Skip to main content
Log in

Physicochemical inspection and in vitro bioactivity behavior of bio-nanocomposite alginate hydrogels filled by magnesium fluoro-hydroxyapatite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effect of magnesium fluoridated hydroxyapatite nanoparticles (Mg-FHA NPs) as ceramic species on the morphology, thermal and in vitro bioactivity properties of sodium alginate (SA) matrix was investigated. Preparation of cross-linked SA/FHA bio-nanocomposites (bio-NC)s was carried out under ultrasonic irradiations as fast and green conditions followed by cross-linking with CaCl2. The sonication influence on the dispersion of Mg-FHA in the alginate was studied thoroughly. Morphology images showed that the size of Mg-FHA NPs in the matrix reduced, considerably and the mean diameter of particles was estimated to be about 4 nm. The thermal stability of the alginate did not show significant changes by loading of 2, 6, and 10 wt% of Mg-FHA NPs. The bio-NCs exhibited the good ability of the formation of apatite in simulated body fluid. Mg-FHA growth on the surface of the samples was proved by a noteworthy increase in the phosphate absorption bands in FT-IR spectra, which shows the potential application of the obtained bio-NCs in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shimpi NG (2017) Biodegradable and biocompatible polymer composites processing, properties and applications. Elsevier, Sawston, United Kingdom. https://doi.org/10.1016/C2015-0-05524-1

    Book  Google Scholar 

  2. Gokila S, Gomathi T, Sudha PN, Anil S (2017) Removal of the heavy metal ion chromiuim(VI) using Chitosan and Alginate nanocomposites. Int J Biol Macromol 104:1459–1468. https://doi.org/10.1039/C4RA12036A

    Article  CAS  PubMed  Google Scholar 

  3. Li J, He J, Huang Y (2017) Role of alginate in antibacterial finishing of textiles. Int J Biol Macromol 94:466–473. https://doi.org/10.1016/j.ijbiomac.2016.10.054

    Article  CAS  PubMed  Google Scholar 

  4. Gady O, Poirson M, Vincent T, Sonnier R, Guibal E (2016) Elaboration of light composite materials based on alginate and algal biomass for flame retardancy: preliminary tests. J Mater Sci 51:10035–10047. https://doi.org/10.1007/s10853-016-0230-z

    Article  CAS  Google Scholar 

  5. Baukum J, Pranjan J, Kaolaor A, Chuysinuan P, Suwantong O, Supaphol P (2019) The potential use of cross–linked alginate/gelatin hydrogels containing silver nanoparticles for wound dressing applications. Polym Bull. https://doi.org/10.1007/s00289-019-02873-1

    Article  Google Scholar 

  6. Mallakpour S, Khani M, Mallakpour F, Fathi M (2017) Polyethylene-based nanocomposite: structure and properties of poly(vinyl alcohol)/organofunctionalized Mg-doped fluorapatite hybrid. Int J Polym Anal Charact 22:237–246. https://doi.org/10.1080/1023666X.2017.1282144

    Article  CAS  Google Scholar 

  7. Mallakpour S, Khani M, Mallakpour F, Fathi M (2016) Production of polyvinylpyrrolidone/chiral diacid modified nanocrystalline Mg-substituted fluorapatite nanocomposites: morphological and thermal characterization. J Appl Polym Sci 133:1–10. https://doi.org/10.1002/APP.44254

    Article  Google Scholar 

  8. Thirumalai J (2018) Hydroxyapatite: advances in composite nanomaterials, biomedical applications and its technological facets. IntechOpen, London. https://doi.org/10.5772/intechopen.68820

    Book  Google Scholar 

  9. Hu S, Jia F, Marinescu C, Cimpoesu F, Tao Y, Stroppa A, Ren W (2017) Ferroelectric polarization of hydroxyapatite from density functional theory. RSC Adv 7:21375–21379. https://doi.org/10.1039/c7ra01900a

    Article  CAS  Google Scholar 

  10. Fereshteh Z, Mallakpour F, Fathi M, Mallakpour S (2015) Surface modification of Mg-doped fluoridated hydroxyapatite nanoparticles using bioactive amino acids as the coupling agent for biomedical applications. Ceram Int 41:10079–10086. https://doi.org/10.1016/j.ceramint.2015.04.101

    Article  CAS  Google Scholar 

  11. Lijuan X, Liuyun J, Chengdong X, Lixin J (2014) Effect of different synthesis conditions on the microstructure, crystallinity and solubility of Mg-substituted hydroxyapatite nanopowder. Adv Powder Technol 25:1142–1146. https://doi.org/10.1016/j.apt.2014.02.019

