Skip to main content

Virtual and Augmented Reality for Educational Anatomy

  • Chapter
  • First Online:
Digital Anatomy

Abstract

Recent progress in VR and AR hardware enables a wide range of educational applications. Anatomy education, where the complex spatial relations of the human anatomy need to be imagined, may benefit from the immersive experience. Also the integration of virtual information and real information, e.g., muscles and bone overlaid on the user’s body, are beneficial for imaging the interplay of various anatomical structures. VR and AR systems for anatomy education compete with other media to support anatomy teaching, such as interactive 3D visualization and anatomy textbooks. We discuss the constraints that must be considered when designing VR and AR systems that enable efficient knowledge transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.vuforia.com/.

  2. 2.

    https://www.visiblebody.com/.

  3. 3.

    https://www.diffuse.ch/.

  4. 4.

    https://dbe.unibas.ch/en/research/flagship-project-miracle/.

  5. 5.

    http://www.web3d.org/working-groups/humanoid-animation-h-anim.

References

  • Abildgaard A, Witwit AK, Karlsen JS, Jacobsen EA, Tennoe B, Ringstad G, Due-Tonnessen P (2010) An autostereoscopic 3D display can improve visualization of 3D models from intracranial MR angiography. Int J Comput Assist Radiol Surg 5(5):549–54

    Article  Google Scholar 

  • Adams H, Shinn J, Morrel WG, Noble J, Bodenheimer B (2019) Development and evaluation of an immersive virtual reality system for medical imaging of the ear. In: Proceedings of SPIE medical imaging: image-guided procedures, robotic interventions, and modeling, vol 10951, p 1095111

    Google Scholar 

  • Akçayır M, Akçayır G (2017) Advantages and challenges associated with augmented reality for education: a systematic review of the literature. Educ Res Rev 20:1–11

    Article  Google Scholar 

  • Assenmacher I, Hentschel B, Ni C, Kuhlen T, Bischof C (2006) Interactive data annotation in virtual environments. In: Proceedings of Eurographics conference on virtual environments, pp 119–126

    Google Scholar 

  • Bacca J, Baldiris S, Fabregat R, Graf S, Kinshuk (2014) Augmented reality trends in education: a systematic review of research and applications. J Educ Technol Soc 17(4):133–149

    Google Scholar 

  • Bajura M, Fuchs H, Ohbuchi R (1992) Merging virtual objects with the real world: seeing ultrasound imagery within the patient. In: Proceedings of SIGGRAPH, pp 203–210

    Google Scholar 

  • Blum T, Kleeberger V, Bichlmeier C, Navab N (2012) Mirracle: an augmented reality magic mirror system for anatomy education. In: Proceedings of IEEE Virtual Reality Workshops (VRW), pp 115–116

    Google Scholar 

  • Boonbrahm P, Kaewrat C, Pengkaew P, Boonbrahm S, Meni V (2018) Study of the hand anatomy using real hand and augmented reality. Int J Interact Mobile Technol (iJIM) 12(7):181–90

    Article  Google Scholar 

  • Bork F, Stratmann L, Enssle S, Eck U, Navab N, Waschke J, Kugelmann D (2019) The benefits of an augmented reality magic mirror system for integrated radiology teaching in gross anatomy. In: Anatomical sciences education

    Google Scholar 

  • Brenton H, Hernandez J, Bello F, Strutton P, Purkayastha S, Firth T, Darzi A (2007) Using multimedia and Web3D to enhance anatomy teaching. Comput Educ 49(1):32–53

    Article  Google Scholar 

  • Brown JR (2000) Enabling educational collaboration-a new shared reality. Comput Graph 24(2):289–92

    Article  Google Scholar 

  • Brown PM, Hamilton NM, Denison AR (2012) A novel 3D stereoscopic anatomy tutorial. Clin Teach 9(1):50–53

    Article  Google Scholar 

  • Chapman LL, Sullivan B, Pacheco AL, Draleau CP, Becker BM (2011) Veinviewer-assisted intravenous catheter placement in a pediatric emergency department. Acad Emerg Med 18(9):966–71

    Article  Google Scholar 

  • Chen C, Chen W, Peng J, Cheng B, Pan T, Kuo H (2017) A real-time markerless augmented reality framework based on slam technique. In: International symposium on pervasive systems, algorithms and networks, vol 2017, pp 127–132

    Google Scholar 

  • Chen L, Day TW, Tang W, John NW (2017) Recent developments and future challenges in medical mixed reality. In: Proceedings of ISMAR, pp 123–35

    Google Scholar 

  • Chittaro L, Ranon R (2007) Web3D technologies in learning, education and training: motivations, issues, opportunities. Comput Educ 49(1):3–18

