Skip to main content

Bionanocomposites Derived from Polysaccharides: Green Fabrication and Applications

  • Chapter
  • First Online:
Sustainable Bioconversion of Waste to Value Added Products

Abstract

Go-green is one of the most important issues in the current century. In the field of bionanocomposites, polysaccharides could be proper alternatives for the oil-based materials. Apart from their natural abundance and low costs, polysaccharides are non-toxic, biocompatible, and present extraordinary features. Their biodegradability is of great importance as well. Along with their merits, wide usage of polysaccharides may be restricted because of some shortages. Some disadvantages may come into play when polysaccharides are used alone. Here, the role of some materials at nanodimensions is highlighted. For this reason, a new generation of bionanocomposites derived from polysaccharides has been introduced with the potential to be employed in different sectors from biomedical and healthcare sectors such as wound dressing, tissue engineering, and drug delivery systems to water treatment and so on. In this chapter, the attempt was to discuss the imperative role of polysaccharides as either matrix or nanofiller in the preparation of bionanocomposites. The most important applications of the mentioned bionanocomposites related to their special features are also revealed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasian, M., Hasanzadeh, P., Mahmoodzadeh, F., & Salehi, R. (2020). Novel cationic cellulose-based nanocomposites for targeted delivery of methotrexate to breast cancer cells. Journal of Macromolecular Science A, 57(2), 99–115. https://doi.org/10.1080/10601325.2019.1673174.

    Article  CAS  Google Scholar 

  • Abolghassem, S., Molaei, S., & Javanshir, S. (2019). Preparation of α-chitin-based nanocomposite as an effective biocatalyst for microwave aided domino reaction. Heliyon, 5(7), e02036. https://doi.org/10.1016/j.heliyon.2019.e02036.

    Article  Google Scholar 

  • Alhokbany, N., Ahama, T., Naushad, M., & Alshehri, S. M. (2019). Ag NPs embedded N-doped highly porous carbon derived from chitosan based hydrogel as catalysts for the reduction of 4-nitrophenol. Composites Part B: Engineering, 173, 106950. https://doi.org/10.1016/j.compositesb.2019.106950.

  • Amin, A. M. M., Mohd Sauid, S., & Ku Hamid, K. H. (2015). Polymer-starch blend biodegradable plastics: An overview. Advanced Materials Research, 1113, 93–98. https://doi.org/10.4028/www.scientific.net/AMR.1113.93.2.

    Article  Google Scholar 

  • Arasukumar, B., Prabakaran, G., Gunalan, B., & Moovendhan, M. (2019). Chemical composition, structural features, surface morphology and bioactivities of chitosan derivatives from lobster (Thenus unimaculatus) shells. International Journal of Biological Macromolecules, 135, 1237–1245. https://doi.org/10.1016/j.ijbiomac.2019.06.033.

  • Arora, B., Bhatia, R., & Attri, P. (2018). Bionanocomposites: Green materials for a sustainable future. In: C. M. Hussain, & A. K. Mishra (Eds.) New polymer nanocomposites for environmental remediation (pp. 699–672). Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B978-0-12-811033-1.00027-5.

  • Asgharnasl, S., Eivazzadeh-Keihan, R., Radinekiyan, F., & Maleki, A. (2020). Preparation of a novel magnetic bionanocomposite based on factionalized chitosan by creatine and its application in the synthesis of polyhydroquinoline, 1, 4-dyhdropyridine and 1, 8-dioxo-decahydroacridine derivatives. International Journal of Biological Macromolecules, 144, 29–46. https://doi.org/10.1016/j.ijbiomac.2019.12.059.

  • Badruddoza, A. Z. M., Shawon, Z. B. Z., Tay, W. J. D., Hidajat, K., & Uddin, M. S. (2013). Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydrate Polymers, 91(1), 322–332. https://doi.org/10.1016/j.carbpol.2012.08.030.

