostic value of echocardiography: a prospective multicenter study. Circulation. 2005;112(1):69–75.

    Article  PubMed  Google Scholar 

  24. Durack DT, Lukes AS, Bright DK. New criteria for diagnosis of infective endocarditis: utilization of specific echocardiographic findings. Duke Endocarditis Service. Am J Med. 1994;96(3):200–9.

    Article  CAS  PubMed  Google Scholar 

  25. Hubert S, Thuny F, Resseguier N, Giorgi R, Tribouilloy C, Le Dolley Y, et al. Prediction of symptomatic embolism in infective endocarditis: construction and validation of a risk calculator in a multicenter cohort. J Am Coll Cardiol. 2013;62(15):1384–92.

    Article  PubMed  Google Scholar 

  26. Li JS, Sexton DJ, Mick N, Nettles R, Fowler VG, Ryan T, et al. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin Infect Dis. 2000;30(4):633–8.

    Article  CAS  PubMed  Google Scholar 

  27. Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F, et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015;36(44):3075–128.

    Article  PubMed  Google Scholar 

  28. Saby L, Laas O, Habib G, Cammilleri S, Mancini J, Tessonnier L, et al. Positron emission tomography/computed tomography for diagnosis of prosthetic valve endocarditis: increased valvular 18F-fluorodeoxyglucose uptake as a novel major criterion. J Am Coll Cardiol. 2013;61(23):2374–82.

    Article  PubMed  Google Scholar 

  29. Bruun NE, Habib G, Thuny F, Sogaard P. Cardiac imaging in infectious endocarditis. Eur Heart J. 2014;35(10):624–32.

    Article  PubMed  Google Scholar 

  30. Erba PA, Conti U, Lazzeri E, Sollini M, Doria R, De Tommasi SM, et al. Added value of 99mTc-HMPAO-labeled leukocyte SPECT/CT in the characterization and management of patients with infectious endocarditis. J Nucl Med. 2012;53(8):1235–43.

    Article  CAS  PubMed  Google Scholar 

  31. Erba PA, Lancellotti P, Vilacosta I, Gaemperli O, Rouzet F, Hacker M, et al. Recommendations on nuclear and multimodality imaging in IE and CIED infections. Eur J Nucl Med Mol Imaging. 2018;45(10):1795–815.

    Article  PubMed  Google Scholar 

  32. Sollini M, Berchiolli R, Delgado Bolton RC, Rossi A, Kirienko M, Boni R, et al. The "3M" approach to cardiovascular infections: multimodality, multitracers, and multidisciplinary. Semin Nucl Med. 2018;48(3):199–224.

    Article  PubMed  Google Scholar 

  33. Fournier PE, Casalta JP, Habib G, Messana T, Raoult D. Modification of the diagnostic criteria proposed by the Duke Endocarditis Service to permit improved diagnosis of Q fever endocarditis. Am J Med. 1996;100(6):629–33.

    Article  CAS  PubMed  Google Scholar 

  34. Habib G, Derumeaux G, Avierinos JF, Casalta JP, Jamal F, Volot F, et al. Value and limitations of the Duke criteria for the diagnosis of infective endocarditis. J Am Coll Cardiol. 1999;33(7):2023–9.

    Article  CAS  PubMed  Google Scholar 

  35. Lamas CC, Eykyn SJ. Suggested modifications to the Duke criteria for the clinical diagnosis of native valve and prosthetic valve endocarditis: analysis of 118 pathologically proven cases. Clin Infect Dis. 1997;25(3):713–9.

    Article  CAS  PubMed  Google Scholar 

  36. Delahaye F, Rial MO, de Gevigney G, Ecochard R, Delaye J. A critical appraisal of the quality of the management of infective endocarditis. J Am Coll Cardiol. 1999;33(3):788–93.

    Article  CAS  PubMed  Google Scholar 

  37. Brouqui P, Raoult D. New insight into the diagnosis of fastidious bacterial endocarditis. FEMS Immunol Med Microbiol. 2006;47(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  38. Winslow T, Foster E, Adams JR, Schiller NB. Pulmonary valve endocarditis: improved diagnosis with biplane transesophageal echocardiography. J Am Soc Echocardiogr. 1992;5(2):206–10.

    Article  CAS  PubMed  Google Scholar 

  39. Roe MT, Abramson MA, Li J, Heinle SK, Kisslo J, Corey GR, et al. Clinical information determines the impact of transesophageal echocardiography on the diagnosis of infective endocarditis by the duke criteria. Am Heart J. 2000;139(6):945–51.

    Article  CAS  PubMed  Google Scholar 

  40. Jacob S, Tong AT. Role of echocardiography in the diagnosis and management of infective endocarditis. Curr Opin Cardiol. 2002;17(5):478–85.

    Article  PubMed  Google Scholar 

  41. Hill EE, Herijgers P, Claus P, Vanderschueren S, Peetermans WE, Herregods MC. Abscess in infective endocarditis: the value of transesophageal echocardiography and outcome: a 5-year study. Am Heart J. 2007;154(5):923–8.

    Article  PubMed  Google Scholar 

  42. Habib G, Badano L, Tribouilloy C, Vilacosta I, Zamorano JL, Galderisi M, et al. Recommendations for the practice of echocardiography in infective endocarditis. Eur J Echocardiogr. 2010;11(2):202–19.

    Article  PubMed  Google Scholar 

  43. Baddour LM, Wilson WR, Bayer AS, Fowler VG, Tleyjeh IM, Rybak MJ, et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132(15):1435–86.

    Article  CAS  PubMed  Google Scholar 

  44. Grob A, Thuny F, Villacampa C, Flavian A, Gaubert JY, Raoult D, et al. Cardiac multidetector computed tomography in infective endocarditis: a pictorial essay. Insights Imaging. 2014;5(5):559–70.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Feuchtner GM, Stolzmann P, Dichtl W, Schertler T, Bonatti J, Scheffel H, et al. Multislice computed tomography in infective endocarditis: comparison with transesophageal echocardiography and intraoperative findings. J Am Coll Cardiol. 2009;53(5):436–44.

    Article  PubMed  Google Scholar 

  46. Rouzet F, Chequer R, Benali K, Lepage L, Ghodbane W, Duval X, et al. Respective performance of 18F-FDG PET and radiolabeled leukocyte scintigraphy for the diagnosis of prosthetic valve endocarditis. J Nucl Med. 2014;55(12):1980–5.

    Article  CAS  PubMed  Google Scholar 

  47. Hyafil F, Rouzet F, Lepage L, Benali K, Raffoul R, Duval X, et al. Role of radiolabelled leucocyte scintigraphy in patients with a suspicion of prosthetic valve endocarditis and inconclusive echocardiography. Eur Heart J Cardiovasc Imaging. 2013;14(6):586–94.