    Article  Google Scholar 

  • Custer TM, Michael K (2015) The utilization of the anatomage virtual dissection table in the education of imaging science students. J Tomogr Simul 1

    Google Scholar 

  • de Faria JWV, Teixeira MJ, de Moura Sousa Jr L, Otoch JP, Figueiredo EG (2016) Virtual and stereoscopic anatomy: when virtual reality meets medical education. J Neurosurg 125(5):1105–1111

    Google Scholar 

  • Ekstrand C, Jamal A, Nguyen R, Kudryk A, Mann J, Mendez I (2018) Immersive and interactive virtual reality to improve learning and retention of neuroanatomy in medical students: a randomized controlled study. CMAJ Open 6(1):E103–9

    Article  Google Scholar 

  • Fairén M, Farrés M, Moyés J, Insa E (2017) Virtual Reality to teach anatomy. In: Proceedings of Eurographics-Education papers, pp 51–58

    Google Scholar 

  • Fellner FA (2016) Introducing cinematic rendering: a novel technique for post-processing medical imaging data. J Biomed Sci Eng 10(8):170–175

    Article  Google Scholar 

  • Fellner FA, Engel K, Kremer C (2017) Virtual anatomy: the dissecting theatre of the future-implementation of cinematic rendering in a large 8 K high-resolution projection environment. J Biomed Sci Eng 10(8):367–75

    Article  Google Scholar 

  • Felnhofer A, Kothgassner OD, Beutl L, Hlavacs H, Kryspin-Exner I (2012) Is virtual reality made for men only? Exploring gender differences in the sense of presence. In: Proceedings of the international society on presence research, pp 103–112

    Google Scholar 

  • Fowler C (2015) Virtual reality and learning: Where is the pedagogy? Br J Educ Technol 46(2):412–22

    Article  Google Scholar 

  • Fuchs H, Livingston MA, Raskar R, Colucci D, Keller K, State A, Crawford JR, Rademacher P, Drake SH, Meyer AA (1998) Augmented reality visualization for laparoscopic surgery. In: Proceedings of MICCAI, pp 934–943

    Google Scholar 

  • Hackett M, Proctor M (2016) Three-dimensional display technologies for anatomical education: a literature review. J Sci Educ Technol 25:641–54

    Article  Google Scholar 

  • Halle M, Demeusy V, Kikinis R (2017) The open anatomy browser: a collaborative web-based viewer for interoperable anatomy atlases. Frontiers in Neuroinformatics 11

    Google Scholar 

  • Huang H-M, Rauch U, Liaw S-S (2010) Investigating learners’ attitudes toward virtual reality learning environments: based on a constructivist approach. Comput Educ 55(3):1171–82

    Article  Google Scholar 

  • Jain N, Youngblood P, Hasel M, Srivastava S (2017) An augmented reality tool for learning spatial anatomy on mobile devices. Clin Anat 30(6):736–41

    Article  Google Scholar 

  • Jang S, Vitale JM, Jyung RW, Black JB (2017) Direct manipulation is better than passive viewing for learning anatomy in a three-dimensional virtual reality environment. Comput Educ 106:150–65

    Article  Google Scholar 

  • John NW, Phillips NI, ap Cenydd L, Pop SR, Coope D, Kamaly-Asl I, de Souza C, Watt SJ (2016) The use of stereoscopy in a neurosurgery training virtual environment. Presence 25(4):289–298

    Google Scholar 

  • Jung Y, Behr J (2008) Extending H-Anim and X3D for advanced animation control. In: Proceedings of the ACM symposium on 3D web technology, pp 57–65

    Google Scholar 

  • Kamphuis C, Barsom E, Schijven M, Christoph N (2014) Augmented reality in medical education? Perspect Med Educ 3(4):300–11

    Article  Google Scholar 

  • Kato H (2007) Inside ARToolKit. In: Proceedings of IEEE international workshop on augmented reality toolkit

    Google Scholar 

  • Kosslyn SM, Thompson WL, Wrage M (2001) Imaging rotation by endogeneous versus exogeneous forces: distinct neural mechanisms. NeuroReport 12(11):2519–25

    Article  Google Scholar 

  • Kugelmann D, Stratmann L, Nühlen N, Bork F, Hoffmann S, Samarbarksh G et al (2018) An augmented reality magic mirror as additive teaching device for gross anatomy. Ann Anat Anat Anz 215:71–77

    Article  Google Scholar 

  • Lundstrom C, Rydell T, Forsell C, Persson A, Ynnerman A (2011) Multi-touch table system for medical visualization: application to orthopedic surgery planning. IEEE Trans Vis Comput Graph 17(12):1775–84

    Article  Google Scholar 

  • Luursema J-M, Verwey WB, Kommers PA, Annema J-H (2008) The role of stereopsis in virtual anatomical learning. Interact Comput 20(4–5):455–60