    Article  CAS  Google Scholar 

  • Bagal-Kestwal, D. R., Pan, M., & Chiang, B. H. (2019). Processing methods for bionanocomposites. In: P. M. Visakh, O. Bayraktar, & G. Menon (Eds.), Bio monomers for green polymeric composite materials (pp. 25–55). New Jersey, USA:Wiley. https://doi.org/10.1002/9781119301714.ch2.

  • BeMiller, J. N. (2018). Carbohydrate chemistry for food scientists. Cambridge, UK: Elsevier.

    Google Scholar 

  • Beydoun, K., & Klankermayer, J. (2020). Efficient plastic waste recycling to value-added products by integrated biomass processing. Chemsuschem, 13, 1–6. https://doi.org/10.1002/cssc.201902880.

    Article  CAS  Google Scholar 

  • Bonardd, S., Saldías, C., Ramírez, O., Radić, D., Recio, F. J., Urzúa, M., et al. (2019). A novel environmentally friendly method in solid phase for in situ synthesis of chitosan-gold bionanocomposites with catalytic applications. Carbohydrate Polymers, 207, 533–541. https://doi.org/10.1016/j.carbpol.2018.12.009.

    Article  CAS  Google Scholar 

  • Bouttier-Figueroa, D., & Sotelo-Lerma, M. (2019). Fabrication and characterization of an eco-friendly antibacterial nanocomposite of galactomannan/ZnO by in situ chemical co-precipitation method. Composite Interfaces, 26(2), 83–95. https://doi.org/10.1080/09276440.2018.1472457.

    Article  CAS  Google Scholar 

  • Cao, T. L., & Song, K. B. (2019). Active gum karaya/Cloisite Na+ nanocomposite films containing cinnamaldehyde. Food Hydrocolloids, 89, 453–460. https://doi.org/10.1016/j.foodhyd.2018.11.004.

  • Chi, K., Wang, H., & Catchmark, J. M. (2020). Sustainable starch-based barrier coatings for packaging applications. Food Hydrocolloids, 103, 105696. https://doi.org/10.1016/j.foodhyd.2020.105696.

    Article  CAS  Google Scholar 

  • Deng, H., Yu, Z., Chen, S., Fei, L., Sha, Q., Zhou, N., et al. (2020). Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection. Carbohydrate Polymers, 230, 115565. https://doi.org/10.1016/j.carbpol.2019.115565.

    Article  CAS  Google Scholar 

  • Eid, M., Sobhy, R., Zhou, P., Wei, X., Wu, D., & Li, B. (2020). β-cyclodextrin-soy soluble polysaccharide based core-shell bionanocomposites hydrogel for vitamin E swelling controlled delivery. Food Hydrocolloids, 104, 105751. https://doi.org/10.1016/j.foodhyd.2020.105751.

  • Emamifar, A., & Bavaisi, S. (2020). Nanocomposite coating based on sodium alginate and nano-ZnO for extending the storage life of fresh strawberries (Fragaria × ananassa Duch). Journal of Food Measurement and Characterization, 114, 1012–1024. https://doi.org/10.1007/s11694-019-00350-x.

  • Fan, L., Luo, C., Sun, M., Li, X., & Qiu, H. (2013). Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids and Surfaces B, 103, 523–529. https://doi.org/10.1016/j.colsurfb.2012.11.006.

    Article  CAS  Google Scholar 

  • Goel, A., Meher, M. K., Gupta, P., Gulati, K., Pruthi, V., & Poluri, K. M. (2019). Microwave assisted κ-carrageenan capped silver nanocomposites for eradication of bacterial biofilms. Carbohydrate Polymers, 206, 854–862. https://doi.org/10.1016/j.carbpol.2018.11.033.

    Article  CAS  Google Scholar 

  • Govindaraj, D., Rajan, M., Hatamleh, A. A., & Munusamy, M. A. (2018). From waste to high-value product: Jackfruit peel derived pectin/apatite bionanocomposites for bone healing applications. International Journal of Biological Macromolecules, 106, 293–301. http://dx.doi.org/doi:10.1016/j.ijbiomac.2017.08.017.