    Article  PubMed  Google Scholar 

  48. Kestler M, Muñoz P, Rodríguez-Créixems M, Rotger A, Jimenez-Requena F, Mari A, et al. Role of 18F-FDG PET in patients with infectious endocarditis. J Nucl Med. 2014;55(7):1093–8.

    Article  CAS  PubMed  Google Scholar 

  49. Kouijzer IJ, Vos FJ, Janssen MJ, van Dijk AP, Oyen WJ, Bleeker-Rovers CP. The value of 18F-FDG PET/CT in diagnosing infectious endocarditis. Eur J Nucl Med Mol Imaging. 2013;40(7):1102–7.

    Article  CAS  PubMed  Google Scholar 

  50. Granados U, Fuster D, Pericas JM, Llopis JL, Ninot S, Quintana E, et al. Diagnostic accuracy of 18F-FDG PET/CT in infective endocarditis and implantable cardiac electronic device infection: a cross-sectional study. J Nucl Med. 2016;57(11):1726–32.

    Article  CAS  PubMed  Google Scholar 

  51. Pizzi MN, Roque A, Fernández-Hidalgo N, Cuéllar-Calabria H, Ferreira-González I, Gonzàlez-Alujas MT, et al. Improving the diagnosis of infective endocarditis in prosthetic valves and intracardiac devices with 18F-fluordeoxyglucose positron emission tomography/computed tomography angiography: initial results at an infective endocarditis referral center. Circulation. 2015;132(12):1113–26.

    Article  PubMed  Google Scholar 

  52. Roque A, Pizzi MN, Cuéllar-Calàbria H, Aguadé-Bruix S. F-FDG-PET/CT angiography for the diagnosis of infective endocarditis. Curr Cardiol Rep. 2017;19(2):15.

    Article  CAS  PubMed  Google Scholar 

  53. Gomes A, Glaudemans AWJM, Touw DJ, van Melle JP, Willems TP, Maass AH, et al. Diagnostic value of imaging in infective endocarditis: a systematic review. Lancet Infect Dis. 2017;17(1):e1–e14.

    Article  PubMed  Google Scholar 

  54. Ricciardi A, Sordillo P, Ceccarelli L, Maffongelli G, Calisti G, Di Pietro B, et al. 18-Fluoro-2-deoxyglucose positron emission tomography-computed tomography: an additional tool in the diagnosis of prosthetic valve endocarditis. Int J Infect Dis. 2014;28:219–24.

    Article  PubMed  Google Scholar 

  55. Bartoletti M, Tumietto F, Fasulo G, Giannella M, Cristini F, Bonfiglioli R, et al. Combined computed tomography and fluorodeoxyglucose positron emission tomography in the diagnosis of prosthetic valve endocarditis: a case series. BMC Res Notes. 2014;7:32.

    Google Scholar 

  56. Fagman E, van Essen M, Fredén Lindqvist J, Snygg-Martin U, Bech-Hanssen O, Svensson G. 18F-FDG PET/CT in the diagnosis of prosthetic valve endocarditis. Int J Cardiovasc Imaging. 2016;32(4):679–86.

    Article  PubMed  Google Scholar 

  57. Salomäki SP, Saraste A, Kemppainen J, Bax JJ, Knuuti J, Nuutila P, et al. 18F-FDG positron emission tomography/computed tomography in infective endocarditis. J Nucl Cardiol. 2017;24(1):195–206.

    Article  PubMed  Google Scholar 

  58. Pizzi MN, Dos-Subirà L, Roque A, Fernández-Hidalgo N, Cuéllar-Calabria H, Pijuan Domènech A, et al. 18F-FDG-PET/CT angiography in the diagnosis of infective endocarditis and cardiac device infection in adult patients with congenital heart disease and prosthetic material. Int J Cardiol. 2017;248:396–402.

    Article  PubMed  Google Scholar 

  59. San Román JA, Vilacosta I, López J, Revilla A, Arnold R, Sevilla T, et al. Role of transthoracic and transesophageal echocardiography in right-sided endocarditis: one echocardiographic modality does not fit all. J Am Soc Echocardiogr. 2012;25(8):807–14.

    Article  PubMed  Google Scholar 

  60. Morokuma H, Minato N, Kamohara K, Minematsu N. Three surgical cases of isolated tricuspid valve infective endocarditis. Ann Thorac Cardiovasc Surg. 2010;16(2):134–8.

    PubMed  Google Scholar 

  61. Winslow TM, Redberg RF, Foster E, Schiller NB. Transesophageal echocardiographic detection of abnormalities of the tricuspid valve in adults associated with spontaneous closure of perimembranous ventricular septal defect. Am J Cardiol. 1992;70(9):967–9.

    Article  CAS  PubMed  Google Scholar 

  62. San Román JA, Vilacosta I. Role of transesophageal echocardiography in right-sided endocarditis. Echocardiography. 1995;12(6):669–72.

    Article  PubMed  Google Scholar 

  63. Vilacosta I, Sarriá C, San Román JA, Jiménez J, Castillo JA, Iturralde E, et al. Usefulness of transesophageal echocardiography for diagnosis of infected transvenous permanent pacemakers. Circulation. 1994;89(6):2684–7.

    Article  CAS  PubMed  Google Scholar 

  64. Sohail MR, Uslan DZ, Khan AH, Friedman PA, Hayes DL, Wilson WR, et al. Infective endocarditis complicating permanent pacemaker and implantable cardioverter-defibrillator infection. Mayo Clin Proc. 2008;83(1):46–53.

    Article  PubMed  Google Scholar 

  65. Duval X, Delahaye F, Alla F, Tattevin P, Obadia JF, Le Moing V, et al. Temporal trends in infective endocarditis in the context of prophylaxis guideline modifications: three successive population-based surveys. J Am Coll Cardiol. 2012;59(22):1968–76.

    Article  PubMed  Google Scholar 

  66. Vilacosta I, Graupner C, San Román JA, Sarriá C, Ronderos R, Fernández C, et al. Risk of embolization after institution of antibiotic therapy for infective endocarditis. J Am Coll Cardiol. 2002;39(9):1489–95.

    Article  PubMed  Google Scholar 

  67. Habib G. Embolic risk in subacute bacterial endocarditis: determinants and role of transesophageal echocardiography. Curr Cardiol Rep. 2003;5(2):129–36.

    Article  PubMed  Google Scholar 

  68. Di Salvo G, Habib G, Pergola V, Avierinos JF, Philip E, Casalta JP, et al. Echocardiography predicts embolic events in infective endocarditis. J Am Coll Cardiol. 2001;37(4):1069–76.

    Article  PubMed  Google Scholar 

  69. Steckelberg JM, Murphy JG, Ballard D, Bailey K, Tajik AJ, Taliercio CP, et al. Emboli in infective endocarditis: the prognostic value of echocardiography. Ann Intern Med. 1991;114(8):635–40.