    Article  CAS  Google Scholar 

  12. Aslanov T, Uzunoğlu D, Özer A (2017) Synthesis of hydroxyapatite-alginate composite: methylene blue adsorption. Sinop Univ J Nat Sci 2:37–47. https://doi.org/10.1016/j.molliq.2017.11.113

    Article  CAS  Google Scholar 

  13. Lin H, Yeh Y (2004) Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res B Appl Biomater 71:52–65. https://doi.org/10.1002/jbm.b.30065

    Article  CAS  PubMed  Google Scholar 

  14. Ayad NME, da Rocha DN, Costa AM, da Silva MHP (2017) Chlorhexidine adsorption in hydroxyapatite and alginate microspheres by extrusion in zinc and calcium chloride. Key Eng Mater 720:25–30. https://doi.org/10.4028/www.scientific.net/KEM.720.25

    Article  Google Scholar 

  15. Rajkumar M, Meenakshisundaram N, Rajendran V (2011) Development of nanocomposites based on hydroxyapatite/sodium alginate: synthesis and characterisation. Mater Charact 62:469–479. https://doi.org/10.1016/j.matchar.2011.02.008

    Article  CAS  Google Scholar 

  16. Mallakpour S, Abdolmaleki A, Azimi F (2017) Ultrasonic-assisted biosurface modification of carbon nanotubes with thiamine and its influence on the properties of PVC/Tm-MWCNTs nanocomposite films. Ultrason Sonochem 39:589–596. https://doi.org/10.1016/j.ultsonch.2017.05.028

    Article  CAS  PubMed  Google Scholar 

  17. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  18. Ching SH, Bansal N, Bhandari B (2017) Alginate gel particles—a review of production techniques and physical properties. Crit Rev Food Sci Nutr 57:1133–1152. https://doi.org/10.1080/10408398.2014.965773

    Article  CAS  PubMed  Google Scholar 

  19. Uyar G, Kaygusuz H, Erim FB (2016) Methylene blue removal by alginate–clay quasi-cryogel beads. React Funct Polym 106:1–7. https://doi.org/10.1016/j.reactfunctpolym.2016.07.001

    Article  CAS  Google Scholar 

  20. Li ZQ, Hou L, Li Z, Zheng W, Li L (2013) Study on shape optimization of calcium–alginate beads. Adv Mater Res 648:125–130. https://doi.org/10.4028/www.scientific.net/AMR.648.125

    Article  CAS  Google Scholar 

  21. Li Q, Li Y, Ma X, Du Q, Sui K, Wang D, Wang C, Li H, Xia Y (2017) Filtration and adsorption properties of porous calcium alginate membrane for methylene blue removal from water. Chem Eng J 316:623–630. https://doi.org/10.1016/j.cej.2017.01.098

    Article  CAS  Google Scholar 

  22. Zhu H, Fu Y, Jiang R, Yao J, Xiao L, Zeng G (2014) Optimization of copper(II) adsorption onto novel magnetic calcium alginate/maghemite hydrogel beads using response surface methodology. Ind Eng Chem Res 53:4059–4066. https://doi.org/10.1021/ie4031677

    Article  CAS  Google Scholar 

  23. Alluri NR, Selvarajan S, Chandrasekhar A, Saravanakumar B, Lee GM, Jeong JH, Kim SJ (2017) Worm structure piezoelectric energy harvester using ionotropic gelation of barium titanate-calcium alginate composite. Energy 118:1146–1155. https://doi.org/10.1016/j.energy.2016.10.143

    Article  CAS  Google Scholar 

  24. Mallakpour S, Darvishzadeh M (2018) Nanocomposite materials based on poly(vinyl chloride) and bovine serum albumin modified ZnO through ultrasonic irradiation as a green technique: optical, thermal, mechanical and morphological properties. Ultrason Sonochem 41:85–99. https://doi.org/10.1016/j.ultsonch.2017.09.022

    Article  CAS  PubMed  Google Scholar 

  25. Chatel G (2018) How sonochemistry contributes to green chemistry ? Ultrason Sonochem 40:117–122. https://doi.org/10.1016/j.ultsonch.2017.03.029

    Article  CAS  PubMed  Google Scholar 

  26. Mallakpour S, Behranvand V (2016) Polymeric nanoparticles: recent development in synthesis and application. Express Polym Lett 10:895–913. https://doi.org/10.3144/expresspolymlett.2016.84

    Article  CAS  Google Scholar 

  27. Sumitomo S, Koizumi H, Uddin MA, Kato Y (2018) Comparison of dispersion behavior of agglomerated particles in liquid between ultrasonic irradiation and mechanical stirring. Ultrason Sonochem 40:822–831. https://doi.org/10.1016/j.ultsonch.2017.08.023

    Article  CAS  PubMed  Google Scholar 

  28. Yang N, Wang R, Rao P, Yan L, Zhang W, Wang J, Chai F (2019) The fabrication of calcium alginate beads as a green sorbent for selective recovery of Cu(II) from metal mixtures. Crystals 9:1–14. https://doi.org/10.3390/cryst9050255

    Article  CAS  Google Scholar 

  29. Zhang J, Ji Q, Shen X, Xia Y, Tan L, Kong Q (2011) Pyrolysis products and thermal degradation mechanism of intrinsically flame-retardant calcium alginate fibre. Polym Degrad Stabil 96:936–942. https://doi.org/10.1016/j.polymdegradstab.2011.01.029

    Article  CAS  Google Scholar 

  30. Bekin S, Sarmad S, Gurkan K, Yenici G, Keceli G, Gurdag G (2014) Dielectric, thermal, and swelling properties of calcium ion-crosslinked sodium alginate film. Polym Eng Sci 54(2014):1372–1382. https://doi.org/10.1002/pen.23678

    Article  CAS  Google Scholar 

  31. Treccani L, Klein T, Meder F, Pardun K, Rezwan K (2013) Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomater 9:7115–7150. https://doi.org/10.1016/j.actbio.2013.03.036

    Article  CAS  PubMed  Google Scholar 

  32. Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30:2175–2179. https://doi.org/10.1016/j.biomaterials.2009.01.008

    Article  CAS  PubMed  Google Scholar 

  33. Govindan R, Girija EK (2014) Drug loaded phosphate glass/hydroxyapatite nanocomposite for orthopedic applications. J Mater Chem B 2:5468–5477. https://doi.org/10.1039/c4tb00549j

    Article  CAS  PubMed  Google Scholar 

  34. Guerrero-Lecuona MC, Canillas M, Pena P, Rodríguez MA, De Aza AH (2015) Different in vitro behavior of two Ca3(PO4)2 based biomaterials, a glass-ceramic and a ceramic, having the same chemical composition. Boletín La Soc Española Cerámica Y Vidr 54:181–188. https://doi.org/10.1016/j.bsecv.2015.10.001

    Article  Google Scholar 

  35. Wu C, Fan W, Gelinsky M, Xiao Y, Chang J, Friis T, Cuniberti G (2011) In situ preparation and protein delivery of silicate − alginate composite microspheres with core-shell structure. J R Soc Interface 8:1804–1814. https://doi.org/10.1098/rsif.2011.0201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sadat-Shojai M, Khorasani MT, Jamshidi A (2016) A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels. Chem Eng J 289:38–47. https://doi.org/10.1016/j.cej.2015.12.079

    Article  CAS  Google Scholar 

  37. Hu Y, Zhu Y, Zhou X, Ruan C, Pana H, Catchmark JM (2016) Bioabsorbable cellulose composites prepared by an improved mineral-binding process for bone defect repair. J Mater Chem B 4:1235–1246. https://doi.org/10.1039/c5tb02091c

    Article  CAS  PubMed  Google Scholar 

  38. Sarker B, Li W, Zheng K, Detsch R, Boccaccini AR (2016) Designing porous bone tissue engineering scaffolds with enhanced mechanical properties from composite hydrogels composed of modified alginate, gelatin and bioactive glass. ACS Biomater Sci Eng 2:2240–2254. https://doi.org/10.1021/acsbiomaterials.6b00470

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciatively acknowledge the support of this research work by the financial support of the Research Affairs Division of Isfahan University of Technology (IUT), Isfahan, I. R. Iran, and Iran National Science Foundation (INSF), Tehran, I. R. Iran (Grant Number 97010316), and Iran Nanotechnology Initiative Council (INIC) Tehran, I. R. Iran. We also want to thank National Elite Foundation (NEF), Tehran, I. R. Iran, and Center of Excellence in Sensors and Green Chemistry IUT. We also thank Dr. F. Tabesh for his great help and suggestions. Special thanks to Mr. M. J. Nasr Isfahani for the prompt recording of EDX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Behranvand, V. & Mallakpour, F. Physicochemical inspection and in vitro bioactivity behavior of bio-nanocomposite alginate hydrogels filled by magnesium fluoro-hydroxyapatite. Polym. Bull. 78, 359–375 (2021). https://doi.org/10.1007/s00289-020-03111-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03111-9

Keywords

Navigation