  • Gowthami, S., & Angayarkanny, S. (2019). Preparation, characterization, types and applications of polysaccharide nanocomposites. In: D. Gnanasekaran (Ed.), Green biopolymers and their nanocomposites (pp. 379–402). Gateway East, Singapore: Springer. https://doi.org/10.1007/978-981-13-8063-1_16.

  • Grishkewich, N., Mohammed, N., Tang, J., & Tam, K. C. (2017). Recent advances in the application of cellulose nanocrystals. Current Opinion in Colloid & Interface Science, 29, 32–45. https://doi.org/10.1016/j.cocis.2017.01.005.

    Article  CAS  Google Scholar 

  • Güldiken, Ç. G., Karaosmanoğlu, O., Sivas, H., & Gerçel, H. F. (2020). ZnO microparticle‐loaded chitosan/poly (vinyl alcohol)/acacia gum nanosphere‐based nanocomposite thin film wound dressings for accelerated wound healing. Journal of Applied Polymer Science, 137(10), 48445. https://doi.org/10.1002/app.48445.

  • Guleria, A., Kumari, G., & Lima, E. C. (2020). Cellulose-g-poly-(acrylamide-co-acrylic acid) polymeric bioadsorbent for the removal of toxic inorganic pollutants from wastewaters. Carbohydrate Polymers, 228, 115396. https://doi.org/10.1016/j.carbpol.2019.115396.

  • Hasan, I., Khan, R. A., Alharbi, W., Alharbi, K. H., Khanjer, M. A., & Alslame, A. (2020). Synthesis, characterization and photo-catalytic activity of guar-gum-g-aliginate@silver bionanocomposite material. RSC Advances, 10(13), 7898–7911. https://doi.org/10.1039/d0ra00163e.

  • Hileuskaya, K., Ladutska, A., Kulikouskaya, V., Kraskouski, A., Novik, G., Kozerozhets, I., Kozlovskiy, A., & Agabekov, V. (2020). ‘Greenʼ approach for obtaining stable pectin-capped silver nanoparticles: Physico-chemical characterization and antibacterial activity Colloids and Surfaces A: Physicochemical and Engineering, 585, 124141. https://doi.org/10.1016/j.colsurfa.2019.124141.

  • Hosseinzadeh, H., & Abdi, K. (2017). Efficient removal of methylene blue using a hybrid organic–inorganic hydrogel nanocomposite adsorbent based on sodium alginate–silicone dioxide. Journal of Inorganic and Organometallic Polymers, 27(6), 1595–1612. https://doi.org/10.1007/s10904-017-0625-6.

  • Hou, X., Xue, Z., Xia, Y., Qin, Y., Zhang, G., Liu, H., & Li, K. (2019). Effect of SiO2 nanoparticle on the physical and chemical properties of eco-friendly agar/sodium alginate nanocomposite film. International Journal of Biological Macromolecules, 125, 1289–1298. https://doi.org/10.1016/j.ijbiomac.2018.09.109.

  • Ibrahim, I. D., Sadiku, E. R., Jamiru, T., Hamam, Y., Alayli, Y., Eze, A. A., & Kupolati, W. K. (2019). Biopolymer composites and bionanocomposites for energy applications. In: D. Gnanasekaran (Ed.,) Green biopolymers and their nanocomposites (pp. 313–341). Gateway East, Singapore: Springer. https://doi.org/10.1007/978-981-13-8063-1_14.

  • Iftekhar, S., Srivastava, V., Wasayh, M. A., Hezarjaribi, M., & Sillanpää, M. (2020). Incorporation of inorganic matrices through different routes to enhance the adsorptive properties of xanthan via adsorption and membrane separation for selective REEs recovery. Chemical Engineering Journal, 388, 124281. https://doi.org/10.1016/j.cej.2020.124281.

  • Ilyas, R., Sapuan, S., Ibrahim, R., Abral, H., Ishak, M., Zainudin, E., Atiqah, A., Atikah, M., Syafri, E., & Asrofi, M. (2020). Thermal, biodegradability and water barrier properties of bio-nanocomposites based on plasticised sugar palm starch and nanofibrillated celluloses from sugar palm fibres. Journal of Biobased Materials and Bioenergy, 14(2), 234–248. https://doi.org/10.1166/jbmb.2020.1951.