    Article  CAS  PubMed  Google Scholar 

  70. García-Cabrera E, Fernández-Hidalgo N, Almirante B, Ivanova-Georgieva R, Noureddine M, Plata A, et al. Neurological complications of infective endocarditis: risk factors, outcome, and impact of cardiac surgery: a multicenter observational study. Circulation. 2013;127(23):2272–84.

    Article  PubMed  Google Scholar 

  71. Goldberger Z, Lampert R. Implantable cardioverter-defibrillators: expanding indications and technologies. JAMA. 2006;295(7):809–18.

    Article  CAS  PubMed  Google Scholar 

  72. Wilkoff BL, Auricchio A, Brugada J, Cowie M, Ellenbogen KA, Gillis AM, et al. HRS/EHRA expert consensus on the monitoring of cardiovascular implantable electronic devices (CIEDs): description of techniques, indications, personnel, frequency and ethical considerations: developed in partnership with the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA); and in collaboration with the American College of Cardiology (ACC), the American Heart Association (AHA), the European Society of Cardiology (ESC), the Heart Failure Association of ESC (HFA), and the Heart Failure Society of America (HFSA). Endorsed by the Heart Rhythm Society, the European Heart Rhythm Association (a registered branch of the ESC), the American College of Cardiology, the American Heart Association. Europace. 2008;10(6):707–25.

    Article  PubMed  Google Scholar 

  73. Uslan DZ, Tleyjeh IM, Baddour LM, Friedman PA, Jenkins SM, St Sauver JL, et al. Temporal trends in permanent pacemaker implantation: a population-based study. Am Heart J. 2008;155(5):896–903.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Neelankavil JP, Thompson A, Mahajan A. Managing Cardiovascular Implantable Electronic Devices (CIEDs) during perioperative care. The Anesthesia Patient Safety Foundation. 2013. http://www.apsf.org/newsletters/html/2013/fall/01_cieds.htm.

  75. Podoleanu C, Deharo JC. Management of cardiac implantable electronic device infection. Arrhythm Electrophysiol Rev. 2014;3(3):184–9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Thuny F, Grisoli D, Collart F, Habib G, Raoult D. Management of infective endocarditis: challenges and perspectives. Lancet. 2012;379(9819):965–75.

    Article  PubMed  Google Scholar 

  77. DeSimone DC, Sohail MR. Management of bacteremia in patients living with cardiovascular implantable electronic devices. Heart Rhythm. 2016;13(11):2247–52.

    Article  PubMed  Google Scholar 

  78. Baddour LM, Epstein AE, Erickson CC, Knight BP, Levison ME, Lockhart PB, et al. Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation. 2010;121(3):458–77.

    Article  PubMed  Google Scholar 

  79. Voigt A, Shalaby A, Saba S. Rising rates of cardiac rhythm management device infections in the United States: 1996 through 2003. J Am Coll Cardiol. 2006;48(3):590–1.

    Article  PubMed  Google Scholar 

  80. Margey R, McCann H, Blake G, Keelan E, Galvin J, Lynch M, et al. Contemporary management of and outcomes from cardiac device related infections. Europace. 2010;12(1):64–70.

    Article  PubMed  Google Scholar 

  81. Baman TS, Gupta SK, Valle JA, Yamada E. Risk factors for mortality in patients with cardiac device-related infection. Circ Arrhythm Electrophysiol. 2009;2(2):129–34.

    Article  PubMed  Google Scholar 

  82. Da Costa A, Lelièvre H, Kirkorian G, Célard M, Chevalier P, Vandenesch F, et al. Role of the preaxillary flora in pacemaker infections: a prospective study. Circulation. 1998;97(18):1791–5.

    Article  PubMed  Google Scholar 

  83. Uslan DZ, Sohail MR, St Sauver JL, Friedman PA, Hayes DL, Stoner SM, et al. Permanent pacemaker and implantable cardioverter defibrillator infection: a population-based study. Arch Intern Med. 2007;167(7):669–75.

    Article  PubMed  Google Scholar 

  84. Darouiche RO. Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis. 2001;33(9):1567–72.

    Article  CAS  PubMed  Google Scholar 

  85. Hussein AA, Baghdy Y, Wazni OM, Brunner MP, Kabbach G, Shao M, et al. Microbiology of cardiac implantable electronic device infections. JACC Clin Electrophysiol. 2016;2(4):498–505.

    Article  PubMed  Google Scholar 

  86. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Hospital Infection Control Practices Advisory Committee. Infect Control Hosp Epidemiol. 1999;20(4):250–78; quiz 79-80.

    Article  CAS  PubMed  Google Scholar 

  87. Mond HG, Irwin M, Ector H, Proclemer A. The world survey of cardiac pacing and cardioverter-defibrillators: calendar year 2005 an International Cardiac Pacing and Electrophysiology Society (ICPES) project. Pacing Clin Electrophysiol. 2008;31(9):1202–12.

    Article  PubMed  Google Scholar 

  88. Klug D, Wallet F, Lacroix D, Marquié C, Kouakam C, Kacet S, et al. Local symptoms at the site of pacemaker implantation indicate latent systemic infection. Heart. 2004;90(8):882–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bongiorni MG, Burri H, Deharo JC, Starck C, Kennergren C, Saghy L, et al. 2018 EHRA expert consensus statement on lead extraction: recommendations on definitions, endpoints, research trial design, and data collection requirements for clinical scientific studies and registries: endorsed by APHRS/HRS/LAHRS. Europace. 2018;20(7):1217.

    Article  PubMed  Google Scholar 

  90. Cacoub P, Leprince P, Nataf P, Hausfater P, Dorent R, Wechsler B, et al. Pacemaker infective endocarditis. Am J Cardiol. 1998;82(4):480–4.

    Article  CAS  PubMed  Google Scholar 

  91. Klug D, Lacroix D, Savoye C, Goullard L, Grandmougin D, Hennequin JL, et al. Systemic infection related to endocarditis on pacemaker leads: clinical presentation and management. Circulation. 1997;95(8):2098–107.

    Article  CAS  PubMed  Google Scholar 

  92. Lennerz C, Vrazic H, Haller B, Braun S, Petzold T, Ott I, et al. Biomarker-based diagnosis of pacemaker and implantable cardioverter defibrillator pocket infections: a prospective, multicentre, case-control evaluation. PLoS One. 2017;12(3):e0172384.

    Google Scholar 

  93. Cornelissen CG, Frechen DA, Schreiner K, Marx N, Krüger S. Inflammatory parameters and prediction of prognosis in infective endocarditis. BMC Infect Dis. 2013;13:272.

    Google Scholar 

  94. Peacock JE, Stafford JM, Le K, Sohail MR, Baddour LM, Prutkin JM, et al. Attempted salvage of infected cardiovascular implantable electronic devices: are there clinical factors that predict success? Pacing Clin Electrophysiol. 2018;41(5):524–31.