    Article  Google Scholar 

  • Ma M, Fallavollita P, Seelbach I, Von Der Heide AM, Euler E, Waschke J, Navab N (2016) Personalized augmented reality for anatomy education. Clin Anat 29(4):446–53

    Article  Google Scholar 

  • Ma M, Jutzi P, Bork F, Seelbach I, von der Heide AM, Navab N, Fallavollita P (2016) Interactive mixed reality for muscle structure and function learning. In: International conference on medical imaging and augmented reality, pp 117–128

    Google Scholar 

  • Maresky HS, Oikonomou A, Ali I, Ditkofsky N, Pakkal M, Ballyk B (2019) Virtual reality and cardiac anatomy: exploring immersive three-dimensional cardiac imaging, a pilot study in undergraduate medical anatomy education. Clin Anat 32(2):238–43

    Article  Google Scholar 

  • Marks S, White D, Singh M (2017) Getting up your nose: a virtual reality education tool for nasal cavity anatomy. In: SIGGRAPH Asia 2017 symposium on education, pp 1:1–1:7

    Google Scholar 

  • Martín-Gutiérrez J, Mora CE, Aâorbe-Díaz B, González-Marrero A (2017) Virtual technologies trends in education. Eurasia J Math Sci Technol Educ 13(2):469–86

    Article  Google Scholar 

  • Mayfield CH, Ohara PT, O’Sullivan PS (2013) Perceptions of a mobile technology on learning strategies in the anatomy laboratory. Anat Sci Educ 6(2):81–89

    Article  Google Scholar 

  • Meng M, Fallavollita P, Blum T, Eck U, Sandor C, Weidert S, Waschke J, Navab N (2013) Kinect for interactive AR anatomy learning. In: Proceedings of ISMAR, pp 277–278

    Google Scholar 

  • Messier E, Wilcox J, Dawson-Elli A, Diaz G, Linte CA (2016) An interactive 3D virtual anatomy puzzle for learning and simulation-initial demonstration and evaluation. Stud Health Technol Inform 20:233–240

    Google Scholar 

  • Mönch J, Mühler K, Hansen C, Oldhafer K-J, Stavrou G, Hillert C, Logge C, Preim B (2013) The liversurgerytrainer: training of computer-based planning in liver resection surgery. Int J Comput Assist Radiol Surg 8(5):809–18

    Article  Google Scholar 

  • Moorman SJ (2006) Prof-in-a-box: using internet-videoconferencing to assist students in the gross anatomy laboratory. BMC Med Educ 6(1):55

    Article  Google Scholar 

  • Mota MF, da Mata FR, Aversi-Ferreira TA (2010) Constructivist pedagogic method used in the teaching of human anatomy. Int J Morphol 28(2):369–74

    Article  Google Scholar 

  • Murakami T, Tajika Y, Ueno H, Awata S, Hirasawa S, Sugimoto M, Kominato Y, Tsushima Y, Endo K, Yorifuji H (2014) An integrated teaching method of gross anatomy and computed tomography radiology. Anat Sci Educ 7(6):438–449

    Article  Google Scholar 

  • Nicholson DT, Chalk C, Funnell W, Daniel S (2006) Can virtual reality improve anatomy education? A randomised controlled study of a computer-generated three-dimensional anatomical ear model. Med Educ 40(11):1081–1087

    Article  Google Scholar 

  • Phillips AW, Smith S, Straus C (2013) The role of radiology in preclinical anatomy: a critical review of the past, present, and future. Acad Radiol 20(3):297–304

    Article  Google Scholar 

  • Pick S, Hentschel B, Tedjo-Palczynski I, Wolter M, Kuhlen T (2010) Automated positioning of annotations in immersive virtual environments. In: Proceedings Eurographics conference on virtual environments, pp 1–8

    Google Scholar 

  • Pick S, Weyers B, Hentschel B, Kuhlen TW (2016) Design and evaluation of data annotation workflows for cave-like virtual environments. IEEE Trans Vis Comput Graph 22(4):1452–1461

    Article  Google Scholar 

  • Pohlandt D (2017) Supporting anatomy education with a 3D puzzle in a virtual reality environment. Master’s thesis, Department of Computer Science, University of Magdeburg

    Google Scholar 

  • Pommert A, Höhne KH, Pflesser B, Richter E, Riemer M, Schiemann T, Schubert R, Schumacher U, Tiede U (2001) Creating a high-resolution spatial/symbolic model of the inner organs based on the Visible Human. Med Image Anal 5(3):221–28

    Article  Google Scholar 

  • Preim B, Raab A, Strothotte T (1997) Coherent zooming of illustrations with 3D-graphics and text. In: Proceedings of graphics interface, pp 105–113

    Google Scholar 

  • Preim B, Saalfeld P (2018) A survey of virtual human anatomy education systems. Comput Graph 71:132–53