  • Javaid, M. A., Khera, R. A., Zia, K. M., Saito, K., Bhatti, I. A., & Asghar, M. (2018). Synthesis and characterization of chitosan modified polyurethane bio-nanocomposites with biomedical potential. International Journal of Biological Macromolecules, 115, 375–384. https://doi.org/10.1016/j.ijbiomac.2018.04.013.

    Article  CAS  Google Scholar 

  • Junior, M. G., Teixeira, F. G., & Tonoli, G. H. D. (2018). Effect of the nano-fibrillation of bamboo pulp on the thermal, structural, mechanical and physical properties of nanocomposites based on starch/poly(vinyl alcohol) blend. Cellulose, 25(3), 1823–1849. https://doi.org/10.1007/s10570-018-1691-9.

  • Kamal, T. (2019). Aminophenols formation from nitrophenols using agar biopolymer hydrogel supported CuO nanoparticles catalyst. Polymer Testing, 77, 105896. https://doi.org/10.1016/j.polymertesting.2019.105896.

    Article  CAS  Google Scholar 

  • Kazimierczak, P., Benko, A., Nocun, M., & Przekora, A. (2019). Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells. International Journal of Nanomedicine, 14, 6615. http://doi.org/10.2147/IJN.S217245.

  • Kloster, G. A., Mosiewicki, M. A., & Marcovich, N. E. (2019). Chitosan/iron oxide nanocomposite films: Effect of the composition and preparation methods on the adsorption of congo red. Carbohydrate Polymers, 221, 186–194. https://doi.org/10.1016/j.carbpol.2019.05.089.

    Article  CAS  Google Scholar 

  • Kodoth, A. K., Ghate, V. M., Lewis, S. A., Prakash, B., & Badalamoole, V. (2019). Pectin-based silver nanocomposite film for transdermal delivery of Donepezil. International Journal of Biological Macromolecules, 134, 269–279. https://doi.org/10.1016/j.ijbiomac.2019.04.191.

    Article  CAS  Google Scholar 

  • Kumar, S., Boro, J. C., Ray, D., Mukherjee, A., & Dutta, J. (2019). Bionanocomposite films of agar incorporated with ZnO nanoparticles as an active packaging material for shelf life extension of green grape. Heliyon, 5(6), e01867. https://doi.org/10.1016/j.heliyon.2019.e01867.

    Article  Google Scholar 

  • Li, L., Bao, R. Y., Gao, T., Liu, Z. Y., Xie, B. H., Yang, M. B., &Yang, W. (2019). Dopamine-induced functionalization of cellulose nanocrystals with polyethylene glycol towards poly(L-lactic acid) bionanocomposites for green packaging. Carbohydrate Polymers, 203, 275–284. https://doi.org/10.1016/j.carbpol.2018.09.057.

  • Li, L., Iqbal, J., Zhu, Y., Wang, F., Zhang, F., Chen, W., Wu, T., & Du, Y. (2020). Chitosan/Al2O3-HA nanocomposite beads for efficient removal of estradiol and chrysoidin from aqueous solution. International Journal of Biological Macromolecules, 145, 686–693. https://doi.org/10.1016/j.ijbiomac.2019.12.223.

  • Liao, J., & Huang, H. (2020). Magnetic sensitive Hericium erinaceus residue chitin/Cu hydrogel nanocomposites for H2 generation by catalyzing NaBH4 hydrolysis. Carbohydrate Polymers, 229, 115426. https://doi.org/10.1016/j.carbpol.2019.115426.

  • Liu, L. Y., Mai, L., & Zeng, E. Y. (2020). Plastic and microplastic pollution: From ocean smog to planetary boundary threats. In: G. Jiang, & X. Li (Eds.), A new paradigm for environmental chemistry and toxicology: From concepts to insights (pp. 229–240). Singapore: Springer. https://doi.org/10.1007/978-981-13-9447-8_14.

  • Lizundia, E., Maceiras, A., Vilas, J., Martins, P., & Lanceros-Mendez, S. (2017). Magnetic cellulose nanocrystal nanocomposites for the development of green functional materials. Carbohydrate Polymers, 175, 425–432. http://dx.doi.org/doi:10.1016/j.carbpol.2017.08.024.

  • Ma, P., Jiang, L., Yu, M., Dong, W., & Chen, M. (2016). Green antibacterial nanocomposites from poly (lactide)/poly(butylene adipate-co-terephthalate)/nanocrystal cellulose–silver nanohybrids. ACS Sustainable Chemistry & Engineering, 4(12), 6417–6426. https://doi.org/10.1021/acssuschemeng.6b01106.

  • Macedo, B. S., de Almeida, T., Cruz, R. D., Netto, A. D., da Silva, L., Berret, J. F., et al. (2020). Effect of pH on the complex coacervation and on the formation of layers of sodium alginate and PDADMAC. Langmuir, 36(10), 2510. https://doi.org/10.1021/acs.langmuir.9b03216.

    Article  CAS  Google Scholar 

  • Mahdavinia, G. R., Karimi, M. H., Soltaniniya, M., & Massoumi, B. (2019). vitro evaluation of sustained ciprofloxacin release from κ-carrageenan-crosslinked chitosan/hydroxyapatite hydrogel nanocomposites. International Journal of Biological Macromolecules, 126, 443–453. https://doi.org/10.1016/j.ijbiomac.2018.12.240.

    Article  CAS  Google Scholar 

  • Makhado, E., Pandey, S., Nomngongo, P. N., & Ramontja, J. (2017). Fast microwave-assisted green synthesis of xanthan gum grafted acrylic acid for enhanced methylene blue dye removal from aqueous solution. Carbohydrate Polymers, 176, 315–326. https://doi.org/10.1016/j.carbpol.2017.08.093.

    Article  CAS  Google Scholar 

  • Maleki, A., Eskandarpour, V., Rahimi, J., & Hamidi, N. (2019). Cellulose matrix embedded copper decorated magnetic bionanocomposite as a green catalyst in the synthesis of dihydropyridines and polyhydroquinolines. Carbohydrate Polymers, 208, 251–260. https://doi.org/10.1016/j.carbpol.2018.12.069.

    Article  CAS  Google Scholar 

  • Mallakpour, S., & Abbasi, M. (2020). Hydroxyapatite mineralization on chitosan-tragacanth gum/silica@ silver nanocomposites and their antibacterial activity evaluation. International Journal of Biological Macromolecules, 151, 909–923. https://doi.org/10.1016/j.ijbiomac.2020.02.167.

  • Mallakpour, S., & Khodadadzadeh, L. (2018). Ultrasonic-assisted fabrication of starch/MWCNT-glucose nanocomposites for drug delivery. Ultrasonics Sonochemistry, 40, 402–409. https://doi.org/10.1016/j.ultsonch.2017.07.033.

    Article  CAS  Google Scholar 

  • Mallakpour, S., & Khodadadzadeh, L. (2020). Applications of layered double hydroxide biopolymer nanocomposites. In: S. Thomas, & S. Daniel (Eds.), Layered double hydroxide polymer nanocomposites (pp. 599–676). Cambridge, UK: Elsevier, Woodhead Publishing, Sawston. https://doi.org/10.1016/B978-0-08-101903-0.00015-X.

  • Mallakpour, S., & Madani, M. (2016). Use of valine amino acid functionalized α-MnO2/chitosan bionanocomposites as potential sorbents for the removal of lead (II) ions from aqueous solution. Industrial & Engineering Chemistry Research, 55(30), 8349–8356. https://doi.org/10.1021/acs.iecr.6b02016.

  • Mallakpour, S., & Nezamzadeh Ezhieh, A. (2017). Preparation and characterization of chitosan-poly(vinyl alcohol)nanocomposite films embedded with functionalized multi-walledcarbon nanotube. Carbohydrate Polymers, 166, 377–386. http://dx.doi.org/10.1016/j.carbpol.2017.02.086.

  • Mallakpour, S., & Rashidimoghadam, S. (2020). Preparation, characterization, and in vitro bioactivity study of glutaraldehyde crosslinked chitosan/poly(vinyl alcohol)/ascorbic acid-MWCNTs bionanocomposites. International Journal of Biological Macromolecules, 144, 389–402. https://doi.org/10.1016/j.ijbiomac.2019.12.073.

  • Mallakpour, S., & Tabesh, F. (2019). Tragacanth gum based hydrogel nanocomposites for the adsorption of methylene blue: Comparison of linear and non-linear forms of different adsorption isotherm and kinetics models. International Journal of Biological Macromolecules, 133, 754–766. https://doi.org/10.1016/j.ijbiomac.2019.04.129.

    Article  CAS  Google Scholar 

  • Mallakpour, S., Behranvand, V., & Mallakpour, F. (2020). Physicochemical inspection and in vitro bioactivity behavior of bio-nanocomposite alginate hydrogels filled by magnesium fluoro-hydroxyapatite. Polymer Bulletin. https://doi.org/10.1007/s00289-020-03111-9.

    Article  Google Scholar 

  • Mazloom-Jalali, A., Shariatinia, Z., Tamai, I. A., Pakzad, S. R., & Malakootikhah, J. (2020). Fabrication of chitosan–polyethylene glycol nanocomposite films containing ZIF-8 nanoparticles for application as wound dressing materials. International Journal of Biological Macromolecules, 153, 421–432. https://doi.org/10.1016/j.ijbiomac.2020.03.033.

  • Mehrabani, M. G., Karimian, R., Rakhshaei, R., Pakdel, F., Eslami, H., Fakhrzadeh, V., et al. (2018). Chitin/silk fibroin/TiO2 bio-nanocomposite as a biocompatible wound dressing bandage with strong antimicrobial activity. International Journal of Biological Macromolecules, 116, 966–976. https://doi.org/10.1016/j.ijbiomac.2018.05.102.

    Article  CAS  Google Scholar 

  • Mousa, M. H., Dong, Y., & Davies, I. J. (2016). Recent advances in bionanocomposites: Preparation, properties, and applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(5), 225–254. http://dx.doi.org/10.1080/00914037.2015.1103240.

  • Nguyen, T. D., Vo, T. T., Nguyen, C. H., Doan, V. D., & Dang, C. H. (2019). Biogenic palladium nanoclusters supported on hybrid nanocomposite 2-hydroxypropyl-β-cyclodextrin/alginate as a recyclable catalyst in aqueous medium. Journal of Molecular Liquids, 276, 927–935. https://doi.org/10.1016/j.molliq.2018.12.138.

  • Palem, R. R., Rao, K. M., & Kang, T. J. (2019). Self-healable and dual-functional guar gum-grafted-polyacrylamidoglycolic acid-based hydrogels with nano-silver for wound dressings. Carbohydrate Polymers, 223, 115074. https://doi.org/10.1016/j.carbpol.2019.115074.

  • Pan, Y., Zhao, X., Li, X., & Cai, P. (2019). Green-based antimicrobial hydrogels prepared from bagasse cellulose as 3D-scaffolds for wound dressing. Polymers, 11(11), 1846. https://doi.org/10.3390/polym11111846.

  • Pooresmaeil, M., & H. Namazi. (2020). Application of polysaccharide-based hydrogels for water treatments. In: Y. Chen (Ed.), Hydrogels based on natural polymers (pp. 411–455). Cambridge, UK: Elsevier. https://doi.org/10.1016/B978-0-12-816421-1.00014-8.

  • Prokhorov, E., España-Sánchez, B., Luna-Bárcenas, G., Padilla-Vaca, F., Cruz-Soto, M., Vázquez-Lepe, M., et al. (2019). Chitosan/copper nanocomposites: Correlation between electrical and antibacterial properties. Colloids and Surfaces B, 180, 186–192. https://doi.org/10.1016/j.colsurfb.2019.04.047.

    Article  CAS  Google Scholar 

  • Rabbi, M. A., Rahman, M. M., Minami, H., Habib, M. R., & Ahmad, H. (2020). Ag impregnated sub-micrometer crystalline jute cellulose particles: Catalytic and antibacterial properties. Carbohydrate Polymers, 233, 115842. https://doi.org/10.1016/j.carbpol.2020.115842.

    Article  CAS  Google Scholar 

  • Rameshthangam, P., Solairaj, D., Arunachalam, G., & Ramasamy, P. (2018). Chitin and Chitinases: Biomedical and environmental applications of chitin and its derivatives. Journal of Enzymes, 1(1), 20. https://doi.org/10.14302/issn.2690-4829.jen-18-2043.

    Article  Google Scholar 

  • Razani, S., & Tehrani, A. D. (2019). Development of new organic-inorganic, hybrid bionanocomposite from cellulose nanowhisker and Mg/Al-CO3-LDH for enhanced dye removal. International Journal of Biological Macromolecules, 133, 892–901. https://doi.org/10.1016/j.ijbiomac.2019.04.149.

  • Rincon, E., Garcia, A., Romero, A. A., Serrano, L., Luque, R., & Balu, A. M. (2019). Mechanochemical preparation of novel polysaccharide-supported Nb2O5 catalysts. Catalysts, 9(1), 38. https://doi.org/10.3390/catal9010038.

  • Sarkar, C., Kumari, P., Anuvrat, K., Sahu, S. K., Chakraborty, J., & Garai, S. (2018). Synthesis and characterization of mechanically strong carboxymethyl cellulose–gelatin–hydroxyapatite nanocomposite for load-bearing orthopedic application. Journal of Materials Science, 53(1), 230–246. https://doi.org/10.1007/s10853-017-1528-1.

  • Sethy, T. R., Pradhan, A. K., & Sahoo, P. K. (2019). Simultaneous studies on kinetics, bio-adsorption behaviour of Chitosan grafted thin film nanohydrogel for removal of hazardous metal ion from water. Environmental Nanotechnology, Monitoring and Management, 12, 100262. https://doi.org/10.1016/j.enmm.2019.100262.

  • Shahnawaz, M., Sangale, M. K., & Ade, A. B. (2019). Plastic waste disposal and reuse of plastic waste. In: Bioremediation technology for plastic waste (pp. 21–30). Singapore: Springer. https://doi.org/10.1007/978-981-13-7492-0_3.

  • Singh, J., Kumar, S., & Dhaliwal, A. (2020). Controlled release of amoxicillin and antioxidant potential of gold nanoparticles-xanthan gum/poly(Acrylic acid) biodegradable nanocomposite. Journal of Drug Delivery Science and Technology, 55, 101384. https://doi.org/10.1016/j.jddst.2019.101384.

  • Sohni, S., Hashim, R., Nidaullah, H., Lamaming, J., & Sulaiman, O. (2019). Chitosan/nano-lignin based composite as a new sorbent for enhanced removal of dye pollution from aqueous solutions. International Journal of Biological Macromolecules, 132, 1304–1317. https://doi.org/10.1016/j.ijbiomac.2019.03.151.

    Article  CAS  Google Scholar 

  • Su, T., Wu, L., Pan, X., Zhang, C., Shi, M., Gao, R., et al. (2019). Pullulan-derived nanocomposite hydrogels for wastewater remediation: Synthesis and characterization. Journal of Colloid and Interface Science, 542, 253–262. https://doi.org/10.1016/j.jcis.2019.02.025.

    Article  CAS  Google Scholar 

  • Sun, X., Liu, C., Omer, A., Lu, W., Zhang, S., Jiang, X., Wu, H., Yu, D., & Ouyang, X. K. (2019). pH-sensitive ZnO/carboxymethyl cellulose/Chitosan bio-nanocomposite beads for colon-specific release of 5-fluorouracil. International Journal of Biological Macromolecules, 128, 468–479. https://doi.org/10.1016/j.ijbiomac.2019.01.140.

  • Tedeschi, G., Guzman-Puyol, S., Ceseracciu, L., Paul, U.C., Picone, P., Di Carlo, M., Athanassiou, A., & Heredia-Guerrero, J. A. (2020). Multifunctional bioplastics inspired by wood composition: Effect of hydrolyzed lignin addition to xylan–cellulose matrices Biomacromolecules, 21(2), 910–920. https://doi.org/10.1021/acs.biomac.9b01569.

  • Turan, D., Gunes, G., & Kilic, A. (2018). Perspectives of bio-nanocomposites for food packaging applications. In: M. Jawaid, & S. K. Swain (Eds.), Bionanocomposites for packaging applications (pp. 1–32). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-67319-6_1.

  • Veisi, H., Ozturk, T., Karmakar, B., Tamoradi, T., & Hemmati, S. (2020). In situ decorated Pd NPs on chitosan-encapsulated Fe3O4/SiO2-NH2 as magnetic catalyst in Suzuki-Miyaura coupling and 4-nitrophenol reduction. Carbohydrate Polymers, 235,115966. https://doi.org/10.1016/j.carbpol.2020.115966.

  • Visakh, P. (2019). Biomonomers for green polymers. In: P. M. Visakh, O. Bayraktar, M. Gopalakrishnan (Eds.), Bio monomers for green polymeric composite materials (pp. 1–24). New Jersey, USA: Wiley. https://doi.org/10.1002/9781119301714.ch1.

  • Xu, H., Li, J., Yang, X., Li, J., & Cai, J. (2019). A novel approach of curcumin loaded Chitosan/Dextran nanocomposite for the management of complicated abdominal wound dehiscence. Journal of Cluster Science . https://doi.org/10.1007/s10876-019-01689-3.

    Article  Google Scholar 

  • Yadav, M., Liu, Y. K., & Chiu, F. C. (2019). Fabrication of cellulose nanocrystal/silver/alginate bionanocomposite films with enhanced mechanical and barrier properties for food packaging application. Nanomaterials, 9(11): 1523. https://doi.org/10.3390/nano9111523.

  • Yadav, M., Behera, K., Chang, Y. H., & Chiu, F. C. (2020). Cellulose nanocrystal reinforced chitosan based UV barrier composite films for sustainable packaging. Polymers, 12(1), 202. https://doi.org/10.3390/polym12010202.

    Article  CAS  Google Scholar 

  • Yang, L., Chen, C., Hu, Y., Wei, F., Cui, J., Zhao, Y., Xu, X., Chen, X., & Sun, D. (2020). Three-dimensional bacterial cellulose/polydopamine/TiO2 nanocomposite membrane with enhanced adsorption and photocatalytic degradation for dyes under ultraviolet-visible irradiation. Journal of Colloid and Interface Science, 562, 21–28. https://doi.org/10.1016/j.jcis.2019.12.013.

  • Yu, Y., Zhu, X., Wang, L., Wu, F., Liu, S., Chang, C., & Luo, X. (2020). A simple strategy to design 3-layered Au-TiO2 dual nanoparticles immobilized cellulose membranes with enhanced photocatalytic activity. Carbohydrate Polymers, 231, 115694. https://doi.org/10.1016/j.carbpol.2019.115694.

  • Zhao, K., Wang, W., Teng, A., Zhang, K., Ma, Y., Duan, S., et al. (2020). Using cellulose nanofibers to reinforce polysaccharide films: Blending vs layer-by-layer casting. Carbohydrate Polymers, 227, 115264. https://doi.org/10.1016/j.carbpol.2019.115264.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Research Affairs Division Isfahan University of Technology (IUT) Isfahan, I. R. Iran, Iran National Science Foundation (project number: 98015191), and National Elite Foundation for the financial support. The authors also wish to acknowledge Dr. F. Tabesh and Ms. E. Azadi for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mallakpour, S., Naghdi, M. (2021). Bionanocomposites Derived from Polysaccharides: Green Fabrication and Applications. In: Inamuddin, Khan, A. (eds) Sustainable Bioconversion of Waste to Value Added Products. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-61837-7_12

Download citation

Publish with us

Policies and ethics