    Article  PubMed  Google Scholar 

  95. Lebeaux D, Fernández-Hidalgo N, Chauhan A, Lee S, Ghigo JM, Almirante B, et al. Management of infections related to totally implantable venous-access ports: challenges and perspectives. Lancet Infect Dis. 2014;14(2):146–59.

    Article  CAS  PubMed  Google Scholar 

  96. Kusumoto FM, Schoenfeld MH, Wilkoff BL, Berul CI, Birgersdotter-Green UM, Carrillo R, et al. 2017 HRS expert consensus statement on cardiovascular implantable electronic device lead management and extraction. Heart Rhythm. 2017;14(12):e503–e51.

    Article  PubMed  Google Scholar 

  97. Blomström-Lundqvist C, Traykov V, Erba PA, Burri H, Nielsen JC, Bongiorni MG, et al. European Heart Rhythm Association (EHRA) international consensus document on how to prevent, diagnose, and treat cardiac implantable electronic device infections-endorsed by the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), the Latin American Heart Rhythm Society (LAHRS), International Society for Cardiovascular Infectious Diseases (ISCVID) and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Europace. 2020;22(4):515–49.

    Article  PubMed  Google Scholar 

  98. Gould FK, Denning DW, Elliott TS, Foweraker J, Perry JD, Prendergast BD, et al. Guidelines for the diagnosis and antibiotic treatment of endocarditis in adults: a report of the Working Party of the British Society for Antimicrobial Chemotherapy. J Antimicrob Chemother. 2012;67(2):269–89.

    Article  CAS  PubMed  Google Scholar 

  99. Golzio PG, Errigo D, Peyracchia M, Gallo E, Frea S, Castagno D, et al. Prevalence and prognosis of lead masses in patients with cardiac implantable electronic devices without infection. J Cardiovasc Med (Hagerstown). 2019;20(6):372–8.

    Article  Google Scholar 

  100. Downey BC, Juselius WE, Pandian NG, Estes NA, Link MS. Incidence and significance of pacemaker and implantable cardioverter-defibrillator lead masses discovered during transesophageal echocardiography. Pacing Clin Electrophysiol. 2011;34(6):679–83.

    Article  PubMed  Google Scholar 

  101. Bongiorni MG, Di Cori A, Soldati E, Zucchelli G, Arena G, Segreti L, et al. Intracardiac echocardiography in patients with pacing and defibrillating leads: a feasibility study. Echocardiography. 2008;25(6):632–8.

    Article  PubMed  Google Scholar 

  102. Narducci ML, Pelargonio G, Russo E, Marinaccio L, Di Monaco A, Perna F, et al. Usefulness of intracardiac echocardiography for the diagnosis of cardiovascular implantable electronic device-related endocarditis. J Am Coll Cardiol. 2013;61(13):1398–405.

    Article  PubMed  Google Scholar 

  103. Chang D, Gabriels J, Laighold S, Williamson AK, Ismail H, Epstein LM. A novel diagnostic approach to a mass on a device lead. Heart Rhythm Case Rep. 2019;5(6):306–9.

    Google Scholar 

  104. Diemberger I, Biffi M, Lorenzetti S, Martignani C, Raffaelli E, Ziacchi M, et al. Predictors of long-term survival free from relapses after extraction of infected CIED. Europace. 2018;20(6):1018–27.

    Article  PubMed  Google Scholar 

  105. Goodman LR, Almassi GH, Troup PJ, Gurney JW, Veseth-Rogers J, Chapman PD, et al. Complications of automatic implantable cardioverter defibrillators: radiographic, CT, and echocardiographic evaluation. Radiology. 1989;170(2):447–52.

    Article  CAS  PubMed  Google Scholar 

  106. Kelly PA, Wallace S, Tucker B, Hurvitz RJ, Ilvento J, Mirabel GS, et al. Postoperative infection with the automatic implantable cardioverter defibrillator: clinical presentation and use of the gallium scan in diagnosis. Pacing Clin Electrophysiol. 1988;11(8):1220–5.

    Article  CAS  PubMed  Google Scholar 

  107. Bhadelia RA, Oates E. Early cardioverter defibrillator infection: value of indium-111 leukocyte imaging. Ann Thorac Surg. 1997;63(1):236–8.

    Article  CAS  PubMed  Google Scholar 

  108. Almirante B, Miró JM. Infections associated with prosthetic heart valves, vascular prostheses, and cardiac pacemakers and defibrillators. Enferm Infecc Microbiol Clin. 2008;26(10):647–64.

    Article  PubMed  Google Scholar 

  109. Litzler PY, Manrique A, Etienne M, Salles A, Edet-Sanson A, Vera P, et al. Leukocyte SPECT/CT for detecting infection of left-ventricular-assist devices: preliminary results. J Nucl Med. 2010;51(7):1044–8.

    Article  PubMed  Google Scholar 

  110. Schiavo R, Ricci A, Pontillo D, Bernardini G, Melacrinis FF, Maccafeo S. Implantable cardioverter-defibrillator lead infection detected by 99mTc-sulesomab single-photon emission computed tomography/computed tomography ‘fusion’ imaging. J Cardiovasc Med (Hagerstown). 2009;10(11).

    Google Scholar 

  111. Ploux S, Riviere A, Amraoui S, Whinnett Z, Barandon L, Lafitte S, et al. Positron emission tomography in patients with suspected pacing system infections may play a critical role in difficult cases. Heart Rhythm. 2011;8(9):1478–81.

    Article  PubMed  Google Scholar 

  112. Vos FJ, Bleeker-Rovers CP, Sturm PD, Krabbe PF, van Dijk AP, Cuijpers ML, et al. 18F-FDG PET/CT for detection of metastatic infection in gram-positive bacteremia. J Nucl Med. 2010;51(8):1234–40.

    Article  PubMed  Google Scholar 

  113. Abikhzer G, Turpin S, Bigras JL. Infected pacemaker causing septic lung emboli detected on FDG PET/CT. J Nucl Cardiol. 2010;17(3):514–5.

    Article  PubMed  Google Scholar 

  114. Costo S, Hourna E, Massetti M, Belin A, Bouvard G, Agostini D. Impact of F-18 FDG PET-CT for the diagnosis and management of infection in JARVIK 2000 device. Clin Nucl Med. 2011;36(12):e188–91.

    Article  PubMed  Google Scholar 

  115. Bensimhon L, Lavergne T, Hugonnet F, Mainardi JL, Latremouille C, Maunoury C, et al. Whole body [18F]fluorodeoxyglucose positron emission tomography imaging for the diagnosis of pacemaker or implantable cardioverter defibrillator infection: a preliminary prospective study. Clin Microbiol Infect. 2011;17(6):836–44.