    Article  Google Scholar 

  • Radu I (2012) Why should my students use ar? A comparative review of the educational impacts of augmented-reality. In: IEEE international symposium on mixed and augmented reality (ISMAR), pp 313–314

    Google Scholar 

  • Ritter F, Berendt B, Fischer B, Richter R, Preim B (2002) Virtual 3D Jigsaw puzzles: studying the effect of exploring spatial relations with implicit guidance. In: Proceedings of Mensch & Computer, pp 363–372

    Google Scholar 

  • Ritter F, Preim B, Deussen O, Strothotte T (2000) Using a 3D puzzle as a metaphor for learning spatial relations. In: Proceedings of graphics interface, pp 171–178

    Google Scholar 

  • Ruiz JG, Cook DA, Levinson AJ (2009) Computer animations in medical education: a critical literature review. Med Educ 43(9):838–46

    Article  Google Scholar 

  • Saalfeld P, Glaßer S, Beuing O, Preim B (2017) The faust framework: free-form annotations on unfolding vascular structures for treatment planning. Comput Graph 65:12–21

    Article  Google Scholar 

  • Saalfeld P, Stojnic A, Preim B, Oeltze-Jafra S. (2016) Semi-immersive 3D sketching of vascular structures for medical education. In: Proceedings of VCBM, pp 123–132

    Google Scholar 

  • Sakellariou S, Ward BM, Charissis V, Chanock D, Anderson P (2009) Design and implementation of augmented reality environment for complex anatomy training: inguinal canal case study. In: Proceedings of international conference on virtual and mixed reality, pp 605–614

    Google Scholar 

  • Scheuering M, Schenk A, Schneider A, Preim B, Greiner G (2003) Intraoperative augmented reality for minimally invasive liver interventions. In: Proceedings of medical imaging

    Google Scholar 

  • Schmeier A (2017) Student and teacher meet in a shared virtual environment: a VR one-on-one tutoring system to support anatomy education. Master’s thesis, Department of Computer Science, University of Magdeburg

    Google Scholar 

  • Seo JH, Smith BM, Cook M, Malone E, Pine M, Leal S, Bai Z, Suh J (2018) Anatomy builder VR: applying a constructive learning method in the virtual reality canine skeletal system. In: Andre T (ed) Advances in human factors in training, education, and learning sciences. Springer International Publishing, Cham, pp 245–252

    Google Scholar 

  • Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A (2011) Real-time human pose recognition in parts from single depth images. In: Proceedings of IEEE computer vision and pattern recognition (CVPR), pp 1297–1304

    Google Scholar 

  • Sielhorst T, Bichlmeier C, Heining SM, Navab N (2006) Depth perception–a major issue in medical ar: evaluation study by twenty surgeons. In: Proceedings of MICCAI, pp 364–372

    Google Scholar 

  • Spitzer VM, Ackerman MJ, Scherzinger AL, Whitlock D (1996) The visible human male: a technical report. J Am Med Inform Assoc 3(2):118–30

    Article  Google Scholar 

  • Sweller J (2004) Instructional design consequences of an analogy between evolution by natural selection and human cognitive architecture. Instr Sci 32(1–2):9–31

    Article  Google Scholar 

  • Thomas RG, William John N, Delieu JM (2010) Augmented reality for anatomical education. J Vis Commun Med 33(1):6–15

    Article  Google Scholar 

  • Tourancheau S, Sjöström M, Olsson R, Persson A, Ericson T, Rudling J, Norén B (2012) Subjective evaluation of user experience in interactive 3D visualization in a medical context. In: Proceedings of medical imaging

    Google Scholar 

  • Van Merriënboer JJ, Clark RE, De Croock MB (2002) Blueprints for complex learning: the 4C/ID-model. Educ Tech Res Dev 50(2):39–61

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Virtual Anatomy team (Wolfgang D’Hanis, Lars Dornheim, Kerstin Kellermann, Alexandra Kohrmann, Philipp Pohlenz, Thomas Roskoden and Hermann-Josef Rothkötter) for many discussions about anatomy teaching, Nigel John, Benjamin Köhler, Maria Luz, Timo Ropinski, Florian Heinrich, Vuthea Chheang, and Noeska Smit for fruitful discussions on the chapter as well as Steven Birr, Konrad Mühler, Daniel Pohlandt, Felix Ritter, Aylin Albrecht and Anna Schmeier for their implementations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Preim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Preim, B., Saalfeld, P., Hansen, C. (2021). Virtual and Augmented Reality for Educational Anatomy. In: Uhl, JF., Jorge, J., Lopes, D.S., Campos, P.F. (eds) Digital Anatomy . Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-030-61905-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61905-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61904-6

  • Online ISBN: 978-3-030-61905-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics