Skip to main content

Advertisement

Log in

Three-Dimensional Display Technologies for Anatomical Education: A Literature Review

  • Published:
Journal of Science Education and Technology Aims and scope Submit manuscript

Abstract

Anatomy is a foundational component of biological sciences and medical education and is important for a variety of clinical tasks. To augment current curriculum and improve students’ spatial knowledge of anatomy, many educators, anatomists, and researchers use three-dimensional (3D) visualization technologies. This article reviews 3D display technologies and their associated assessments for anatomical education. In the first segment, the review covers the general function of displays employing 3D techniques. The second segment of the review highlights the use and assessment of 3D technology in anatomical education, focusing on factors such as knowledge gains, student perceptions, and cognitive load. The review found 32 articles on the use of 3D displays in anatomical education and another 38 articles on the assessment of 3D displays. The review shows that the majority (74 %) of studies indicate that the use of 3D is beneficial for many tasks in anatomical education, and that student perceptions are positive toward the technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abildgaard A, Witwit AK, Karlsen JS, Jacobsen EA, Tennøe B, Ringstad G, Due-Tønnessen P (2010) An autostereoscopic 3D display can improve visualization of 3D models from intracranial MR angiography. Int J Comput Assist Radiol Surg 5(5):549–554. doi:10.1007/s11548-010-0509-5

    Article  Google Scholar 

  • Al-Khalili SM, Coppoc GL (2014) 2D and 3D stereoscopic videos used as pre-anatomy lab tools improve students’ examination performance in a veterinary gross anatomy course. J Vet Med Educ 41(1):68–76. doi:10.3138/jvme.0613-082R

    Article  Google Scholar 

  • Balogh A, Preul MC, Schornak M, Hickman M, Spetzler RF (2004) Intraoperative stereoscopic QuickTime Virtual Reality. J Neurosurg 100(4):591–596. doi:10.3171/jns.2004.100.4.0591

    Article  Google Scholar 

  • Battulga B, Konishi T, Tamura Y, Moriguchi H (2012) The effectiveness of an interactive 3-dimensional computer graphics model for medical education. Interact J Med Res 1(2):e2. doi:10.2196/ijmr.2172

    Article  Google Scholar 

  • Beermann J, Tetzlaff R, Bruckner T, Schoebinger M, Muller-Stich BP, Gutt CN, Fischer L (2010) Three-dimensional visualisation improves understanding of surgical liver anatomy. Med Educ 44(9):936–940. doi:10.1111/j.1365-2923.2010.03742.x

    Article  Google Scholar 

  • Berryman DR (2012) Augmented reality: a review. Med Ref Serv Q 31(2):212–218. doi:10.1080/02763869.2012.670604

    Article  Google Scholar 

  • Blum T, Kleeberger V, Bichlmeier C, Navab N (2012) Mirracle: an augmented reality magic mirror system for anatomy education. Virtual reality short papers and posters (VRW), 2012 IEEE, pp 115–116. doi:10.1109/VR.2012.6180909

  • Brenton H, Hernandez J, Bello F, Strutton P, Purkayastha S, Firth T, Darzi A (2007) Using multimedia and Web3D to enhance anatomy teaching. Comput Educ 49(1):32–53. doi:10.1016/j.compedu.2005.06.005

    Article  Google Scholar 

  • Brown PM, Hamilton NM, Denison AR (2012) A novel 3D stereoscopic anatomy tutorial. Clin Teach 9(1):50–53. doi:10.1111/j.1743-498X.2011.00488.x

    Article  Google Scholar 

  • Chien C-H, Chen C-H, Jeng T-S (2010) An interactive augmented reality system for learning anatomy structure. Paper presented at the proceedings of the international multiconference of engineers and computer scientists

  • Christopher LA, William A, Cohen-Gadol AA (2013) Future directions in 3-dimensional imaging and neurosurgery: stereoscopy and autostereoscopy. Neurosurgery 72:A131–A138. doi:10.1227/NEU.0b013e318270d9c0

    Article  Google Scholar 

  • Chu JCH, Gong X, Cai Y, Kirk MC, Zusag TW, Shott S, Abrams RA (2009) Application of holographic display in radiotherapy treatment planning II: a multi-institutional study. J Appl Clin Med Phys 10(3):115–124. doi:10.1120/jacmp.v10i3.2902

    Article  Google Scholar 

  • Codd AM, Choudhury B (2011) Virtual Reality Anatomy: is it comparable with traditional methods in the teaching of human forearm musculoskeletal anatomy? Anat Sci Educ 4(3):119–125. doi:10.1002/ase.214

    Article  Google Scholar 

  • Copolo CE, Hounshell PB (1995) Using three-dimensional models to teach molecular structures in high school chemistry. J Sci Educ Technol 4(4):295–305. doi:10.1007/bf02211261

    Article  Google Scholar 

  • Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q 13(3):319–340. doi:10.2307/249008

    Article  Google Scholar 

  • Davis FD, Bagozzi RP, Warshaw PR (1989) User acceptance of computer technology: a comparison of two theoretical models. Manage Sci 35(8):982–1003. doi:10.1287/mnsc.35.8.982

    Article  Google Scholar 

  • Davis L, Hamza-Lup FG, Daly J, Ha Y, Frolich S, Meyer C, Rolland JP (2002) Application of augmented reality to visualizing anatomical airways. Paper presented at the head-mounted displays VII

  • Dodgson NA (2005) Autostereoscopic 3D displays. Computer. doi:10.1109/MC.2005.252

    Google Scholar 

  • Engelhart MD (1932) Physical and biological sciences. Rev Educ Res 2(1):21–28. doi:10.3102/00346543002001021

    Article  Google Scholar 

  • Estevez ME, Lindgren KA, Bergethon PR (2010) A novel three-dimensional tool for teaching human neuroanatomy. Anat Sci Educ 3(6):309–317. doi:10.1002/ase.186

    Article  Google Scholar 

  • Favalora GE (2005) Volumetric 3D displays and application infrastructure. Computer. doi:10.1109/mc.2005.276

    Google Scholar 

  • Ferrer-Torregrosa J, Torralba J, Jimenez MA, García S, Barcia JM (2014) ARBOOK: development and assessment of a tool based on augmented reality for anatomy. J Sci Educ Technol 24(1):119–124. doi:10.1007/s10956-014-9526-4

    Article  Google Scholar 

  • Fitzgerald JEF, White MJ, Tang SW, Maxwell-Armstrong CA, James DK (2008) Are we teaching sufficient anatomy at medical school? The opinions of newly qualified doctors. Clin Anat 21(7):718–724. doi:10.1002/ca.20662

    Article  Google Scholar 

  • Foo JL, Martinez-Escobar M, Juhnke B, Cassidy K, Hisley K, Lobe T, Winer E (2013) Evaluating mental workload of two-dimensional and three-dimensional visualization for anatomical structure localization. J Laparoendosc Adv Surg Tech 23(1):65–70. doi:10.1089/lap.2012.0150

    Article  Google Scholar 

  • Frasca D, Malezieux R, Mertens P, Neidhardt JP, Voiglio EJ (2000) Review and evaluation of anatomy sites on the Internet (updated 1999). Surg Radiol Anat 22(2):107–110. doi:10.1007/s00276-000-0107-2

    Article  Google Scholar 

  • Friedl R, Preisack MB, Klas W, Rose T, Stracke S, Quast KJ, Godje O (2002) Virtual reality and 3D visualizations in heart surgery education. Heart Surg Forum 5(3):E17–E21

    Google Scholar 

  • Gallo L, Ciampi M (2009) Wii Remote-enhanced hand-computer interaction for 3D medical image analysis. Proc Curr Trends Inf Technol. doi:10.1109/CTIT.2009.5423137

    Google Scholar 

  • Gallo L, De Pietro G, Coronato A, Marra I (2008) Toward a natural interface to virtual medical imaging environments. Proc Work Conf Adv Vis Interfaces. doi:10.1145/1385569.1385651

    Google Scholar 

  • Garg A, Norman GR, Spero L, Maheshwari P (1999a) Do virtual computer models hinder anatomy learning? Acad Med 74(10):S87–S89

    Article  Google Scholar 

  • Garg A, Norman G, Spero L, Taylor I (1999b) Learning anatomy: do new computer models improve spatial understanding? Med Teach 21(5):519–522. doi:10.1080/01421599979239

    Article  Google Scholar 

  • Garg AX, Norman G, Sperotable L (2001) How medical students learn spatial anatomy. Lancet 357(9253):363–364. doi:10.1016/S0140-6736(00)03649-7

    Article  Google Scholar 

  • Gately M, Zhai Y, Yeary M, Petrich E, Sawalha L (2011) A three-dimensional swept volume display based on LED arrays. J Disp Technol 7(9):503–514. doi:10.1109/JDT.2011.2157455

    Article  Google Scholar 

  • Geng J (2013) Three-dimensional display technologies. Adv Opt Photonics 5(4):456–535. doi:10.1364/AOP.5.000456

    Article  Google Scholar 

  • Gorman PJ, Meier AH, Rawn C, Krummel TM (2000) The future of medical education is no longer blood and guts, it is bits and bytes. Am J Surg 180(5):353–356. doi:10.1016/s0002-9610(00)00514-6

    Article  Google Scholar 

  • Hackett M (2013) Medical holography for basic anatomy training. Paper presented at the interservice/industry training, simulation & education conference

  • Hackett M, Fefferman K (2014) Comparative analysis of holographic display and three-dimensional television. Paper presented at the interservice/industry training, simulation & education conference

  • Hall GE, Loucks SF, Rutherford WL, Newlove BW (1975) Levels of use of the innovation: a framework for analyzing innovation adoption. J Teach Educ 26(1):52–56. doi:10.1177/002248717502600114

    Article  Google Scholar 

  • Halle M (2005) Autostereoscopic displays and computer graphics. Paper presented at the ACM SIGGRAPH 2005

  • Hariri S, Rawn C, Srivastava S, Youngblood P, Ladd A (2004) Evaluation of a surgical simulator for learning clinical anatomy. Med Educ 38(8):896–902. doi:10.1111/j.1365-2929.2004.01897.x

    Article  Google Scholar 

  • Hilbelink AJ (2009) A measure of the effectiveness of incorporating 3D human anatomy into an online undergraduate laboratory. Br J Educ Technol 40(4):664–672. doi:10.1111/j.1467-8535.2008.00886.x

    Article  Google Scholar 

  • Hoffman HM, Murray M, Irwin AE, McCracken T (1996) Developing a virtual reality-multimedia system for anatomy training. Stud Health Technol Inform. doi:10.3233/978-1-60750-873-1-204

    Google Scholar 

  • Hong J, Kim Y, Choi H-J, Hahn J, Park J-H, Kim H, Lee B (2011) Three-dimensional display technologies of recent interest: principles, status, and issues [Invited]. Appl Opt 50(34):H87–H115. doi:10.1364/AO.50.000H87

    Article  Google Scholar 

  • Hoyek N, Collet C, Di Rienzo F, De Almeida M, Guillot A (2014) Effectiveness of three-dimensional digital animation in teaching human anatomy in an authentic classroom context. Anat Sci Educ 7(6):430–437. doi:10.1002/ase.1446

    Article  Google Scholar 

  • Hu A, Wilson T, Ladak H, Haase P, Doyle P, Fung K (2010) Evaluation of a three-dimensional educational computer model of the larynx: voicing a new direction. J Otolaryngol Head Neck Surgery 39(3):315–322. doi:10.2310/7070.2010.090074

    Google Scholar 

  • Huang H-M, Liaw S-S, Lai C-M (2013) Exploring learner acceptance of the use of virtual reality in medical education: a case study of desktop and projection-based display systems. Interact Learn Environ. doi:10.1080/10494820.2013.817436

    Google Scholar 

  • Ilgner JFR, Kawai T, ShibataT, Yamazoe T, Westhofen M (2006) Evaluation of stereoscopic medical video content on an autostereoscopic display for undergraduate medical education. Paper presented at the proceedings SPIE stereoscopic displays and virtual reality systems XIII

  • Inoue T, Ohzu H (1997) Accommodative responses to stereoscopic three-dimensional display. Appl Opt 36(19):4509–4515. doi:10.1364/AO.36.004509

    Article  Google Scholar 

  • Jaffar AA (2012) YouTube: an emerging tool in anatomy education. Anat Sci Educ 5(3):158–164. doi:10.1002/ase.1268

    Article  Google Scholar 

  • Jones A, McDowall I, Yamada H, Bolas M, Debevec P (2007) Rendering for an interactive 360 light field display. ACM Trans Graph 26(3):40. doi:10.1145/1276377.1276427

    Article  Google Scholar 

  • Juanes JA, Hernández D, Ruisoto P, García E, Villarrubia G, Prats A (2014) Augmented reality techniques, using mobile devices, for learning human anatomy. Paper presented at the proceedings of the 2nd international conference on technological ecosystems for enhancing multiculturality

  • Jurgaitis J, Paskonis M, Pivoriunas J, Martinaityte I, Juska A, Jurgaitiene R, Schemmer P (2008) The comparison of 2-dimensional with 3-dimensional hepatic visualization in the clinical hepatic anatomy education. Medicina (Kaunas) 44(6):428–438

    Google Scholar 

  • Kamphuis C, Barsom E, Schijven M, Christoph N (2014) Augmented reality in medical education? Perspect Med Educ 3(4):300–311. doi:10.1007/s40037-013-0107-7

    Article  Google Scholar 

  • KancherlaAR, Rolland JP, Wright DL, Burdea G (1995) A novel virtual reality tool for teaching dynamic 3D anatomy. Paper presented at the computer vision, virtual reality and robotics in medicine

  • Keedy AW, Durack JC, Sandhu P, Chen EM, O’Sullivan PS, Breiman RS (2011) Comparison of traditional methods with 3D computer models in the instruction of hepatobiliary anatomy. Anat Sci Educ 4(2):84–91. doi:10.1002/ase.212

    Article  Google Scholar 

  • Khalil MK, Paas F, Johnson TE, Payer AF (2005) Interactive and dynamic visualizations in teaching and learning of anatomy: a cognitive load perspective. Anat Record B New Anat 286(1):8–14. doi:10.1002/ar.b.20077

    Article  Google Scholar 

  • Khan J (2014) BIOMEDICAL IMAGING: 3D digital holograms visualize biomedical applications. Retrieved from laser focus world website: http://www.laserfocusworld.com/index.html

  • Khan J, Can C, Greenaway A, Underwood I (2013) A real-space interactive holographic display based on a large-aperture HOE. Paper presented at the SPIE OPTO

  • Klug MA, Holzbach ME (2003) US patent no. 6,665,100. U. S. P. a. T. Office

  • Klug M, Burnett T, Fancello A, Heath A, Gardner K, O’Connell S, Newswanger C (2013) 32.4: A scalable, collaborative, interactive light‐field display system. Paper presented at the SID symposium

  • Kockro RA, Hwang PY (2009) Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery. Neurosurgery 64(5 Suppl 2), 216–229; discussion 229–230. doi:10.1227/01.neu.0000343744.46080.91

  • Kockro RA, Amaxopoulou C, Killeen T, Wagner W, Reisch R, Schwandt E, Stadie AT (2015) Stereoscopic neuroanatomy lectures using a three-dimensional virtual reality environment. Ann Anatomy Anat Anz 201:91–98. doi:10.1016/j.aanat.2015.05.006

    Article  Google Scholar 

  • Kooi FL, Toet A (2004) Visual comfort of binocular and 3D displays. Displays 25(2–3):99–108. doi:10.1016/j.displa.2004.07.004

    Article  Google Scholar 

  • Lee SW-Y, Tsai C-C (2012) Technology-supported learning in secondary and undergraduate biological education: observations from literature review. J Sci Educ Technol 22(2):226–233. doi:10.1007/s10956-012-9388-6

    Article  Google Scholar 

  • Leung H, Lee H, Mark K, Lui KM (2012) Unlocking the secret of 3D content for education. Paper presented at the teaching, assessment and learning for engineering (TALE) 2012

  • Lewin S (2014) Holographic displays coming to smartphones [News]. Spectrum IEEE 51(8):13–14. doi:10.1109/MSPEC.2014.6866424

    Article  Google Scholar 

  • Lewis T, Burnett B, Tunstall R, Abrahams P (2014) Complementing anatomy education using three-dimensional anatomy mobile software applications on tablet computers. Clin Anat 27(3):313–320. doi:10.1002/ca.22256

    Article  Google Scholar 

  • Li Q, Ran X, Zhang S, Tan L, Qiu M (2014) A digital interactive human brain atlas based on chinese visible human datasets for anatomy teaching. J Craniofac Surg 25(1):303–307. doi:10.1097/SCS.0b013e3182a4c54a

    Article  Google Scholar 

  • Liu K, Fang B, Wu Y, Li Y, Jin J, Tan L, Zhang S (2013) Anatomical education and surgical simulation based on the Chinese Visible Human: a three-dimensional virtual model of the larynx region. Anat Sci Int 88(4):254–258. doi:10.1007/s12565-013-0186-x

    Article  Google Scholar 

  • Luursema J-M, Verwey WB, Kommers PAM, Geelkerken RH, Vos HJ (2006) Optimizing conditions for computer-assisted anatomical learning. Interact Comput 18(5):1123–1138. doi:10.1016/j.intcom.2006.01.005

    Article  Google Scholar 

  • Luursema J-M, Verwey WB, Kommers PAM, Annema J-H (2008) The role of stereopsis in virtual anatomical learning. Interact Comput 20(4–5):455–460. doi:10.1016/j.intcom.2008.04.003

    Article  Google Scholar 

  • Mayer RE (2009) Multimedia learning. Cambridge University Press

  • McCracken H (2015) Oculus rift Vs. HoloLens: will the digital-reality revolution be virtual or augmented? http://www.fastcompany.com/3048633/facebook-vs-microsoft-will-the-digital-reality-revolution-be-virtual-or-augmented

  • McIntire JP, Havig PR, Geiselman EE (2012) What is 3D good for? A review of human performance on stereoscopic 3D displays. Paper presented at the SPIE defense, security, and sensing

  • Meng M, Fallavollita P, Blum T, Eck U, Sandor C, Weidert S, Navab N (2013) Kinect for interactive AR anatomy learning. Paper presented at the 2013 IEEE international symposium on mixed and augmented reality (ISMAR)

  • Metzler R, Stein D, Tetzlaff R, Bruckner T, Meinzer HP, Buchler MW, Fischer L (2012) Teaching on three-dimensional presentation does not improve the understanding of according CT images: a randomized controlled study. Teach Learn Med 24(2):140–148. doi:10.1080/10401334.2012.664963

    Article  Google Scholar 

  • Muller-Stich BP, Lob N, Wald D, Bruckner T, Meinzer HP, Kadmon M, Fischer L (2013) Regular three-dimensional presentations improve in the identification of surgical liver anatomy—a randomized study. BMC Med Educ 13:131. doi:10.1186/1472-6920-13-131

    Article  Google Scholar 

  • Nicholson DT, Chalk C, Funnell WRJ, Daniel SJ (2006) Can virtual reality improve anatomy education? A randomised controlled study of a computer-generated three-dimensional anatomical ear model. Med Educ 40(11):1081–1087. doi:10.1111/j.1365-2929.2006.02611.x

    Article  Google Scholar 

  • Nieder GL, Scott JN, Anderson MD (2000) Using QuickTime virtual reality objects in computer-assisted instruction of gross anatomy: yorick—the VR Skull. Clin Anat 13(4):287–293. doi:10.1002/1098-2353(2000)13:4<287:AID-CA9>3.0.CO;2-L

    Article  Google Scholar 

  • Nieder GL, Nagy F, Pearson JC, Wagner LA (2002) QuickTime VR anatomical resource: a library of virtual anatomical objects for gross anatomy educators. Paper presented at the 6th annual meeting of the international association of medical science educators

  • Nobuoka D, Fuji T, Yoshida K, Takagi K, Kuise T, Utsumi M, Ohtsuka A (2014) Surgical education using a multi-viewpoint and multi-layer three-dimensional atlas of surgical anatomy. J Hepato-Biliary-Pancreat Sci 21(8):556–561. doi:10.1002/jhbp.108

    Article  Google Scholar 

  • Noguera JM, Jimenez JJ, Osuna-Perez MC (2013) Development and evaluation of a 3D mobile application for learning manual therapy in the physiotherapy laboratory. Comput Educ 69:96–108. doi:10.1016/j.compedu.2013.07.007

    Article  Google Scholar 

  • Park JS, Chung MS, Hwang SB, Lee YS, Har D-H, Park HS (2005) Visible Korean human: improved serially sectioned images of the entire body. IEEE Trans Med Imag 24(3):352–360. doi:10.1109/TMI.2004.842454

    Article  Google Scholar 

  • Pastoor S, Wöpking M (1997) 3-D displays: a review of current technologies. Displays 17(2):100–110. doi:10.1016/S0141-9382(96)01040-2

    Article  Google Scholar 

  • Petersson H, Sinkvist D, Wang CL, Smedby O (2009) Web-based interactive 3D visualization as a tool for improved anatomy learning. Anat Sci Educ 2(2):61–68. doi:10.1002/ase.76

    Article  Google Scholar 

  • Pfautz JD (2000) Depth perception in computer graphics. University of Cambridge, Cambridge

  • Portoni L, Patak A, Noirard P, Grossetie J-C, van Berkel C (2000) Real-time auto-stereoscopic visualization of 3D medical images. Paper presented at the medical imaging 2000

  • Qualter J, Sculli F, Oliker A, Napier Z, Lee S, Garcia J, Triola M (2011) The biodigital human: a web-based 3D platform for medical visualization and education. Stud Health Technol Inf 173:359–361. doi:10.3233/978-1-61499-022-2-359

    Google Scholar 

  • Rasimah CMY, Ahmad A, Zaman HB (2011) Evaluation of user acceptance of mixed reality technology. Aust J Educ Technol 27(8), 1369–1387. http://ajet.org.au

  • Reichelt S, Häussler R, Fütterer G, Leister N, Kato H, Usukura N, Kanbayashi Y (2012) Full-range, complex spatial light modulator for real-time holography. Opt Lett 37(11):1955–1957. doi:10.1364/OL.37.001955

    Article  Google Scholar 

  • Rogers EM, Shoemaker FF (1971) Communication of innovations; a cross-cultural approach. The Free Press, 866 Third avenue, New York, N. Y. 10022

  • Rolland J, Wright D, Kancherla A (1997) Towards a novel augmented-reality tool to visualize dynamic 3-D anatomy. Stud Health Technol Inf. doi:10.3233/978-1-60750-883-0-337

    Google Scholar 

  • Rolland J, Davis L, Hamza-Lup F, Daly J, Ha Y, Martin G, Imielinska C (2003) Development of a training tool for endotracheal intubation: distributed augmented reality. Stud Health Technol Inf. doi:10.7916/D8CJ8C10

    Google Scholar 

  • Ruisoto Palomera P, Juanes Méndez JA, Prats Galino A (2014) Enhancing neuroanatomy education using computer-based instructional material. Comput Hum Behav 31:446–452. doi:10.1016/j.chb.2013.03.005

    Article  Google Scholar 

  • Ruisoto P, Juanes JA, Contador I, Mayoral P, Prats-Galino A (2012) Experimental evidence for improved neuroimaging interpretation using three-dimensional graphic models. Anat Sci Edu 5(3):132–137. doi:10.1002/ase.1275

    Article  Google Scholar 

  • Satava RM, Jones SB (1998) Current and future applications of virtual reality for medicine. Proc IEEE 86(3):484–489. doi:10.1109/5.662873

    Article  Google Scholar 

  • Schiemann T, Freudenberg J, Pflesser B, Pommert A, Priesmeyer K, Riemer M, Höhne KH (2000) Exploring the visible human using the VOXEL-MAN framework. Comput Med Imag Graph 24(3):127–132. doi:10.1016/S0895-6111(00)00013-6

    Article  Google Scholar 

  • Sergovich A, Johnson M, Wilson TD (2010) Explorable three-dimensional digital model of the female pelvis, pelvic contents, and perineum for anatomical education. Anat Sci Educ 3(3):127–133. doi:10.1002/ase.135

    Google Scholar 

  • Settapat S, Achalakul T, Ohkura M (2014) Web-based 3D medical image visualization framework for biomedical engineering education. Comput Appl Eng Educ 22(2):216–226. doi:10.1002/cae.20548

    Article  Google Scholar 

  • Sherman WR, Craig AB (2002) Understanding virtual reality: Interface, application, and design. Elsevier, San Francisco, CA

    Google Scholar 

  • Spitzer V, Ackerman MJ, Scherzinger AL, Whitlock D (1996) The visible human male: a technical report. J Am Med Inform Assoc 3(2):118–130. doi:10.1136/jamia.1996.96236280

    Article  Google Scholar 

  • Straub ET (2009) Understanding technology adoption: theory and future directions for informal learning. Rev Educ Res 79(2):625–649. doi:10.3102/0034654308325896

    Article  Google Scholar 

  • Sulaiman R (2014) Visualization cardiac human anatomy using augmented reality mobile application. IJECCE 5(3):497–501

    Google Scholar 

  • Sweller J (1994) Cognitive load theory, learning difficulty, and instructional design. Learn Instr 4(4):295–312. doi:10.1016/0959-4752(94)90003-5