    Article  CAS  PubMed  Google Scholar 

  116. Sarrazin JF, Philippon F, Tessier M, Guimond J, Molin F, Champagne J, et al. Usefulness of fluorine-18 positron emission tomography/computed tomography for identification of cardiovascular implantable electronic device infections. J Am Coll Cardiol. 2012;59(18):1616–25.

    Article  PubMed  Google Scholar 

  117. Juneau D, Golfam M, Hazra S, Zuckier LS, Garas S, Redpath C, et al. Positron emission tomography and single-photon emission computed tomography imaging in the diagnosis of cardiac implantable electronic device infection: a systematic review and meta-analysis. Circ Cardiovasc Imaging. 2017;10(4):pii: e005772.

    Google Scholar 

  118. Matsushita K, Tsuboi N, Nanasato M, Takefuji M, Inoue N, Okada T, et al. Intravenous vegetation of methicillin-resistant Staphylococcus aureus induced by central venous catheter in a patient with implantable cardioverter-defibrillator: a case report. J Cardiol. 2002;40(1):31–5.

    PubMed  Google Scholar 

  119. Memmott MJ, James J, Armstrong IS, Tout D, Ahmed F. The performance of quantitation methods in the evaluation of cardiac implantable electronic device (CIED) infection: a technical review. J Nucl Cardiol. 2016;23(6):1457–66.

    Article  PubMed  Google Scholar 

  120. Erba PA, Sollini M, Conti U, Bandera F, Tascini C, De Tommasi SM, et al. Radiolabeled WBC scintigraphy in the diagnostic workup of patients with suspected device-related infections. JACC Cardiovasc Imaging. 2013;6(10):1075–86.

    Article  PubMed  Google Scholar 

  121. Ahmed FZ, James J, Cunnington C, Motwani M, Fullwood C, Hooper J, et al. Early diagnosis of cardiac implantable electronic device generator pocket infection using 18F-FDG-PET/CT. Eur Heart J Cardiovasc Imaging. 2015;16(5):521–30.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Amraoui S, Tlili G, Sohal M, Berte B, Hindié E, Ritter P, et al. Contribution of PET imaging to the diagnosis of septic embolism in patients with pacing lead endocarditis. JACC Cardiovasc Imaging. 2016;9(3):283–90.

    Article  PubMed  Google Scholar 

  123. Diemberger I, Bonfiglioli R, Martignani C, Graziosi M, Biffi M, Lorenzetti S, et al. Contribution of PET imaging to mortality risk stratification in candidates to lead extraction for pacemaker or defibrillator infection: a prospective single center study. Eur J Nucl Med Mol Imaging. 2019;46(1):194–205.

    Article  PubMed  Google Scholar 

  124. Paparoupa M, Spineli L, Framke T, Ho H, Schuppert F, Gillissen A. Pulmonary embolism in pneumonia: still a diagnostic challenge? Results of a case-control study in 100 patients. Dis Markers. 2016;2016:8682506.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Holman WL, Naftel DC, Eckert CE, Kormos RL, Goldstein DJ, Kirklin JK. Durability of left ventricular assist devices: Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) 2006 to 2011. J Thorac Cardiovasc Surg. 2013;146(2):437–41.e1.

    Article  PubMed  Google Scholar 

  126. Xie A, Phan K, Yan TD. Durability of continuous-flow left ventricular assist devices: a systematic review. Ann Cardiothorac Surg. 2014;3(6):547–56.

    PubMed  PubMed Central  Google Scholar 

  127. Wickline SA, Fischer KC. Can infections be imaged in implanted devices? ASAIO J. 2000;46(6):S80–1.

    Article  CAS  PubMed  Google Scholar 

  128. Siméon S, Flécher E, Revest M, Niculescu M, Roussel JC, Michel M, et al. Left ventricular assist device-related infections: a multicentric study. Clin Microbiol Infect. 2017;23(10):748–51.

    Article  PubMed  Google Scholar 

  129. Koval CE, Rakita R, Practice AIDCo. Ventricular assist device related infections and solid organ transplantation. Am J Transplant. 2013;13(Suppl 4):348–54.

    Article  PubMed  Google Scholar 

  130. Dell'Aquila AM, Mastrobuoni S, Alles S, Wenning C, Henryk W, Schneider SR, et al. Contributory role of fluorine 18-fluorodeoxyglucose positron emission tomography/computed tomography in the diagnosis and clinical management of infections in patients supported with a continuous-flow left ventricular assist device. Ann Thorac Surg. 2016;101(1):87–94.

    Article  PubMed  Google Scholar 

  131. Avramovic N, Dell’Aquila AM, Weckesser M, Milankovic D, Vrachimis A, Sindermann JR, et al. Metabolic volume performs better than SUVmax in the detection of left ventricular assist device driveline infection. Eur J Nucl Med Mol Imaging. 2017;44(11):1870–7.

    Article  PubMed  Google Scholar 

  132. Erba PA, Leo G, Sollini M, Tascini C, Boni R, Berchiolli RN, et al. Radiolabelled leucocyte scintigraphy versus conventional radiological imaging for the management of late, low-grade vascular prosthesis infections. Eur J Nucl Med Mol Imaging. 2014;41(2):357–68.

    Article  CAS  PubMed  Google Scholar 

  133. Osborne MT, Hulten EA, Murthy VL, Skali H, Taqueti VR, Dorbala S, et al. Patient preparation for cardiac fluorine-18 fluorodeoxyglucose positron emission tomography imaging of inflammation. J Nucl Cardiol. 2017;24(1):86–99.

    Article  PubMed  Google Scholar 

  134. Jamar F, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ, et al. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54(4):647–58.

    Article  PubMed  Google Scholar 

  135. Rabkin Z, Israel O, Keidar Z. Do hyperglycemia and diabetes affect the incidence of false-negative 18F-FDG PET/CT studies in patients evaluated for infection or inflammation and cancer? A Comparative analysis. J Nucl Med. 2010;51(7):1015–20.

    Article  PubMed  Google Scholar 

  136. Scholtens AM, van Aarnhem EE, Budde RP. Effect of antibiotics on FDG-PET/CT imaging of prosthetic heart valve endocarditis. Eur Heart J Cardiovasc Imaging. 2015;16(11):1223.

    Article  CAS  PubMed  Google Scholar 

  137. Raplinger K, Chandler K, Hunt C, Johnson G, Peller P. Effect of steroid use during chemotherapy on SUV levels in PET/CT. J Nucl Med. 2012;53(suppl 1):2718.

    Google Scholar 

  138. Mikail N, Benali K, Ou P, Slama J, Hyafil F, Le Guludec D, et al. Detection of mycotic aneurysms of lower limbs by whole-body 18F-FDG-PET. JACC Cardiovasc Imaging. 2015;8(7):859–62.

    Article  PubMed  Google Scholar 

  139. Caldarella C, Leccisotti L, Treglia G, Giordano A. Which is the optimal acquisition time for FDG PET/CT imaging in patients with infective endocarditis? J Nucl Cardiol. 2013;20(2):307–9.

    Article  PubMed  Google Scholar 

  140. Leccisotti L, Perna F, Lago M, Leo M, Stefanelli A, Calcagni ML, et al. Cardiovascular implantable electronic device infection: delayed vs standard FDG PET-CT imaging. J Nucl Cardiol. 2014;21(3):622–32.

    Article  PubMed  Google Scholar 

  141. Scholtens AM, Swart LE, Verberne HJ, Budde RPJ, Lam MGEH. Dual-time-point FDG PET/CT imaging in prosthetic heart valve endocarditis. J Nucl Cardiol. 2018;25(6):1960–7.

    Article  CAS  PubMed  Google Scholar 

  142. Bucerius J, Mani V, Moncrieff C, Machac J, Fuster V, Farkouh ME, et al. Optimizing 18F-FDG PET/CT imaging of vessel wall inflammation: the impact of 18F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels. Eur J Nucl Med Mol Imaging. 2014;41(2):369–83.

    Article  CAS  PubMed  Google Scholar 

  143. Swart LE, Gomes A, Scholtens AM, Sinha B, Tanis W, Lam MGEH, et al. Improving the diagnostic performance of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography in prosthetic heart valve endocarditis. Circulation. 2018;138(14):1412–27.

    Article  PubMed  Google Scholar 

  144. Fan CM, Fischman AJ, Kwek BH, Abbara S, Aquino SL. Lipomatous hypertrophy of the interatrial septum: increased uptake on FDG PET. AJR Am J Roentgenol. 2005;184(1):339–42.

    Article  PubMed  Google Scholar 

  145. Keidar Z, Pirmisashvili N, Leiderman M, Nitecki S, Israel O. 18F-FDG uptake in noninfected prosthetic vascular grafts: incidence, patterns, and changes over time. J Nucl Med. 2014;55(3):392–5.

    Article  CAS  PubMed  Google Scholar 

  146. Pizzi MN, Roque A, Cuéllar-Calabria H, Fernández-Hidalgo N, Ferreira-González I, González-Alujas MT, et al. F-FDG-PET/CTA of prosthetic cardiac valves and valve-tube grafts: infective versus inflammatory patterns. JACC Cardiovasc Imaging. 2016;9(10):1224–7.

    Article  PubMed  Google Scholar 

  147. Schouten LR, Verberne HJ, Bouma BJ, van Eck-Smit BL, Mulder BJ. Surgical glue for repair of the aortic root as a possible explanation for increased F-18 FDG uptake. J Nucl Cardiol. 2008;15(1):146–7.

    Article  PubMed  Google Scholar 

  148. Mathieu C, Mikaïl N, Benali K, Iung B, Duval X, Nataf P, et al. Characterization of 18F-fluorodeoxyglucose uptake pattern in noninfected prosthetic heart valves. Circ Cardiovasc Imaging. 2017;10(3):e005585.

    Article  PubMed  Google Scholar 

  149. Sochowski RA, Chan KL. Implication of negative results on a monoplane transesophageal echocardiographic study in patients with suspected infective endocarditis. J Am Coll Cardiol. 1993;21(1):216–21.

    Article  CAS  PubMed  Google Scholar 

  150. Salaun E, Aldebert P, Jaussaud N, Spychaj JC, Maysou LA, Collart F, et al. Early endocarditis and delayed left ventricular pseudoaneurysm complicating a transapical transcatheter mitral valve-in-valve implantation: percutaneous closure under local anesthesia and echocardiographic guidance. Circ Cardiovasc Interv. 2016;9(10):pii:e003886.

    Google Scholar 

  151. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(23):2440–92.

    Article  PubMed  Google Scholar 

  152. Baddour LM, Wilson WR, Bayer AS, Fowler VG, Bolger AF, Levison ME, et al. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation. 2005;111(23):e394–434.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Anna Erba .

Editor information

Editors and Affiliations

Clinical Cases

Clinical Cases

9.1.1 Case 9.1

9.1.1.1 Background

A 52-year-old man was hospitalized for deep vein thrombosis of the right lower limb presenting as acute compartment syndrome, and underwent emergency fasciotomy. This treatment failed, and right limb amputation had to be subsequently performed. About 3 years prior to this acute episode, the patient had been submitted to the replacement of the aortic valve and ascending aorta. After the amputation, he experienced raise of C-reactive protein (CRP) and fibrinogen (10.4 mg/dL and 648 mg/dL, respectively); pro-calcitonin was in the normal range, and blood cultures were negative. TTE did not show any abnormality. Despite negativity of blood cultures and TTE, empiric antimicrobial treatment was started based on the high clinical suspicious of infection, and TEE was planned, which showed mild aortic valve regurgitation. Since the patient presented one major and one minor criteria, he was classified as possible IE with persisting high suspicious of infection; as recommended by the latest ESC 2015 Guidelines, he was therefore referred for molecular imaging. [18F]FDG PET/CT (Fig. 9.4) confirmed the suspicious of IE, showing high tracer uptake on the prosthetic aortic valve. Empiric antimicrobial treatment was continued and after 2 months, when both CRP and fibrinogen were in the normal range, he underwent a follow-up [18F]FDG PET/CT scan (Fig. 9.5) during therapy. The 2-month follow-up scan confirmed the presence of prosthetic valve endocarditis and showed additional infection involving soft tissues of the right amputation stump.

Fig. 9.4
figure 4

[18F]FDG PET/CT in a patient with prosthetic valve endocarditis. The MIP image (a) shows increased [18F]FDG uptake in the mediastinum and at the right amputation stump. (b) Transaxial fused PET/CT sections. (c) Coronal sections (PET left; CT middle; fused PET/CT right). Intense [18F]FDG uptake at the prosthetic valve is clearly detectable indicating IE. The moderate and diffuse tracer uptake at the right amputation stump suggests post-surgical inflammation

Fig. 9.5
figure 5

Follow-up [18F]FDG PET/CT scan in the same patient as in Fig. 9.4, with prosthetic valve endocarditis and infection of amputation stump. (a) The MIP image shows increased [18F]FDG uptake in the mediastinum and in the lateral side of the right amputation stump. The transaxial fused PET/CT (b) and coronal (c) images (PET, left; CT, middle; fused, right) confirm intense [18F]FDG uptake at the prosthetic valve, almost unchanged from the previous examination. The focal area of increased [18F]FDG uptake in the lateral side of the right amputation stump suggests spread of infection to the soft tissues of the knee, as shown by axial fused images (d). The moderately increased tracer uptake at the right groin (indicated by “asterisk”) is related to muscular uptake

9.1.1.2 Suspected Site of Infection

PVIE.

9.1.1.3 Radiopharmaceutical Activity

[18F]FDG, 295 MBq.

9.1.1.4 Imaging

The acquisition included scout view (120 kV, 10 mA), whole-body CT scan (140 kV, 80 mA), and PET (3D, 3 min/FOV). Images were reconstructed with and without attenuation correction using the low-dose transmission CT scan.

9.1.1.5 Conclusion/Teaching Point

[18F]FDG PET/CT identified the presence of IE, was helpful to monitor response to treatment, and identified an additional, unexpected site of infection. [18F]FDG PET/CT is highly sensitive also during antimicrobial treatment.

9.1.2 Case 9.2

9.1.2.1 Background

A 60-year-old obese woman with aortic valve prosthesis went to the emergency department for chest pain and fever. IE was suspected due to the presence of fever associated to relevant cardiac risk factors (prosthetic valve). Blood cultures were positive for Staphylococcus epidermidis. TEE showed a doubtful image on the prosthetic valve, suspected for IE but inconclusive. [18F]FDG PET/CT (Fig. 9.6) showed an area of focal tracer uptake at the aortic valve prosthesis, and a large lesion in the spleen characterized by a “hot” rim surrounding a “cold” core. Overall, these findings were suggestive for prosthetic valve endocarditis with splenic septic embolism.

Fig. 9.6
figure 6

The [18F]FDG PET/CT MIP image (a) shows an area of mildly increased focal uptake in the cardiac region and a lesion in the spleen. Axial fused sections (b) confirm an area of focal uptake which involves the aortic valve prosthesis, indicating IE. (c) Axial (PET, upper; CT, middle; fused PET/CT, bottom) and (d) coronal (PET, left; CT, middle; fused PET/CT, right) sections show a large lesion in the spleen characterized by a “hot” rim surrounding “cold” core, suggesting septic embolism (abscess)

9.1.2.2 Suspected Site of Infection

Prosthetic valve endocarditis.

9.1.2.3 Radiopharmaceutical Activity

[18F]FDG, 347 MBq.

9.1.2.4 Imaging

The acquisition included scout view (120 kV, 10 mA), whole-body CT scan (140 kV, 80 mA), and PET (3D, 3 min/FOV). Images were reconstructed with and without attenuation correction using the low-dose transmission CT scan.

9.1.2.5 Conclusion/Teaching Point

[18F]FDG PET/CT identified the presence of IE with associated splenic septic embolism.

9.1.3 Case 9.3

9.1.3.1 Background

A 70-year-old woman with aortic and mitral valve prosthesis went to the emergency department for persistent fever unresponsive to antimicrobial treatment. Lab tests raised the suspicion of infection, with high C-reactive protein (38 mg/dL), and fibrinogen (521 mg/dL). Blood cultures were negative. TTE was negative. A doubtful image suspected for vegetation at the aortic valve was detected on TEE. Accordingly, the patient was referred for [18F]FDG PET/CT (Fig. 9.7), which showed increased tracer uptake at both prosthetic valves. A 99mTc-HMPAO-labeled-WBC scintigraphy (Fig. 9.8) confirmed with the presence of IE involving both the aortic and the mitral prosthetic valves. Nonetheless, the disease burden identified by 99mTc-HMPAO-WBC scintigraphy was lower compared to [18F]FDG PET/CT.

Fig. 9.7
figure 7

The [18F]FDG PET/CT MIP image (a) shows two ring-like areas of increased the tracer uptake in the cardiac region. Transaxial fused PET/CT sections (b) demonstrates involvement of both the aortic and the mitralic valve prosthesis

Fig. 9.8
figure 8

(a) 99mTc-HMPAO-WBC planar images (anterior views in the left panels, posterior views in the right panels) of the thorax at 30 min, 4 h, and 20 h (from top to bottom), showing a mild time-dependent increase of radioactivity accumulation in the lower third of the sternum. Fused transaxial SPECT/CT sections acquired at 4 h (b) and at 20 h (c), showing increased WBC accumulation at both the aortic and the mitral valve prosthesis

9.1.3.2 Suspected Site of Infection

Prosthetic valve endocarditis.

9.1.3.3 Radiopharmaceutical Activity

[18F]FDG, 202 MBq; 99mTc-HMPAO-WBC, 740 MBq.

9.1.3.4 Imaging

The PET/CT acquisition included scout view (120 kV, 10 mA), whole-body CT scan (140 kV, 80 mA), and PET (3D, 3 min/FOV). Images were reconstructed with and without attenuation correction using the low-dose transmission CT scan.

99mTc-HMPAO-WBC scintigraphy: planar images of the thorax acquired at 30 min, 4 h and 20 h. SPECT/CT imaging of the thorax at 4 h and 20 h, with 3D reconstruction.

9.1.3.5 Conclusion/Teaching Point

Both [18F]FDG PET/CT and 99mTc-HMPAO-WBC SPECT/CT allow identification of blood culture-negative prosthetic valve endocarditis. 99mTc-HMPAO-WBC scintigraphy requires SPECT/CT acquisition in suspected cardiovascular infection. As expected, 99mTc-HMPAO-WBC scintigraphy is more accurate than [18F]FDG PET/CT for defining the infection burden.

9.1.4 Case 9.4

9.1.4.1 Background

An 81-year-old man had been submitted to ICD implant several years before being referred to the emergency department because of dyspnea and fever. Lab tests showed increased C-reactive protein (1.2 mg/dL, normal value <0.5 mg/dL) and erythrocyte sedimentation rate (85 mm/h, normal value <30 mm/h). Blood cultures were positive for Staphylococcus aureus, but both transthoracic and TEE excluded the presence of vegetation or any other signs of IE. Because of high clinical suspicion of ICD-related IE, the patient was referred for [18F]FDG PET/CT (Fig. 9.9), which showed high [18F]FDG uptake at the ICD generator pocket, along the EC, and in the right lung; this pattern was consistent with CIED infection with lung embolism. Small bilateral axillary lymph nodes exhibited faint, nonspecific tracer uptake.

Fig. 9.9
figure 9

The [18F]FDG PET/CT MIP image (a) shows increased tracer uptake in the upper region of the left hemithorax. (b) Coronal sections (PET, left; CT, middle; fused PET/CT, right) show intense and diffuse [18F]FDG uptake at the ICD pocket, in the left hemithorax. (c) Transaxial fused sections confirm the presence of ICD pocket infection, EC involvement and a hot spot in the upper lobe of right lung, classified as lung embolism; faint [18F]FDG uptake is detectable also in small bilateral axillary lymph nodes, as for nonspecific inflammation. (d) Selected transaxial sections (PET, left; CT, middle; fused PET/CT, right) showing in the same plane the pocket infection in the left hemithorax and the septic embolism in right lung. (e) The area of focal [18F]FDG uptake at the posterior right greater trochanter is due to nonspecific muscular uptake

9.1.4.2 Suspected Site of Infection

Cardiac device.

