Skip to main content

One-Phase and Two-Phase Flow Simulation Using High-Order HDG and High-Order Diagonally Implicit Time Integration Schemes

  • Conference paper
  • First Online:
Applied Mathematics for Environmental Problems

Part of the book series: SEMA SIMAI Springer Series ((ICIAM2019SSSS,volume 6))

  • 323 Accesses

Abstract

We present two high-order hybridizable discontinuous Galerkin (HDG) formulations combined with high-order diagonally implicit Runge-Kutta schemes to solve one-phase and two-phase flow problems through porous media. The HDG method is locally conservative and allows reducing the size of the global systems due to the hybridization procedure, and the pressure, the saturation and the velocity converge with order P + 1 in L 2-norm, with P being the polynomial degree. In addition, an element-wise post-process can be applied to obtain a convergence rate of P + 2 in L 2-norm for the pressure and saturation. To achieve these rates of convergence the temporal errors should be small enough. For this purpose we combine HDG with high-order diagonally implicit Runge-Kutta (DIRK) temporal schemes. Finally, we present four examples dealing with 2D and 3D problems, and high-order structured and unstructured meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbogast, T., Juntunen, M., Pool, J., Wheeler, M.F.: A discontinuous Galerkin method for two-phase flow in a porous medium enforcing H(div) velocity and continuous capillary pressure. Comput. Geosci. 17(6), 1055–1078 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bear, J., Verruijt, A.: Modeling Groundwater Flow and Pollution, vol. 2. Springer Science & Business Media, Netherlands (2012)

    Google Scholar 

  3. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, England (2016)

    Book  Google Scholar 

  4. Chen, Z., Huan, G., Ma, Y.: Computational Methods for Multiphase Flows in Porous Media, vol. 2. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  5. Corey, A.: Hydraulic properties of porous media. Colorado State University, Hydraulic Papers (3) (1964)

    Google Scholar 

  6. Costa-Solé, A., Ruiz-Gironés, E., Sarrate, J.: An HDG formulation for incompressible and immiscible two-phase porous media flow problems. Int. J. Comput. Fluid D. 33(4), 137–148 (2019)

    Article  MathSciNet  Google Scholar 

  7. Donaldson, E., Chilingarian, G., Yen, T.: Enhanced oil recovery, II: processes and operations, vol. 17. Elsevier, Amsterdam/New York (1989)

    Google Scholar 

  8. Ern, A., Mozolevski, I., Schuh, L.: Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures. Comput. Methods Appl. Mech. Eng. 199(23–24), 1491–1501 (2010)

    Article  MathSciNet  Google Scholar 

  9. Fabien, M.S., Knepley, M.G., Rivière, B.M.: A hybridizable discontinuous Galerkin method for two-phase flow in heterogeneous porous media. Int. J. Numer. Meth. Eng. 116(3), 161–177 (2018)

    Article  MathSciNet  Google Scholar 

  10. Gargallo-Peiró, A., Roca, X., Peraire, J., Sarrate, J.: Optimization of a regularized distortion measure to generate curved high-order unstructured tetrahedral meshes. Int. J. Numer. Meth. Eng. 103(5), 342–363 (2015)

    Article  MathSciNet  Google Scholar 

  11. Gargallo-Peiró, A., Roca, X., Peraire, J., Sarrate, J.: A distortion measure to validate and generate curved high-order meshes on CAD surfaces with independence of parameterization. Int. J. Numer. Meth. Eng. 106(13), 1100–1130 (2016). Nme.5162

    Google Scholar 

  12. Jamei, M., Ghafouri, H.: A novel discontinuous Galerkin model for two-phase flow in porous media using an improved IMPES method. Int. J. Numer. Method H. 26(1), 284–306 (2016)

    Article  MathSciNet  Google Scholar 

  13. Jamei, M., Raeisi Isa Abadi, A., Ahmadianfar, I.: A Lax-Wendroff-IMPES scheme for a two-phase flow in porous media using interior penalty discontinuous Galerkin method. Numer. Heat Tr. B.-Fund. 75(5), 325–346 (2019)

    Google Scholar 

  14. Kennedy, C.A., Carpenter, M.H.: Diagonally implicit Runge-Kutta methods for ordinary differential equations a review. Technical Report NASA/TM-2016-219173, NASA (2016)

    Google Scholar 

  15. Kirby, R., Sherwin, S., Cockburn, B.: To CG or to HDG: a comparative study. J. Sci. Comput. 51(1), 183–212 (2012)

    Article  MathSciNet  Google Scholar 

  16. Klieber, W., Rivière, B.: Adaptive simulations of two-phase flow by discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 196(1–3), 404–419 (2006)

    Article  MathSciNet  Google Scholar 

  17. Montlaur, A., Fernandez-Mendez, S., Huerta, A.: High-order implicit time integration for unsteady incompressible flows. Int. J. Numer. Meth. Fl. 70(5), 603–626 (2012)

    Article  MathSciNet  Google Scholar 

  18. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection–diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009)

    Article  MathSciNet  Google Scholar 

  19. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection–diffusion equations. J. Comput. Phys. 228(23), 8841–8855 (2009)

    Article  MathSciNet  Google Scholar 

  20. Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, p. 112 (2006)

    Google Scholar 

  21. Roca, X., Ruiz-Gironés, E., Sarrate, J.: EZ4U: mesh generation environment (2010)

    Google Scholar 

  22. Ruiz-Gironés, E., Roca, X., Sarrate, J.: High-order mesh curving by distortion minimization with boundary nodes free to slide on a 3D CAD representation. Comput. Aided Des. 72, 52–64 (2016)

    Article  Google Scholar 

  23. Sevilla, R., Huerta, A.: Tutorial on hybridizable discontinuous Galerkin (HDG) for second-order elliptic problems. In: Advanced Finite Element Technologies, pp. 105–129. Springer, Cham (2016)

    Google Scholar 

  24. Warburton, T.: An explicit construction of interpolation nodes on the simplex. J. Eng. Math. 56(3), 247–262 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by FEDER and the Spanish Government, Ministerio de Economía y Competitividad grant project contract CTM2014-55014-C3-3-R, Ministerio de Ciencia Innovación y Universidades grant project contract PGC2018-097257-B-C33, and the grant BES-2015-072833.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Sarrate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Costa-Solé, A., Ruiz-Gironés, E., Sarrate, J. (2021). One-Phase and Two-Phase Flow Simulation Using High-Order HDG and High-Order Diagonally Implicit Time Integration Schemes. In: Asensio, M.I., Oliver, A., Sarrate, J. (eds) Applied Mathematics for Environmental Problems. SEMA SIMAI Springer Series(), vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-61795-0_4

Download citation

Publish with us

Policies and ethics