    Article  Google Scholar 

  • Tan S, Hu A, Wilson T, Ladak H, Haase P, Fung K (2012) Role of a computer-generated three-dimensional laryngeal model in anatomy teaching for advanced learners. J Laryngol Otol 126(04):395–401. doi:10.1017/S0022215111002830

    Article  Google Scholar 

  • Teng DD, Pang ZY, Liu LL, Wang BA (2014) Displaying three-dimensional medical objects by holographical technique. Opt Eng 53(11):6. doi:10.1117/1.oe.53.11.112304

    Article  Google Scholar 

  • Thomas KJ, Denham BE, Dinolfo JD (2011) Perceptions among occupational and physical therapy students of a nontraditional methodology for teaching laboratory gross anatomy. Anat Sci Educ 4(2):71–77. doi:10.1002/ase.208

    Article  Google Scholar 

  • Tourancheau S, Sjöström M, Olsson R, Persson A, Ericson T, Rudling J, Norén B (2012). Subjective evaluation of user experience in interactive 3D visualization in a medical context. Paper presented at the medical imaging 2012: image perception, observer performance, and technology assessment

  • Trelease RB (1998) The virtual anatomy practical: a stereoscopic 3D interactive multimedia computer examination program. Clin Anat 11(2):89–94. doi:10.1002/(SICI)1098-2353(1998)11:2<89:AID

    Article  Google Scholar 

  • Van Dam A, Feiner SK (2014) Computer graphics: principles and practice: Pearson education

  • Venkatesh V, Davis FD (2000) A theoretical extension of the technology acceptance model: four longitudinal field studies. Manage Sci 46(2):186–204. doi:10.1287/mnsc.46.2.186.11926

    Article  Google Scholar 

  • Wong W, Tay S (2005) The teaching of Anatomy: the first hundred years (1905–2005). Ann Acad Med Singapore 34:72C–78C

    Google Scholar 

  • Wouters P, Paas F, van Merriënboer JJG (2008) How to optimize learning from animated models: a review of guidelines based on cognitive load. Rev Educ Res 78(3):645–675. doi:10.3102/0034654308320320

    Article  Google Scholar 

  • Yammine K, Violato C (2014) A meta-analysis of the educational effectiveness of three-dimensional visualization technologies in teaching anatomy. Anat Sci Educ. doi:10.1002/ase.1510

    Google Scholar 

  • Yao WC, Regone RM, Huyhn N, Butler EB, Takashima M (2014) Three-dimensional sinus imaging as an adjunct to two-dimensional imaging to accelerate education and improve spatial orientation. Laryngoscope 124(3):596–601. doi:10.1002/lary.24316

    Article  Google Scholar 

  • Yeom S, Choi-Lundberg D, Fluck A, Sale A (2013) User acceptance of a haptic interface for learning anatomy. Paper presented at the international conference on e-learning

  • Yeung JC, Fung K, Wilson TD (2012) Prospective evaluation of a web-based three-dimensional cranial nerve simulation. J Otolaryngol Head Neck Surg 41:426–436. doi:10.2310/7070.2012.00049

    Google Scholar 

  • Zariwny A, Stewart P, Dryer M (2014) Visuo-haptic learning of the inner ear: using the optical glyphs and augmented reality of the InvisibleEar©™. ACM SIGCAS Comput Soc 44(2):5–7. doi:10.1145/2656870.2656871

    Article  Google Scholar 

  • Zhang SX, Heng PA, Liu ZJ (2006) Chinese visible human project. Clin Anat 19(3):204–215. doi:10.1002/ca.20273

    Article  Google Scholar 

  • Zhu E, Hadadgar A, Masiello I, Zary N (2014a) Augmented reality in healthcare education: an integrative. Review. doi:10.7717/peerj.469

    Google Scholar 

  • Zhu H, Wang W, Sun J, Meng Q, Yu J, Qin J, Heng P-A (2014b) An interactive web-based navigation system for learning human anatomy. Adv Technol Embed Multimedia Human Centric Comput. doi:10.1007/978-94-007-7262-5_9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Hackett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hackett, M., Proctor, M. Three-Dimensional Display Technologies for Anatomical Education: A Literature Review. J Sci Educ Technol 25, 641–654 (2016). https://doi.org/10.1007/s10956-016-9619-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10956-016-9619-3

Keywords

Navigation