9.1.4.3 Radiopharmaceutical Activity

[18F]FDG, 291 MBq.

9.1.4.4 Imaging

The acquisition included scout view (120 kV, 10 mA), whole-body CT scan (140 kV, 80 mA), and PET (3D, 3 min/FOV). Images were reconstructed with and without attenuation correction using the low-dose transmission CT scan.

9.1.4.5 Conclusion/Teaching Point

[18F]FDG PET/CT identified the presence of ICD pocket infection, with associated septic lung embolism.

9.1.5 Case 9.5

9.1.5.1 Background

A 73-year-old man had been submitted ICD positioned for heart failure about 3 years before being referred to the emergency department for persistent fever unresponsive to antimicrobial treatment. Lab tests showed increased C-reactive protein (2.5 mg/dL, normal value <0.5 mg/dL), and erythrocyte sedimentation rate (96 mm/h, normal value <30 mm/h). Blood cultures were positive for Streptococcus dysgalactiae. TTE did not show any abnormality, while TEE was doubtful for a vegetation along the lead of ICD. Because of the high clinical suspicion for infection together with uncertain TEE findings, [18F]FDG PET/CT was performed (Fig. 9.10), which showed increased tracer uptake along the lead of ICD, thus confirming the doubtful TEE findings; in addition a focus of increased [18F]FDG uptake was noted in the soft tissues of the sacral region.

Fig. 9.10
figure 10

[18F]FDG PET/CT in a patient with cardiac device infection. (a) Transaxial section on a selected plane (PET, left; CT, middle; fused PET/CT, right). (b) Coronal section on a selected plane (PET, left; CT, middle, fused PET/CT, right). The images show increased [18F]FDG uptake along the lead of the ICD, thus confirming the doubtful TEE findings as due to infection. (c) Transaxial sections on a selected plane (PET, top; CT, middle; fused PET/CT, bottom), demonstrating a focus of increased [18F]FDG uptake in the soft tissues of the sacral region

9.1.5.2 Suspected Site of Infection

Cardiac device.

9.1.5.3 Radiopharmaceutical Activity

[18F]FDG, 239 MBq.

9.1.5.4 Imaging

The acquisition included scout view (120 kV, 10 mA), whole-body CT scan (140 kV, 80 mA), and PET (3D, 3 min/FOV). Images were reconstructed with and without attenuation correction using the low-dose transmission CT scan.

9.1.5.5 Conclusion/Teaching Point

[18F]FDG PET/CT identified ICD-related infection and also identified the probable portal of entry for bacteria.

9.1.6 Case 9.6

9.1.6.1 Background

A 74-year-old obese man with prior implantation of ICD went to the emergency department for dyspnea and persistent fever unresponsive to antimicrobial treatment. Lab tests indicated very high level of C-reactive protein (22 mg/dL) and mildly increased pro-calcitonin (1.8 ng/dL), but still in the range of sepsis uncertainty (0.5–2 ng/dL). Blood cultures were positive for Staphylococcus aureus. While TTE was negative, at TEE two faint vegetations were seen along the lead of ICD and at the tricuspid valve, respectively. [18F]FDG PET/CT was performed to confirm/exclude infection based on the high clinical suspicious (cardiac risk factors, lab tests, bacteremia, and suspected, even if uncertain, TEE findings). The PET/CT scan (Fig. 9.11) showed increased [18F]FDG uptake along the intracardiac portion of the lead of ICD and at the pericardium of the right atrium. In addition, lung embolisms were detected.

Fig. 9.11
figure 11

(a) [18F]FDG PET/CT MIP image. (b) Coronal sections (PET, left; CT, middle; fused PET/CT, right). The images show increased [18F]FDG uptake at the intracardiac portion of the ICD lead, associated with intense and diffuse tracer uptake involving the pericardium of the right atrium. (c) Transaxial sections (PET, left; CT, middle; fused PET/CT, right), showing focal sites of [18F]FDG uptake consistent with embolisms in the upper lobe of left lung

9.1.6.2 Suspected Site of Infection

Infection of device.

9.1.6.3 Radiopharmaceutical Activity

[18F]FDG, 367 MBq.

9.1.6.4 Imaging

The acquisition included scout view (120 kV, 10 mA), whole-body CT scan (140 kV, 80 mA), and PET (3D, 3 min/FOV). Images were reconstructed with and without attenuation correction using the low-dose transmission CT scan.

9.1.6.5 Conclusion/Teaching Point

[18F]FD-PET/CT identified the presence of ICD infection, associated with pericarditis and lung septic embolisms.

9.1.7 Case 9.7

9.1.7.1 Background

An 80-year-old man with ICD went to the emergency department for persistent fever unresponsive to antimicrobial treatment. Lab tests supported the clinical suspicion of infection, with increased C-reactive protein (14 mg/dL, normal value <0.5 mg/dL) and increased fibrinogen (486 mg/dL, normal range 150–400 mg/dL). Blood cultures were negative. TTE was negative. TEE identified a doubtful image suspected for vegetation along the lead. The patient underwent a 99mTc-HMPAO-WBC scintigraphy (Fig. 9.12), which identified device-related infection based on the presence of time-dependent radioactivity accumulation increase at the ICD pocket and along the intravascular portion of the ICD lead.

Fig. 9.12
figure 12

99mTc-HMPAO-WBC scintigraphy. (a) Anterior and posterior planar whole-body images acquired at 30 min, confirming a normal biodistribution pattern of the radiolabeled WBC. (b) Planar spot views of the thorax (anterior, left panel; posterior, right panel) acquired at 4 h (top) and at 20 h (bottom), showing no abnormalities. (c) Transaxial SPECT/CT sections (SPECT, left; CT, middle; fused SPECT/CT, right) acquired at 4 h, showing increased WBC accumulation at the deep component of the ICD pocket and at the intravascular portion of the ICD lead

9.1.7.2 Suspected Site of Infection

Cardiac device.

9.1.7.3 Radiopharmaceutical Activity

99mTc-HMPAO-WBC, 740 MBq.

9.1.7.4 Imaging

Planar images of the thorax acquired at 30 min, 4 h, and 20 h. SPECT/CT imaging of the thorax at 4 h and 20 h, with 3D reconstruction.

9.1.7.5 Conclusion/Teaching Point

99mTc-HMPAO-WBC scintigraphy identified the presence ICD infection.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sollini, M., Bandera, F., Bartoli, F., Zanca, R., Lazzeri, E., Erba, P.A. (2021). Infective Endocarditis and Cardiovascular Implantable Electronic Device Infection. In: Lazzeri, E., et al. Radionuclide Imaging of Infection and Inflammation. Springer, Cham. https://doi.org/10.1007/978-3-030-62175-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62175-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62174-2

  • Online ISBN: 978-3-030-62175-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics